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Abstract

A wide variety of resource management problems of recent inter-
est, including power/rate control, link scheduling, cross-layer control,
network utility maximization, beamformer design of multiple-input
multiple-output networks, and many others are directly or indirectly
reliant on the weighted sum-rate maximization (WSRMax) problem.
In general, this problem is very difficult to solve and is NP-hard. In
this review, we provide a cohesive discussion of the existing solution



methods associated with the WSRMax problem, including global, fast
local, as well as decentralized methods. We also discuss in depth the
applications of general optimization techniques, such as branch and
bound methods, homotopy methods, complementary geometric pro-
gramming, primal decomposition methods, subgradient methods, and
sequential approximation strategies, in order to develop algorithms
for the WSRMax problem. We show, through a number of numerical
examples, the applicability of these algorithms in various application
domains.



1
Introduction

Consider a general wireless network with L interfering links. The
achievable rate of each link is a scalar function and is denoted by rl.
Then the general weighted sum-rate maximization (WSRMax) problem
has the form:

maximize
∑L

l=1 βlrl(y)
subject to y ∈ Y.

(1.1)

Here y = (y1, . . . ,yn) is the optimization variable of the problem, pos-
itive scalar βl is the weight associated with link l, and the (possibly
nonconvex) set Y is the feasible set of the problem. In general, rl is not
convex in y. Therefore, problem (1.1) is surprisingly difficult to solve,
though it appears to be very simple.

In this section, we first provide a discussion that emphasizes the
importance of WSRMax problem (1.1) in wireless networks. Next we
discuss the importance of global, fast local, as well as distributed solu-
tion methods for WSRMax problem. Finally, the existing key literature
that address the problem is presented. Applications of optimization
techniques for developing algorithms for the problem will be covered in
later sections, with more technical detail.
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4 Introduction

1.1 Motivation

Among various resource management policies, the WSRMax for
an arbitrary set of interfering links plays a central role in many
network control and optimization methods. For example, the prob-
lem is encountered in network utility maximization (NUM) [88], the
resource allocation (RA) subproblem in various cross-layer control poli-
cies [43, 81], MaxWeight link scheduling in multihop wireless net-
works [120], power/rate allocation in wireless networks, as well as in
wireline networks [115, 124], joint optimization of transmit beamform-
ing patterns, transmit powers, and link activations in multiple-input
multiple-output (MIMO) networks [34], and finding achievable rate
regions of singlecast/multicast wireless networks [87], among others.

1.1.1 Network Utility Maximization (NUM)

In the late nineties, Kelly et al. [59, 60] introduced the concept of NUM
for fairness control in wireline networks. It was shown therein that
maximizing the sum-rate under the fairness constraint is equivalent
to maximizing certain network utility functions and different network
utility functions can be mapped to different fairness criteria. For a
useful discussion of many aspects of the NUM concept in the case of
wireless network, see [88] and the references therein. In this context,
the WSRMax problem appears as a part of the Lagrange dual problem
of the overall NUM problem; see [89] and the references therein.

1.1.2 Cross-layer Control Policies for Wireless Networks

For useful discussions of cross-layer control policies, see [40, 43, 68, 71,
81, 90, 142] and the references therein. Many of these policies are essen-
tially identical. It has been shown that an optimal cross-layer control
policy, which achieves data rates arbitrarily close to the optimal oper-
ating point, can be decomposed into three subproblems that are nor-
mally associated with different network layers. Specifically, flow control
resides at the transport layer, routing and in-node scheduling1 resides

1 in-node scheduling refers to selecting the appropriate commodity and it is not to be con-
fused with the links scheduling mechanism which is handled by the resource allocation
subproblem [43].
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at the network layer, and resource allocation (or RA) is usually associ-
ated with the medium access control and physical layers [43]. The first
two subproblems are convex optimization problems and can be solved
relatively easily. It turns out that under reasonably mild assumptions,
the RA subproblem can be cast as a general WSRMax problem over
the instantaneous achievable rate region [43]. The weights of the links
are given by the differential backlogs and the policy resembles the well-
known backpressure algorithm introduced by Tassiulas and Ephremides
in [120, 121] and further extended by Neely to dynamic networks with
power control; see [81] and the references therein.

1.1.3 MaxWeight Link Scheduling for Wireless Networks

Maximum weighted link scheduling for wireless networks [41, 68, 105,
120, 121, 138] is a place, in which the problem of WSRMax is directly
used. Note that, for networks with fixed link capacities, the maximum
weighted link scheduling problem reduces to the classical maximum
weighted matching problem and can be solved in polynomial time [68].
However, no solution is known for the general case when the link rates
depend on the power allocation of all other links.

1.1.4 Power/rate Control Policies

We see sometimes that the WSRMax problem is directly used as
the basis for the power/rate control policy in wireless, as well as in
wireline networks [115, 124]. For example, in DSL networks, there
is considerable research on resource management policies, which rely
directly on the WSRMax problem for multiuser spectrum balanc-
ing [3, 27, 28, 39, 74, 94, 97, 127, 128, 129, 139, 140]. Direct application
of WSRMax as an optimization criterion can also been seen exten-
sively in joint power control and subcarrier assignment algorithms for
OFDMA networks [7, 50, 54, 67, 104, 106, 145].

1.1.5 Resource Management in MIMO Networks

There are also a number of resource management algorithms in mul-
tiuser MIMO networks, which rely on the problem of WSRMax. For
example, the methods proposed in [34, 35, 111, 122] rely on WSRMax
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for joint design of linear transmit and receive beamformers. In addition,
many references have applied WSRMax directly as an optimization cri-
terion for beamformer design in MIMO networks, e.g., [45, 151].

1.1.6 Finding Achievable Rate Regions in Wireless
Networks

In multiuser systems many users share the same network resources, for
example, time, frequency, codes, space, etc. Thus, there is naturally a
tradeoff between the achievable rates of the users. In other words, one
may require to reduce its rate if another user wants a higher rate. In
such multiuser systems, the achievable rate regions are important since
they characterize the tradeoff achievable by any resource management
policy [124]. By invoking a time sharing argument, one can always
assume that the rate region is convex [124]. Therefore, any boundary
point of the rate region can be obtained by using the solution of a
WSRMax problem for some weights.

Thus, WSRMax is a central component in many network design
problems as we discussed above. Unfortunately, the general WSRMax
problem is not yet amendable to a convex formulation [76]. In fact,
it is NP-hard [75]. Therefore, we must rely on global optimization
approaches [5, 52] for computing an exact solution of the WSRMax
problem. Such global solution methods are increasingly important
because they can be used to provide performance benchmarks by
back-substituting them into any network design method, which relies
on WSRMax. They are also very useful for evaluating the perfor-
mance loss encountered by any heuristic algorithm for the WSRMax
problem.

Although global methods find the solution of the WSRMax problem,
they are typically slow. Even small problems, with a few tens of
variables, can take a very long time to solve WSRMax. Therefore, it is
natural to seek suboptimal algorithms for WSRMax that are efficient
enough, and still close to optimal; the compromise is optimality [22].
Such algorithms are of central importance since they can be fast
and widely applicable in large-scale network control and optimization
methods.
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Due to the explosion of problem size and the signal overhead
required in centralized network control and optimization methods, it is
highly desirable to develop decentralized variants of those algorithms.
Therefore, finding distributed methods for the WSRMax problem is of
crucial importance from a theoretical, as well as from a practical per-
spective for decentralized implementation of many network control and
optimization methods, such as those investigated in [81, 120].

1.2 Global Methods for WSRMax in Wireless Networks

The general WSRMax problem is NP-hard [75]. It is therefore natural
to rely on global optimization approaches [5, 52] for computing an exact
solution. One straightforward approach is based on exhaustive search
in the variable space [28]. The main disadvantage of this approach
is the prohibitively expensive computational complexity, even in the
case of very small problems. A better approach is to apply branch
and bound techniques [52], which essentially implement the exhaustive
search in an intelligent manner; see [3, 39, 57, 97, 129, 135, 139]. Branch
and bound methods based on difference of convex functions (DC) pro-
gramming [52] have been proposed in [3, 39, 139] to solve (a subclass
of) WSRMax. Although DC programming is the core of their algo-
rithms, it also limits the generality of their method to the problems in
which the objective function cannot easily be expressed as a DC [52].
For example, in the case of multicast wireless networks, expressing the
objective function as a DC cannot be easily accomplished, even when
Shannon’s formula is used to express the achievable link rates. Another
branch and bound method has been used in [129] in the context of
DSL bit loading, where the search space is discretized in advance. As
a result of discretization, this method does not allow a complete con-
trol of the accuracy of the solution. An alternative optimal method
was proposed in [97], where the WSRMax problem is cast as a gener-
alized linear fractional program [96] and solved via a polyblock algo-
rithm [48]. The method works well for small scale problems, but as
pointed out in [5, chap. 2, pp. 40–41] and [96, sec. 6.3], it may show
much slower convergence than branch and bound methods as the prob-
lem size increases. A special form of the WSRMax problem is presented
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in [23, p. 78] [128], where the problem data and the constraints must
obey certain properties and, consequently, the problem can be reduced
to a convex formulation. However, these required properties correspond
to very unlikely events in wireless/wireline networks, and therefore the
method has a very limited applicability.

1.3 Local Methods for WSRMax in Wireless Networks

The worst case computational complexity for solving the general WSR-
Max problem by applying global optimization approaches can increase
more than polynomially with the number of variables. As a result, these
methods are prohibitively expensive, even for off line optimization of
moderate size networks. Therefore, the problem of WSRMax deserves
efficient algorithms, which even though suboptimal, perform well in
practice.

Several approximations have been proposed for the case when all
links in the network operate in certain signal-to-interference-plus-noise
ratio (SINR) regions. For example, the assumption that the achievable
rate is a linear function of the SINR (i.e., low SINR region) is widely
used in the ultra-wide-band systems, e.g., [98]. Other references, which
provide solutions for the power and rate control in low SINR regions
include [37, 69, 99]. The high SINR region is treated in [29, 58, 86].
However, at the optimal operating point different links correspond
to different SINR regions, which is usually the case with multihop
networks. Therefore, all methods mentioned above that are based on
either the low or the high SINR assumptions can fail to solve the
general problem.

One promising method is to cast the WSRMax problem into
a signomial program (SP) formulation [20, sec. 9] or into a com-
plementary geometric program (CGP) [6, 30], where a suboptimal
solution can be obtained efficiently; we can readily convert an SP
to a CGP and vice versa [30, sec. 2.2.5]. Applications of SP and
CGP, or closely related solution methods, have been demonstrated
in various signal processing and digital communications problems,
e.g., [30, 31, 34, 35, 78, 94, 122, 127]. There are a number of other impor-
tant papers proposing suboptimal solution methods for the WSRMax
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problem, such as [2, 27, 33, 45, 68, 70, 74, 105, 111, 116, 131, 151],
among others.

Though the suboptimal methods mentioned above, including
SP/CGP based algorithms, can perform reasonably well in many cases,2

it is worth pointing out that not all of them can handle the general
WSRMax problem. The reason is the self-interference problem, which
arises when a node transmits and receives simultaneously in the same
frequency band. Since there is a huge imbalance between the trans-
mitted signal power and the received signal power of nodes, the trans-
mitted signal strength is typically few orders of magnitude larger than
the received signal strength. Thus, when a node transmits and receives
simultaneously in the same channel, the useful signal at the receiver of
the incoming link is overwhelmed by the transmitted signal of the node
itself. As a result, the SINR values at the incoming link of a node that
simultaneously transmits in the same channel is very small. Therefore,
the self-interference problem plays a central role in WSRMax in general
wireless networks [133].

Thus, in the case of general multihop wireless networks, the
WSRMax problem must also cope with the self-interference problem.
Under such circumstances SP/CGP cannot be directly applicable even
to obtain a better suboptimal solution, since initialization of the algo-
rithms is critical. One approach to dealing with self interference con-
sists of adding supplementary combinatorial constraints, which prevent
any node in the network from transmitting and receiving simultane-
ously [13, 14, 24, 38, 46, 61, 71, 138]. This is sometimes called the
node-exclusive interference model; only subsets of mutually exclusive
links can simultaneously be activated in order to avoid the large self
interference encountered if a node transmits and receives in the same
frequency band. Of course, such approaches induce a combinatorial
nature for the WSRMax problem in general. The combinatorial nature
is circumvented in [134], where homotopy methods (or continuation
methods) [4] together with complementary geometric programming [6]
are adopted to derive efficient algorithms for the general WSRMax

2 For example, when a node does not transmits and receives simultaneously in the same
frequency band.
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problem. Here, the term “efficient” can mean faster convergence, or
convergence to a point with better objective value.

1.4 Distributed WSRMax in Wireless Networks

The emergence of large scale communication networks, as well as
accompanying network control and optimization methods with huge
signalling overheads triggered a considerable body of recent research
on developing distributed algorithms for resource management, see [21,
79, 141] and the references therein. Such distributed algorithms rely
only on local observations and are carried out with limited access to
global information. These algorithms essentially involve coordinating
many local subproblems to find a solution to a large global problem. It
is worth emphasizing that the convexity of the problems is crucial in
determining the behavior of the distributed algorithms [21, chap. 9]. For
example, in the case of nonconvex problems such algorithms need not
converge, and if they do converge, they need not converge to an opti-
mal point, which is the case with the WSRMax problem. Nevertheless,
finding even a suboptimal yet distributed method is crucial for deploy-
ing distributively many network control and optimization methods,
e.g., [41, 68, 81, 83, 84, 105, 118, 120, 138], which rely on WSRMax.

Distributed implementation of the WSRMax problem has been
investigated in [27, 93, 94, 127, 144] in the context of digital sub-
scriber loops (DSL) networks. Those systems are inherently consisting
of single-input and single-output (SISO) links. Related algorithms for
SISO wireless ad hoc networks and SISO orthogonal frequency divi-
sion multiple access cellular systems are found in [53, 117, 147, 146].
However, in the case of multi antenna cellular systems, the decision
variables space is, of course, larger, for example, joint optimization
of transmit beamforming patterns, transmit powers, and link activa-
tions is required. Therefore, designing efficient distributed methods for
WSRMax is a more challenging task due to the extensive amount of
message passing required to resolve the coupling between variables. In
the sequel, we limit ourselves to basic, but still very important, results
that develop distributed coordinated algorithms for resource manage-
ment in networks with multiple antennas.
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Several distributed methods for WSRMax in multiple-input and
single-output (MISO) cellular networks have been proposed in [10, 11,
72, 95, 130, 132, 136]. Specifically, in [95] a two-user MISO interference
channel (IC)3 is considered and a distributed algorithm is derived by
using the commonly used high SINR approximation [29]. Moreover,
another approximation, which relies on zero forcing (ZF) beamforming
is introduced in [95] to address the problem in the case of multiuser
MISO IC.

The methods proposed in [10, 11, 130] derived the necessary (but
not sufficient) optimality conditions for the WSRMax problem and used
it as the basis for their distributed solution. However, many parame-
ters must be selected heuristically to construct a potential distributed
solution and there is, in general no systematic method for finding those
parameters. In particular, the algorithms in [10, 11] are designed for
systems with very limited backhaul signaling resources and do not
consider any iterative base station (BS) coordination mechanism to
resolve the out-of-cell interference coupling. Even though the method
proposed in [130] relies on stringent requirements on the message pass-
ing between BSs during each iteration of the algorithm, their results
show that BS coordination can provide considerable gains compared
to uncoordinated methods. An inexact cooperate descent algorithm for
the case where each BS is serving only one cell edge user has been
proposed in [72]. The method proposed in [66] is designed for sum-rate
maximization and uses high SINR approximation. A cooperative beam-
forming algorithm is proposed in [152] for MISO IC, where each BS can
transmit only to a single user. Their proposed method employs an iter-
ative BS coordination mechanism to resolve the out-of-cell interference
coupling. However, the convexity properties exploited for distribution
of the problem are destroyed when more than one user is served by
any BS. Thus, their proposed method is not directly applicable to the
WSRMax problem. Recently, an interesting distributed algorithm for
WSRMax is proposed by Shi et al. [110], which exploits a nontrivial
equivalence between the WSRMax problem and a weighted sum mean

3 K-user MISO IC means that there are K transmitter–receiver pairs, where the transmitters
have multiple antennas and the receivers have single antennas.



12 Introduction

squared error minimization problem. This algorithm relies on user ter-
minal assistance, such as signal covariance estimations, computation
and feedback of certain parameters form user terminals to BSs over
the air interface. In practice, performing perfect covariance estimation
and perfect feedback during each iteration can be very challenging. In
the presence of user terminal imperfections, such as estimation and
feedback errors, the algorithms performance can degrade and its con-
vergence can be less predictable.

Algorithms based on game theory are found in [49, 55, 65, 107,
108, 109]. Their proposed methods are restricted to interference chan-
nels, for example, MISO IC, MIMO IC. The methods often require the
coordination between receiver nodes and the transmitter nodes during
algorithm’s iterations.

Many optimization criteria other than the weighted sum-rate have
been considered in references [12, 113, 123, 143, 148, 149, 150] to dis-
tributively optimize the system resources (e.g., beamforming patterns,
transmit powers, etc.) in multi antenna cellular networks. In particu-
lar, the references [12, 148, 149, 150] used the characterization of the
Pareto boundary of the MISO interference channel [56] as the basis
for their distributed methods. Their proposed methods do not employ
any BS coordination mechanism to resolve the out-of-cell interference
coupling. In [113, 123, 143] distributed algorithms have been derived
to minimize a total (weighted) transmitted power or the maximum per
antenna power across the BSs subject to SINR constraints at the user
terminals.

1.5 Outline of the Volume

Section 2 presents a solution method, based on the branch and
bound technique, which solves globally the nonconvex WSRMax
problem with an optimality certificate. Efficient analytic bounding
techniques are introduced and their impact on convergence is numer-
ically evaluated. The considered link-interference model is general
enough to model a wide range of network topologies with various
node capabilities, for example, single- or multipacket transmission
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(or reception), simultaneous transmission and reception. Diverse appli-
cation domains of WSRMax are considered in the numerical results,
including cross-layer network utility maximization and maximum
weighted link scheduling for multihop wireless networks, as well as find-
ing achievable rate regions for singlecast/multicast wireless networks.

Section 3 presents fast suboptimal algorithms for the WSRMax
problem in multicommodity, multichannel wireless networks. First, the
case where all receivers perform singleuser detection4 is considered and
algorithms are derived by applying complementary geometric program-
ming and homotopy methods. Here we apply the algorithms within a
general cross-layer utility maximization framework to examine quan-
titative impact of gains that can be achieved at the network layer in
terms of end-to-end rates and network congestion. In addition, we show,
through examples, that the algorithms are well suited for evaluating the
gains achievable at the network layer when the network nodes employ
self interference cancelation techniques with different degrees of accu-
racy. Finally, a case where all receivers perform multiuser detection
is considered and solutions are presented by imposing additional con-
straints, such as that only one node can transmit to others at a time
or that only one node can receive from others at a time.

Section 4 presents an easy to implement distributed method for the
WSRMax problem in a multicell multiple antenna downlink system.
The algorithm is based on primal decomposition and subgradient
methods, where the original nonconvex problem is split into a mas-
ter problem and a number of subproblems (one for each base station).
A sequential convex approximation strategy is used to address the
nonconvex master problem. Unlike the recently proposed minimum
weighted mean-squared error based algorithms, the method presented
here does not rely on any user terminal assistance. Only base station
to base station synchronized signalling via backhaul links. All the nec-
essary computation is performed at the BSs. Numerical experiments

4 That is, a receiver decodes each of its intended signals by treating all other interfering
signals as noise.
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are provided to examine the behavior of the algorithm under different
degrees of BS coordination.

Finally, in Section 5, we present our conclusions. The detailed work
presented in this volume is based on the research performed by the
authors that led to several recent journal and conference publications.



2
A Branch and Bound Algorithm

In this section we present a branch and bound method for solving glob-
ally the general WSRMax problem for a set of interfering links. At each
step, the algorithm computes upper and lower bounds for the optimal
value. The algorithm terminates when the difference between the upper
and the lower bounds is within a pre-specified accuracy level. Efficient
analytic bounding techniques are introduced and their impact on the
convergence is numerically evaluated. The considered link-interference
model is general enough to model a wide range of network topolo-
gies with various node capabilities, for example, single- or multipacket
transmission (or reception), simultaneous transmission and reception.
In contrast to the other branch and bound based techniques [3, 39, 139],
the method presented here does not rely on the convertibility of the
problem into a DC problem. Therefore, it applies to a broader class
of WSRMax problems (e.g., WSRMax in multicast wireless networks).
Moreover, the method discussed here is not restricted to WSRMax; it
can also be used to maximize any system performance metric that can
be expressed as a Lipschitz continuous and increasing function of SINR
values.

15
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The branch and bound method given in this section shows some
analogy to the one proposed in [129] in terms of the initial search
domain and the basic bounding techniques. However, the two methods
are fundamentally different in terms of branching techniques, as the
algorithm proposed in [129] is designed specifically to search over a
discrete space whilst the method here is optimized for a continuous
search space. We also provide improved bounding techniques which
substantially improve the convergence speed of the algorithm.

Given its generality, the algorithm can be adapted to a wide range of
network control and optimization problems. Performance benchmarks
for various network topologies can be obtained by back-substituting
it into any network design method which relies on WSRMax. Several
applications, including cross-layer network utility maximization and
maximum weighted link scheduling for multihop wireless networks, as
well as finding achievable rate regions for singlecast/multicast wireless
networks, are presented. As suboptimal but low-complex algorithms
are typically used in practice, the given algorithm can also be used for
evaluating their performance loss.

2.1 System Model and Problem Formulation

The network considered consists of a collection of nodes which can
send, receive, and relay data across a set of links. The set of all
nodes is denoted by N and we label the nodes with the integer values
n = 1, . . . ,N . A link is represented as an ordered pair (i, j) of distinct
nodes. The set of all links is denoted by L and we label the links with
the integer values l = 1, . . . ,L. We define tran(l) as the transmitter node
of link l, and rec(l) as the receiver node of link l. The existence of a link
l ∈ L implies that a direct transmission is possible from node tran(l)
to node rec(l). Note that, in the most general case, L may consist of
a combination of wireless and wireline links, for example, in the case
of hybrid networks. We define O(n) as the set of links that are out-
going from node n, and I(n) as the set of links that are incoming to
node n. Furthermore, we denote the set of transmitter nodes by T
and the set of receiver nodes by R, i.e., T = {n ∈ N|O(n) �= ∅} and
R = {n ∈ N|I(n) �= ∅}.
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(a) (b) (c) (d)

Fig. 2.1 Various network topologies: (a) Bipartite network, T = {1,2,3,4}, R = {5,6,7,8},
degree 1; (b) Bipartite network, T = {1,2,3,4,5}, R = {6,7,8,9}, degree 3; (c) Nonbipar-
tite singlehop network, T = R = N = {1,2,3,4,5,6}, degree 3; (d) Nonbipartite multihop
network, T = {1,2, . . . ,9}, R = {2,3, . . . ,10}, T ∩ R = {2,3, . . . ,9}, degree 4.

The model above covers a wide range of network topologies from
very simple ones to more complicated ones, as shown in Figure 2.1. A
particular class of network topologies is the one for which the set of
transmitters T and the set of receivers R are disjoint and we refer to
these networks as bipartite networks. Figures 2.1(a) and 2.1(b) show
two examples of bipartite networks. In Figure 2.1(a) each transmit-
ter node has only one outgoing link and each receiving node has only
one incoming link, i.e., |O(n)| = 1 for all n ∈ T and |I(n)| = 1 for all
n ∈ R. Borrowing terminology from graph theory, we say this network
has degree one.1 In contrast, the network shown in Figure 2.1(b) has
degree three, since all nodes n ∈ {3,7,9} have degree 3. A network for
which T ∩ R �= ∅ is referred to as a nonbipartite network. Examples
of nonbipartite networks are shown in Figures 2.1(c) and 2.1(d). Note
that all bipartite networks are necessarily singlehop networks whilst
the nonbipartite networks can be either singlehop [e.g., Figure 2.1(c)]
or multihop [e.g., Figure 2.1(d)] networks. Furthermore, all networks
with degree one are necessarily bipartite and all nonbipartite networks
have degrees larger than one.

In general, depending on the complexity limitations and the
transceiver techniques employed at different nodes of the network, some

1 In graph theory, the degree of a vertex is the number of edges incident on it and the
degree of a graph is the maximum degree of any vertex. By associating the network’s
nodes with vertices and the network’s links with (oriented) edges, we say that the degree
of node n is given by deg(n) = |I(n)| + |O(n)| and the degree of the network is given by
maxn∈N deg(n).
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nodes may have restricted transmit and receive capabilities. For exam-
ple, certain nodes may have only singlepacket receive and/or trans-
mit capabilities2 and some nodes may not be able to transmit and
receive simultaneously. These limitations create subsets of mutually
exclusive links and induce a combinatorial nature for the power and
rate optimization in the case of networks with degree larger than
one [9, 25, 26, 62, 68, 112, 138]. An example is the maximum weighted
link scheduling for multihop wireless networks [120].

We assume that all links share a common channel and the inter-
ference is controlled via power allocation. We denote the channel gain
from the transmitter of link i to the receiver of link j by hij . For any
pair of distinct links i �= j, we denote the interference coefficient from
link i to link j by gij . In the case of nonadjacent links (i.e., links i

and j do not have a common node), gij represents the power of the
interference signal at the receiver node of link j when one unit of
power is allocated to the transmitter node of link i, i.e., gij = |hij |2.
When links i and j are adjacent (i.e., links i and j do have a com-
mon node), the value of gij also depends on the transmit and receive
capabilities of the common node. Specifically, we set gij = ∞ if links
i and j are mutually exclusive and gij = |hij |2 if links i and j can be
simultaneously activated. Thus, gij = gji = ∞ for any pair of mutually
exclusive links. Figure 2.2 illustrates three examples of choosing the
value of the interference coefficient in the case of adjacent links. Note
that in the case of nonbipartite networks, when i ∈ O(n) and j ∈ I(n),
the term gij represents the power gain within the same node from its
transmitter to its receiver, and is referred to as the self-interference
coefficient [see Figure 2.2(c)]. In the case of wireless networks, these
gains can be several orders of magnitude larger than the power gains
between distinct nodes. References [47, 100, 102, 119] discuss various
self interference cancelations techniques that provide different degrees
of accuracy. When such schemes are employed, gij models the residual
self-interference coefficient after a certain (imperfect) self interference
cancelation technique was performed.

2 We say that a node has singlepacket receive capability if it can only receive from a single
incoming link at a time. Similarly, we say that a node has singlepacket transmit capability
if it can transmit only through a single outgoing link at a time.
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(a) (b) (c)

Fig. 2.2 Choosing the value of interference coefficient in the case of adjacent links: (a)
i, j ∈ I(n), gij = gji = ∞ if node n has singlepacket receive capability or gij = |hii|2, gji =
|hjj |2 if node n has multipacket receive capability; (b) i, j ∈ O(n), gij = gji = ∞ if node n
has singlepacket transmit capability or gij = |hjj |2, gji = |hii|2 if node n has multipacket
transmit capability; (c) i ∈ O(n), j ∈ I(n), gij = gji = ∞ if node n can not transmit and
receive simultaneously or gij = |hij |2 and gji = |hji|2 if node n can transmit and receive
simultaneously.

It is worth noting that the interference model described previously
can easily be extended to accommodate different multiple access tech-
niques by appropriately reinterpreting the interference coefficients. For
example, in the case of wireless CDMA networks, the interference coef-
ficient gij would model the residual interference at the output of the
despreading filter of node rec(j) [124]. Similarly, in the case of wireless
SDMA networks, where nodes are equipped with multiple antennas,
gij represents the equivalent interference coefficient measured at the
output of the antenna combiner of node rec(j) [124]. Extensions to
a multichannel scenario (e.g., FDMA or FDMA-SDMA networks) are
also possible by introducing multiple links between nodes, one link for
each available spectral channel, and by setting gij = 0 if links i and j

correspond to orthogonal channels. However, many such extensions are
beyond the main scope of this volume.

We consider the case where all receiver nodes are using singleuser
detection (i.e., a receiver decodes each of its intended signals by treating
all other interfering signals as noise) and assume that the achievable
rate of link l is given by

rl = log

(
1 +

gllpl

σ2 +
∑

j �=l gjlpj

)
, (2.1)

where pl is the power allocated to link l, σ2 represents the power of
the thermal noise at the receiver, and gll represents the power gain
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of link l, i.e., gll = |hll|2. The use of the Shannon formula3 for the
achievable rate in (2.1) is common practice (see, e.g., [115, 124]) but it
must be noted that this is not strictly correct in the case of finite length
packets. However, as the packet length increases, it is asymptotically
correct.

Let us first consider the case of singlecast networks, where all links
carry different information. Let βl denote an arbitrary nonnegative
number which represents the weight associated with link l. Assuming
that the power allocation is subject to a maximum power constraint∑

l∈O(n) pl ≤ pmax
n for each transmitter node n ∈ T ,4 the problem of

weighted sum-rate maximization can be expressed as

maximize
∑

l∈L βl log
(

1 +
gllpl

σ2 +
∑

j �=l gjlpj

)
subject to

∑
l∈O(n) pl ≤ pmax

n , n ∈ T
pl ≥ 0, l ∈ L,

(2.2)

where the variable is (pl)l∈L.
In the case of multicast networks, a transmitter can simultaneously

send common information to multiple receiver nodes. We consider the
general case where each transmitter node can have several multicast
transmissions. Thus, for each n ∈ T we partition O(n) into Mn disjoint
subsets of links, i.e., O(n) = ∪Mn

m=1Om(n), where Mn is the number of
multicast transmissions from node n and the set Om(n) contains all
links associated with the mth multicast transmission of node n (see
Figure 2.3). Let pm

n and βm
n be the power and the nonnegative weight

allocated to the mth multicast transmission of node n. Moreover, let
p = (pm

n )n∈T , m=1,...,Mn and denote the SINR of the lth link belongs to

3 The algorithm presented in this section can be used for any other rate versus SINR depen-
dence. The only restriction is that the rate must be a nondecreasing and Lipschitz contin-
uous function of SINR.

4 For the sake of clarity we only consider the case of sum-power constraints for each trans-
mitter node. However, supplementary sum-power constraints can be also handled by the
given algorithm. For example, in the case of a cellular downlink employing the cooper-
ation of several multiantenna base stations, sum-power constraints per subsets of nodes
(one subset of nodes corresponds to a base station) should be also considered [122].
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Fig. 2.3 Multicast network: Different line styles represent different multicast transmissions.
T = {1,2}, M1 = 2, M2 = 1, O1(1) = {1,2}, O2(1) = {3,4}, and O1(2) = {5,6}.

the mth multicast transmission of the nth node by SINRml
n (p), where

SINRml
n (p)=

gllp
m
n

σ2+
∑

j∈T ,j �=n

∑Mj

k=1 pk
j max
i∈Ok(j)

gil+
∑Mn

k=1,k �=m pk
n max

i∈Ok(n)
gil

for all n ∈ T , m = 1, . . . ,Mn. (2.3)

Clearly, for any link in the mth multicast transmission of node n, i.e.,
l ∈ Om(n), interference at rec(l) is created by the other multicast trans-
missions of node n itself and by multicast transmissions of other nodes.
The max(·) operator in the denominator of SINR expressions is used
to impose mutually exclusive multicast transmissions, for example, if
node 6 in Figure 2.3 has singlepacket reception capability, then O2(1)
and O1(2) are mutually exclusive.

Thus, by noting that the maximum rate achievable by all links in
Om(n) is given by rm

n = minl∈Om(n) rl, the weighted sum-rate maxi-
mization problem can be expressed as

maximize
∑

n∈T
∑Mn

m=1 βm
n min

l∈Om(n)
log

(
1 + SINRml

n (p)
)

subject to
∑Mn

m=1 pm
n ≤ pmax

n , n ∈ T
pm

n ≥ 0, n ∈ T , m = 1, . . . ,Mn,

(2.4)

where the variable is (pm
n )n∈T , m=1,...,Mn .

2.2 Algorithm Derivation

For the sake of clarity, let us first address the case of single-
cast networks. Extension to multicast case is presented separately
in Section 2.4. We start by equivalently reformulating the original
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problem (2.2) as minimization of a nonconvex function over an L-
dimensional rectangle. Then, we present the algorithm based on a
branch and bound technique [16] to minimize the nonconvex function
over the L-dimensional rectangle.

By introducing auxiliary variables γl, l ∈ L we first reformulate
problem (2.2) in the following equivalent form:

minimize
∑

l∈L −βl log(1 + γl)

subject to γl ≤ gllpl

σ2 +
∑

j �=l gjlpj
, l ∈ L∑

l∈O(n) pl ≤ pmax
n , n ∈ T

pl ≥ 0, l ∈ L,

(2.5)

where the variables are (pl)l∈L and (γl)l∈L. The equivalence between
problems (2.2) and (2.5) follows from the monotone increasing property
of the log(·) function. Clearly, any feasible γl, l ∈ L in problem (2.5)
represents an achievable SINR value for link l. Let us denote the objec-
tive function of problem (2.5) by f0(γ) =

∑
l∈L −βl log(1 + γl) and the

feasible set for the variables γ = (γ1, . . . ,γL) (or the achievable SINR
values) by G, i.e.,

G =


γ

∣∣∣∣∣∣∣∣
γl ≤ gllpl

σ2 +
∑

j �=l gjlpj
, l ∈ L∑

l∈O(n) pl ≤ pmax
n , n ∈ T

pl ≥ 0, l ∈ L


 . (2.6)

The optimal value of problem (2.5) can be expressed compactly as
t� = inf

γ∈G
f0(γ).

For clarity, let us define a new function f̃ : IRL
+ → IR as

f̃(γ) =
{

f0(γ) γ ∈ G
0 otherwise

(2.7)

and note that for any D ⊆ IRL
+ such that G ⊆ D, we have

inf
γ∈D

f̃(γ) = inf
γ∈G

f0(γ) = t�, (2.8)

where the first equality follows from that for any γ ∈ IRL
+ we have

f0(γ) ≤ 0. It is also worth noting that the function f̃ is nonconvex over
D and f0 is a global lower bound on f̃ , i.e., f0(γ) ≤ f̃(γ) for all γ ∈ D.
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Let us now define the L-dimensional rectangle

Qinit =
{
γ
∣∣0 ≤ γl ≤ σ−2gllp

max
tran(l), l ∈ L

}
,

which encloses the set of all achievable SINR values, i.e., G ⊆ Qinit. By
using (2.8), it follows that

t� = inf
γ∈Qinit

f̃(γ).

Thus, we have reformulated problem (2.2) equivalently as a minimiza-
tion of the nonconvex function f̃ over the rectangle Qinit. In what
follows we show how the branch and bound technique is used to mini-
mize f̃ over Qinit.

Let Q be a L-dimensional rectangle defined as

Q = {γ |γl,min ≤ γl ≤ γl,max, l ∈ L} ,

where γl,min and γl,max are real numbers such that γl,min ≤
γl,max for all l ∈ L. For any L-dimensional rectangle Q ⊆ Qinit, let us
now define the following function:

φmin(Q) = inf
γ∈Q

f̃(γ). (2.9)

Note that

φmin(Qinit) = inf
γ∈Qinit

f̃(γ) = t�. (2.10)

The key idea of the branch and bound method is to gener-
ate a sequence of asymptotically tight upper and lower bounds for
φmin(Qinit). At each iteration k, the lower bound Lk and the upper
bound Uk are updated by partitioning Qinit into smaller rectangles. To
ensure convergence, the bounds should become tight as the number of
rectangles in the partition of Qinit grows. To do this, the branch and
bound method uses two functions φub(Q) and φlb(Q), defined for any
rectangle Q ⊆ Qinit such that the following conditions are satisfied [16].

C1 : The functions φlb(Q) and φub(Q) compute a lower bound
and an upper bound respectively on φmin(Q), i.e.,

∀Q ⊆ Qinit we have φlb(Q) ≤ φmin(Q) ≤ φub(Q). (2.11)
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C2 : As the maximum half length of the sides of Q
(
i.e.,

size(Q)=1
2 max

l∈L
{γl,max − γl,min}

)
goes to zero, the difference

between the upper and lower bounds uniformly converges to
zero, i.e.,

∀ε > 0 ∃δ > 0 s.t. ∀Q ⊆ Qinit,size(Q) ≤ δ

⇒ φub(Q) − φlb(Q) ≤ ε. (2.12)

For the sake of clarity, the definition and computation of φlb and
φub are described in Section 2.3. In the remainder of this section we
will present the branch and bound method in more detail.

Let ε be an a priori specified tolerance. The algorithm starts by
computing φub(Qinit) and φlb(Qinit). If φub(Qinit) − φlb(Qinit) ≤ ε, the
algorithm terminates and C1 in (2.11) confirms that we have an upper
bound φub(Qinit), which is at most ε-away from the optimal value t�.
Otherwise, we start partitioning Qinit into smaller rectangles. At the
kth partitioning step, Qinit is split into k rectangles such that Qinit =
Q1 ∪ Q2 ∪ . . . ∪ Qk and φub(Qk) and φlb(Qk) are computed. Then the
lower bound Lk and upper bound Uk are updated as follows:

Lk = min
i∈{1,2,...,k}

φlb(Qi) ≤ φmin(Qinit) = t� ≤ min
i∈{1,2,...,k}

φub(Qi) = Uk.

(2.13)

Note that the lower bound Lk and the upper bound Uk are refined at
each step and they represent the best lower and upper bounds obtained
so far. If the difference between new bounds become smaller than ε,
then the algorithm terminates. Otherwise, further partitioning of Qinit

is required until the difference between Uk and Lk is less than ε. The
condition C2 in (2.12) ensures that, the difference Uk − Lk eventually
becomes smaller than ε for some finite k. The algorithm based on the
branch and bound method can be summarized as follows:

The first step initializes the algorithm and the upper and lower
bounds are computed over the initial rectangle Qinit. The second step
checks the difference between the best upper and lower bounds found
so far [bounds Uk and Lk are given by (2.13)]. The algorithm repeats
steps 3 to 6 until Uk − Lk < ε.
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Algorithm 2.1 Branch and bound method for WSRMax.
1. Initialization; given tolerance ε > 0. Set k = 1, B1 = {Qinit},

U1 = φub(Qinit), and L1 = φlb(Qinit).
2. Stopping criterion; if Uk − Lk > ε go to step 3, otherwise

STOP.
3. Branching;

(a) pick Q ∈ Bk for which φlb(Q) = Lk and set Qk = Q.

(b) split Qk along one of its longest edge into QI and
QII .

(c) form Bk+1 from Bk by removing Qk and adding QI

and QII .

4. Bounding;

(a) set Uk+1 = minQ∈Bk+1{φub(Q)}.

(b) set Lk+1 = minQ∈Bk+1{φlb(Q)}.

5. Pruning;

(a) pick all Q ∈ Bk+1 for which φlb(Q) ≥ Uk+1.

(b) update Bk+1 by removing all Q obtained in the above
step 5-(a).

6. Set k = k + 1 and go to step 2.

Step 3 is the branching mechanism of the algorithm. Here we adopt
the following branching rule: select from the current partition of Qinit

(i.e., Bk) the rectangle with the smallest lower bound and split it in two
smaller rectangles along its longest edge. Splitting the chosen rectangle
along its longest edge ensures the convergence of the algorithm [16].
At step 4 the best upper bound Uk and the best lower bound Lk are
updated according to (2.13).

Step 5 is used to eliminate (or prune) rectangles for which the lower
bound is larger than the best upper bound found so far, since those
rectangles can never contain a minimizer of the function f̃ . Note that
pruning does not affect the speed of the main algorithm since none of
the rectangles that were pruned will be selected later in the branching



26 A Branch and Bound Algorithm

step 3 for further splitting. The advantage of pruning is the release of
the memory otherwise used for storing unnecessary rectangles.

The convergence of the above algorithm is established by the fol-
lowing theorem.

Theorem 2.1. For any Q ⊆ Qinit with Q =
{
γ
∣∣γl,min ≤ γl ≤ γl,max,

l ∈ L
}
, if the functions φub(Q) and φlb(Q) satisfy the conditions C1

and C2, then Algorithm 2.1 converges in a finite number of iterations
to a value arbitrarily close to t�, i.e., ∀ε > 0, ∃K > 0 s.t. UK − t� ≤ ε.

Proof. The proof is given in [16, 8] and is not reproduced here for the
sake of brevity.

2.3 Computation of Upper and Lower Bounds

Note that the main challenge in designing a global optimization algo-
rithm based on the branch and bound method is to find cheaply com-
putable functions φub(Q) and φlb(Q) such that the conditions given
in (2.11) and (2.12) are satisfied. The essence of the branch and bound
method is based on that for any Q ⊆ Qinit, the bounds φub(Q) and
φlb(Q) are substantially easier to compute than the true minimum
φmin(Q) [16].

In this section we present several candidates for φlb(Q) and φub(Q)
in Algorithm 2.1. To simplify the presentation, first we describe two
basic lower and upper bound functions, prove that they satisfy the con-
ditions C1 and C2 [see (2.11) and (2.12)] and present efficient methods
for computing them. Computationally efficient better bounds are pre-
sented later in this section.

2.3.1 Basic Lower and Upper Bounds

Recall that Q = {γ |γl,min ≤ γl ≤ γl,max, l ∈ L}. We now define the
functions φBasic

lb (Q) and φBasic
ub (Q) as

φBasic
lb (Q) =

{
f0(γmax) γmin ∈ G
0 otherwise ;

(2.14)
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φBasic
ub (Q) = f̃(γmin) =

{
f0(γmin) γmin ∈ G
0 otherwise,

(2.15)

where γmax = (γ1,max, . . . ,γL,max), γmin = (γ1,min, . . . ,γL,min), and G is
defined in (2.6). Note that the most computationally expensive part of
evaluating φBasic

lb (Q) and φBasic
ub (Q) is to check the condition γmin ∈ G.

An efficient method for checking this condition is provided soon after
establishing the following important properties of φBasic

lb and φBasic
ub .

Lemma 2.2. The functions φBasic
lb (Q) and φBasic

ub (Q) satisfy the condi-
tion C1.

Proof. If γmin �∈ G, then φBasic
lb (Q) = φmin(Q) = φBasic

ub (Q) = 0, and
therefore the inequalities in C1 hold with equalities. If γmin ∈ G, then
we have

φmin(Q) = inf
γ∈Q

f̃(γ) ≤ f̃(γmin) = f0(γmin) = φBasic
ub (Q). (2.16)

The first equality follows from (2.9), the inequality follows since
γmin ∈ Q, and the second equality follows from (2.7). Moreover, we
have

φmin(Q) = inf
γ∈Q

f̃(γ) ≥ inf
γ∈Q

f0(γ) = f0(γmax) = φBasic
lb (Q), (2.17)

where the inequality follows from that f̃(γ) ≥ f0(γ) and the second
equality is from that Q is a rectangle and f0(γ) is monotonically
decreasing in each variable γl, l ∈ L. From (2.16) and (2.17) we con-
clude that φBasic

lb (Q) ≤ φmin(Q) ≤ φBasic
ub (Q).

Lemma 2.3. The functions φBasic
lb (Q) and φBasic

ub (Q) satisfy the condi-
tion C2.

Proof. We first show that the function f0(γ) =
∑

l∈L −βl log(1 + γl) is

Lipschitz continuous on IRL
+ with the constant D =

√∑
l∈L β2

l , i.e.,

|f0(µ) − f0(ν)| ≤ D ||µ − ν||2 (2.18)
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for all µ,ν ∈ IRL
+. We start by noting that f0(γ) is convex. Therefore,

for all µ,ν ∈ IRL
+ we have [22, sec. 3.1.3]

f0(µ) − f0(ν) ≤ ∇f0(µ)T(µ − ν). (2.19)

Without loss of generality, we can assume that f0(µ) − f0(ν) ≥ 0. Oth-
erwise, we can obtain exactly the same results by interchanging µ and ν

in (2.19), i.e., f0(ν) − f0(µ) ≤ ∇f0(ν)T(ν − µ). Thus, we have

|f0(µ) − f0(ν)| ≤ |∇f0(µ)T(µ − ν)| (2.20)

≤ ||∇f0(µ)||2||(µ − ν)||2 (2.21)

≤ maxγ∈IRL
+

||∇f0(γ)||2||(µ − ν)||2 (2.22)

= max
γ∈IRL

+

√√√√∑
l∈L

β2
l

(1 + γl)2
||(µ − ν)||2 (2.23)

= D||(µ − ν)||2, (2.24)

where (2.20) follows from (2.19), (2.21) follows from the Cauchy–
Schwarz inequality, (2.22) follows from the maximization operation,
(2.23) follows by noting that [∇f0(γ)]l = βl/(1 + γl), l ∈ L, and (2.24)
follows by setting γl = 0 for all l ∈ L.

Now we can write the following relations:

φBasic
ub (Q) − φBasic

lb (Q) ≤ f0(γmin) − f0(γmax) (2.25)

≤ D ||γmin − γmax||2 (2.26)

= D

∥∥∥∥∑
l∈L

(γl,max − γl,min)el

∥∥∥∥
2

(2.27)

≤ D
∑

l∈L(γl,max − γl,min) (2.28)

≤ 2DL size(Q). (2.29)

The first inequality (2.25) follows from (2.14) and (2.15) by noting that
f0 is nonincreasing, (2.26) follows from (2.18), (2.27) follows clearly
by noting that el is the lth standard unit vector, (2.28) follows from
triangle inequality, and (2.29) follows from the definition of size(Q) (see
C2). Thus, for any given ε > 0, we can select δ such that δ ≤ ε/2DL,
which in turns implies that condition C2 is satisfied.
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In the sequel, we present a computationally efficient method
of checking the condition γmin ∈ G, which is central in computing
φBasic

lb (Q) and φBasic
ub (Q) efficiently. Without loss of generality, we can

assume that γmin > 0. Note that the method can be extended to the
case where there are links l for which γl,min = 0 in a straightforward
manner; then, checking the original condition γmin ∈ G is equivalent to
checking a modified condition γ̆min ∈ Ğ, where γ̆min and Ğ are obtained
by eliminating the dimensions (or link indexes) for which γl,min = 0 and
thus, we have γ̆min > 0.

Let us first consider the first set of inequalities in the description of
G, i.e.,

γl ≤ gllpl

σ2 +
∑

j �=l gjlpj
, l ∈ L. (2.30)

Let p = (p1, . . . ,pL). By rearranging the terms and by using ≥ to denote
componentwise inequalities, (2.30) is equivalent to [114, 35]

(I − B(γ)G)p ≥ σ2B(γ)1, (2.31)

where the matrices B(γ) ∈ IRL×L
+ and G ∈ IRL×L

+ are defined by

B(γ) = diag
(

γ1

g11
, . . . ,

γL

gLL

)
; [G]i,j =

{
gji i �= j

0 otherwise
. (2.32)

Here diag(x) denotes the diagonal matrix with the elements of vector
x on the main diagonal. For the notational simplicity, let

A(γ) = I − B(γ)G and b(γ) = σ2B(γ)1. (2.33)

Thus, (2.30) can be compactly expressed as A(γ)p ≥ b(γ). Let us
denote the spectral radius [51, p. 5] of matrix B(γ)G by ρ(B(γ)G).
The following theorem helps us to check if γ ∈ G.

Theorem 2.4. For any γ > 0, the following implications hold:

1. ρ(B(γ)G) ≥ 1 ⇒ γ �∈ G.
2. ρ(B(γ)G) < 1 and

∑
l∈O(n) pl ≤ pmax

n for all n ∈ T , where
p = A−1(γ)b(γ) ⇒ γ ∈ G.

3. ρ(B(γ)G) < 1 and ∃n ∈ T s.t.
∑

l∈O(n) pl > pmax
n , where

p = A−1(γ)b(γ) ⇒ γ �∈ G.



30 A Branch and Bound Algorithm

Proof. The proof is similar to the one provided in [135, app. A] and it
is not reproduced here for the sake of brevity.

Based on Theorem 2.4, the condition γmin ∈ G can be checked as
follows:

Algorithm 2.2 Checking for condition γmin ∈ G

1. Construct B(γmin) and G according to (2.32).
2. If ρ(B(γmin)G) ≥ 1, then γmin �∈ G and STOP. Otherwise,

let
p = A−1(γmin)b(γmin).

3. If
∑

l∈O(n) pl ≤ pmax
n for all n ∈ T , then γmin ∈ G and STOP.

Otherwise, γmin �∈ G and STOP.

2.3.2 Improved Lower and Upper Bounds

Finding tighter bounds is very important as they can substantially
increase the convergence speed of Algorithm 2.1. By exploiting the
monotonically nonincreasing property of f0 [i.e., γ1 ≤ γ2 ⇒ f0(γ1) ≥
f0(γ2)], one improved lower bound and two improved upper bounds
are presented in this subsection. Efficient methods of computing them
are provided as well.

Note that, in the case of γmin �∈ G [i.e., Q ∩ G = ∅, see Figure 2.4(a)],
f̃(γ) = 0 for any γ ∈ Q. Thus, both the basic lower bound (2.14)
and the basic upper bound (2.15) are trivially zero and no further
improvement is possible since they are tight. Consequently, tighter
bounds can be found only in the case γmin ∈ G [i.e., Q ∩ G �= ∅, see
Figure 2.4(b)]. Thus, we consider only this case in the sequel, unless
otherwise specified.

2.3.2.1 Improved Lower Bound

Roughly speaking, a tighter lower bound can be obtained as follows.
We first construct the smallest rectangle Q̄� ⊆ Q, which encloses the
intersection Q ∩ G [see Figure 2.4(b)]. Let us denote this rectangle as
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(a) (b) (c)

Fig. 2.4 Illustration of the sets G, Qinit, Q, and Q̄� in a 2-dimensional space.

Q̄� = {γ |γl,min ≤ γl ≤ γ̄�
l , l ∈ L}. The improved lower bound is given

by f0(γ̄�
1 , . . . , γ̄�

L).5

Recall that Q = {γ |γl,min ≤ γl ≤ γl,max, l ∈ L}. For any Q ⊆ Qinit,
the improved lower bound can be formally expressed as

φImp
lb (Q) =

{
f0(γ̄�) γmin ∈ G
0 otherwise,

(2.34)

where γ̄� = (γ̄�
1 , . . . , γ̄�

L) and γ̄�
i is the optimal value of the following

optimization problem:

maximize
giipi

σ2 +
∑

j �=i gjipj

subject to
giipi

σ2 +
∑

j �=i gjipj
≤ γi,max

γl,min =
gllpl

σ2 +
∑

j �=l gjlpj
, l ∈ L \ {i}

∑
l∈O(n) pl ≤ pmax

n , n ∈ T

pl ≥ 0, l ∈ L,

(2.35)

where the variable is (pl)l∈L. The first inequality constraint ensures
that Q̄� ⊆ Q, and it is active if and only if the corner point

5 Further improvement can be obtained by constructing an outer polyblock approxima-
tion [96] for Q̄� ∩ G that lies inside Q̄�. If {v́i}i∈V́ are the proper vertices of the polyblock,
it is easy to see that an improved bound is given by mini∈V́ f0(v́i). Though interesting,
in this volume we do not consider these possible extensions, which can be carried out
in a straightforward manner. But we refer the reader to [5, chap. 2, sec. 7], where simi-
lar bound improving techniques are discussed in the context of (difference of) monotonic
optimization problems.
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ai = γmin + (γi,max − γi,min)ei lies inside G, i.e., ai ∈ G [see a1 in
Figure 2.4(c)]. Therefore, when ai ∈ G, γ̄�

i = γi,max. Otherwise (i.e.,
ai �∈ G), γ̄�

i is limited by the power constraints. In this case, the first
constraint of problem (2.35) can be safely dropped and the resulting
problem can be readily converted into a standard geometric program
(or GP) [22] so that the solution can be obtained numerically by using
a GP solver, for example, GGPLAB, GPPOSY, GPCVX [15]. However,
it turns out that the particular structure of problem (2.35) allows us to
analytically find the optimal value. This provides a more computation-
ally efficient way to compute φImp

lb (Q) without relying on a GP solver.
This method is described soon after the following important property
of φImp

lb (Q) is established.

Lemma 2.5. For any Q ⊆ Qinit, the lower bound φImp
lb (Q) (2.34) is

better than the basic lower bound φBasic
lb (Q) (2.14), i.e., φmin(Q) ≥

φImp
lb (Q) ≥ φBasic

lb (Q).

Proof. If γmin �∈ G, we have φmin(Q) = φImp
lb (Q) = φBasic

lb (Q) = 0. Oth-
erwise, i.e., when γmin ∈ G we obtain

φmin(Q) = inf
γ∈Q

f̃(γ) = inf
γ∈G∩Q

f̃(γ) = inf
γ∈G∩Q

f0(γ)

≥ f0(γ̄�) = φImp
lb (Q) ≥ f0(γmax) = φBasic

lb (Q), (2.36)

where the first equality is from (2.9), the second equality follows from
the fact that G ∩ Q is nonempty and f̃(γ) = 0 for all γ ∈ Q \ (G ∩ Q),
the third equality follows from f̃(γ) = f0(γ) for all γ ∈ G ∩ Q, the first
inequality follows by noting that γ̄� ≥ γ for all γ ∈ Q ∩ G and f0 is
monotonically decreasing in each dimension, and the last inequality
follows since γmax ≥ γ̄� and f0 is monotonically decreasing.

We describe now an efficient method to find γ̄�
i by solving prob-

lem (2.35) when γmin ∈ G and ai �∈ G. We can assume without loss
of generality that γl,min > 0 for all l ∈ L \ {i}; the method can be
extended to the case where there are links for which γl,min = 0 for some
l ∈ L \ {i}. In such cases the original problem (2.35) is equivalent to
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a modified problem obtained by eliminating the dimensions l ∈ L \ {i}
(i.e., link indexes) for which γl,min = 0.

The method can be summarized as follows. By using the equality
constraints we eliminate the L − 1 variables (pl)l∈L\{i} and transform
problem (2.35) into a single-variable optimization problem (with the
variable pi). This facilitates finding the optimal power p�

i (and implic-
itly γ̄�

i ), in an efficient and straightforward manner.
For a detailed description of the above method it is useful to

introduce a virtual network obtained from the original network by
removing the ith link. Such a network is referred to as reduced
network. For notational convenience let us define the following
vectors and matrices associated to the reduced network: p̄i and
γmin,i are obtained from p and γmin by removing the ith entries,
i.e., p̄i = (p1, . . . ,pi−1,pi+1, . . . ,pL) and γ̄min,i = (γ1,min, . . . ,γi−1,min,
γi+1,min, . . . ,γL,min); similarly, B̄i(γ̄min,i) and Ḡi are obtained from
B(γmin) and G [see (2.32)] by removing the ith rows and the ith
columns. It is important to note that if SINR vector γmin is achievable
in the original network then γ̄min,i is also achievable in the reduced
network.

Now we turn to problem (2.35). By rearranging the terms, the equal-
ity constraints can be expressed compactly as

[I − B̄i(γ̄min,i)Ḡi]p̄i + di(γ̄min,i)pi = σ2B̄i(γ̄min,i)1, (2.37)

where

di(γ̄min,i)= −
(

gi1

g11
γ1,min, . . . ,

gii−1

gi−1i−1
γi−1,min,

gii+1

gi+1i+1
γi+1,min, . . .

. . . ,
giL

gLL
γL,min

)
.

Similarly to (2.33), let us denote

Āi(γ̄min,i) = I − B̄i(γ̄min,i)Ḡi ; b̄i(γ̄min,i) = σ2B̄i(γ̄min,i)1 (2.38)

and rewrite (2.37) equivalently as

Āi(γ̄min,i)p̄i + di(γ̄min,i)pi = b̄i(γ̄min,i). (2.39)
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Since γmin ∈ G it follows that the SINR vector γ̄min,i > 0 is achievable
in the reduced network. Thus, Theorem 2.4 (applied to the reduced
network) implies that the spectral radius of the matrix B̄i(γ̄min,i)Ḡi

is strictly smaller than one, i.e., ρ(B̄i(γ̄min,i)Ḡi) < 1. This, in turn,
ensures that matrix Āi(γ̄min,i) is invertible and its inverse has non-
negative entries, i.e., Ā−1

i (γ̄min,i) ≥ 0 [51, thm. 2.5.3, items 2 and 17].
Therefore, we can parameterize all solutions of (2.37), using pi as a free
parameter [22, sec. C.5, p. 681]. Thus, we obtain[

p̄i

pi

]
=

[
−Ā−1

i (γ̄min,i)di(γ̄min,i)
1

]
pi +

[
Ā−1

i (γ̄min,i)b̄i(γ̄min,i)
0

]

=
[
q̄i

qi

]
pi +

[
s̄i

si

]
, (2.40)

where qi =1, si =0, q̄i = − Ā−1
i (γ̄min,i)di(γ̄min,i), and s̄i = Ā−1

i (γ̄min,i)
b̄i(γ̄min,i). The vectors q̄i and s̄i are introduced for notational simplicity
and they have the following structure:

q̄i = (q1, . . . , qi−1, qi+1, . . . , qL) ; s̄i = (s1, . . . ,si−1,si+1, . . . ,sL).

Furthermore, since Ā−1
i (γ̄min,i) ≥ 0 and by noting that di(γ̄min,i) ≤ 0

and bi(γ̄min,i) ≥ 0 [see (2.38)], we can see that all entries in vectors
q̄i and s̄i are nonnegative, q̄i ≥ 0 and s̄i ≥ 0. Finally, we can rewrite
parametrization (2.40) as

pj = qjpi + sj , j ∈ L, (2.41)

where qj ≥ 0, sj ≥ 0 for all j ∈ L, and qi = 1, si = 0.
Next we use parametrization (2.41) to convert problem (2.35)

(with L power variables) into an equivalent one with a single-power
variable pi. To do this, we first express the objective function of prob-
lem (2.35) gi(p) as a function of single variable pi, i.e.,

gi(p) =
giipi

σ2+
∑
j �=i

gjipj
=

giipi

σ2 +
∑
j �=i

gji (qjpi + sj)
= ḡi(pi). (2.42)

The sum-power constraints of problem (2.35) (i.e.,
∑

l∈O(n) pl ≤
pmax

n , n ∈ T ) can be expressed as

pi ≤
pmax

n −
∑

l∈O(n) sl∑
l∈O(n) ql

, n ∈ T . (2.43)



2.3 Computation of Upper and Lower Bounds 35

Furthermore, since qj ≥ 0, sj ≥ 0, all L nonnegativity power constraints
of problem (2.35) can be replaced by pi ≥ 0, i.e., pi ≥ 0 in parametriza-
tion (2.41) implies that pj ≥ 0 for all j ∈ L. Recall that we consider
the nontrivial case ai �∈ G, and therefore the first inequality constraint
of problem (2.35) can be safely dropped, and therefore problem (2.35)
can be expressed equivalently as

maximize ḡi(pi)

subject to pi ≤
pmax

n −
∑

l∈O(n) sl∑
l∈O(n) ql

, n ∈ T

pi ≥ 0,

(2.44)

where the variable is pi. By recalling that sl ≥ 0 for all l ∈ L, it is easy
to see that the first derivative of the objective function ḡi(pi) is strictly
positive. Hence, the maximum ḡi(pi) can be found by increasing pi

until one power constraint become active. Thus, in the case of ai �∈ G,
we have

p�
i = min

n∈T

pmax
n −

∑
l∈O(n) sl∑

l∈O(n) ql
(2.45)

and we can express the optimal γ̄�
i as γ̄�

i = ḡi(p�
i ). Hence, the general

solution of problem (2.35) can be expressed as

γ̄�
i =

{
γi,max ai ∈ G
ḡi(p�

i ) otherwise.
(2.46)

Note that, the method presented for checking γmin ∈ G (i.e., Algo-
rithm 2.3.1) can be readily applied to check the condition ai ∈ G
in (2.46) as well.

2.3.2.2 Improved Upper Bound

Based on monotonicity of f0, L tighter upper bounds can be easily
obtained by evaluating f0 at the vertices of Q̄� adjacent to γmin. Specif-
ically, they are given by f0(āl), l ∈ L, where āl = γmin + (γ̄�

l − γl,min)el

[see ā1 and ā2 in Figures 2.4(b) and 2.4(c)]. Note that the values
γ̄�

l , l ∈ L have already been found for computing the improved lower
bound φImp

lb (Q) (2.34). Let l� be the index of the vertex which provide
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the best (smallest) upper bound, i.e., l� = argminl∈L f0(āl). Thus, the
first improved upper bound is given by

φImp
ub (Q) =

{
f0(āl�) γmin ∈ G
0 otherwise.

(2.47)

The following lemma ensures that φImp
ub (Q) is tighter than the basic

upper bound φBasic
ub (Q).

Lemma 2.6. For any Q ⊆ Qinit and γ̌ ∈ G ∩ Q we have φmin(Q) ≤
f0(γ̌) ≤ f0(γmin) = φBasic

lb (Q).

Proof. First note from (2.36) that, φmin(Q) = inf
γ∈G∩Q

f0(γ). Moreover,

by noting that γ̌ ∈ G ∩ Q, we have inf
γ∈G∩Q

f0(γ) ≤ f0(γ̌) and since

γmin ≤ γ̌ and f0 is monotonically decreasing in each dimension, we
have f0(γ̌) ≤ f0(γmin). Thus, we can combine these relations together
and the result follows.

We can further improve the previously obtained bound by using
efficient local optimization techniques. Specifically, we can use as an
initial point γ = āl� and (locally) minimize f0(γ) subject to γ ∈ G ∩ Q,
i.e.,

minimize f0(γ)
subject to γ ∈ G ∩ Q,

(2.48)

where the variable is γ. Let us denote the obtained local optimum by
γImpCGP. Thus, the second improved upper bound is given by

φImpCGP
ub (Q) =

{
f0(γImpCGP) γmin ∈ G
0 otherwise.

(2.49)

One simple approach to efficiently compute γImpCGP via complemen-
tary geometric programming (or CGP) [6] is presented in Appendix A.

Since all improved bounds are tighter than the basic ones (see
Lemmas 2.5 and 2.6), any possible combination of a lower and an upper
bound pair must also satisfy the conditions C1 and C2. This ensures
the convergence of the Algorithm 2.1.
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2.4 Extensions to Multicast Networks

In this section we consider the problem of WSRMax in multicast net-
works [i.e., problem (2.4)] and show how Algorithm 2.1 can be adapted
to find the solution of problem (2.4). By noting the monotonically
increasing property of log(·) function, problem (2.4) can be expressed
in the following equivalent form:

maximize
∑

n∈T
∑Mn

m=1 βm
n log

(
1+ min

l∈Om(n)
SINRml

n (p)
)

subject to
∑Mn

m=1 pm
n ≤ pmax

n , n ∈ T
pm

n ≥ 0, n ∈ T , m = 1, . . . ,Mn,

(2.50)

where the variable is (pm
n )n∈T , m=1,...,Mn . By introducing auxiliary

variables γm
n , n ∈ T ,m = 1, . . . ,Mn, we can equivalently express prob-

lem (2.50) as

minimize
∑

n∈T
∑Mn

m=1 −βm
n log(1+γm

n )

subject to γm
n ≤ SINRml

n (p),
n∈T , m = 1, . . . ,Mn,

l ∈ Om(n)∑Mn
m=1 pm

n ≤ pmax
n , n ∈ T

pm
n ≥ 0, n ∈ T , m = 1, . . . ,Mn,

(2.51)

where the variables are (pm
n )n∈T , m=1,...,Mn and (γm

n )n∈T , m=1,...,Mn . A
close comparison of problems (2.51) and (2.5) reveals that they have a
very similar structure. Therefore, the branch and bound method (i.e.,
Algorithm 2.1) can be applied to solve problem (2.51) by redefining
appropriately the following sets and functions.

1. γ = (γ1, . . . ,γL) is replaced by γ = (γm
n )n∈T , m=1,...,Mn .

2. f0(γ) is replaced by f̃0(γ), where f̃0(γ) =∑
n∈T

∑Mn
m=1 −βm

n log(1 + γm
n ).

3. G is replaced by G̃, where

G̃ =


γ

∣∣∣∣∣∣∣∣∣
γm

n ≤ SINRml
n (p),

n ∈ T , m = 1, . . . ,Mn,

l ∈ Om(n)∑Mn
m=1 pm

n ≤ pmax
n , n ∈ T

pm
n ≥ 0, n ∈ T , m = 1, . . . ,Mn


 .
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4. Qinit is replaced by Q̃init, where

Q̃init =
{

γ

∣∣∣∣ 0 ≤ γm
n ≤ min

l∈Om(n)
gll

pmax
n

σ2 , n∈T , m = 1, . . . ,Mn

}
.

5. Q is replaced by Q̃, where

Q̃ =
{
γ
∣∣γm

n,min ≤ γm
n ≤ γm

n,max, n ∈ T , m = 1, . . . ,Mn

}
.

Note that the definitions of the lower and upper bound functions pro-
vided in the case of singlecast networks [i.e., (2.14), (2.15), (2.34),
and (2.47)] are applicable in the case of multicast networks as well.
However, instead of the given efficient methods based on M-matrix
theory [51, p. 112] for checking γ ∈ G (see Algorithm 2.3.1) and for
evaluating γ̄�

i [see (2.46)], in the case of multicast networks, we have to
rely on a linear programming (LP) or a GP solver.

2.5 Numerical Examples

In this section we first compare the impact of the considered lower
bounds and upper bounds (Section 2.3) on the convergence of the
branch and bound method (Algorithm 2.1 in Section 2.2). Next, we
provide various applications of Algorithm 2.1 and numerical examples
for the considered applications. In summary, those applications include:
sum-rate maximization in singlecast wireless networks, the problem of
maximum weighted link scheduling for wireless multihop networks [120,
sec. III-B,V-A], [68, sec. 4], cross-layer control policies for network util-
ity maximization (NUM) in multihop wireless networks [43, sec. 5],
finding achievable rate regions in singlecast, as well as in multicast,
wireless networks.

To simplify the presentation we use the abbreviations: LBBasic for
the basic lower bound given in (2.14), UBBasic for the basic upper bound
given in (2.15), LBImp for the improved lower bound given in (2.34),
UBImp for the improved upper bound given in (2.47), and UBImpCGP

for the improved upper bound given in (2.49).
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2.5.1 Impact of Different Lower Bounds and
Upper Bounds on BB

To gain insight into the impact of the lower and upper bounds on
the convergence of Algorithm 2.1, we focus first on the problem of
sum-rate maximization in a simple bipartite network of degree 1 [see
Figure 2.5(a)]. The channel power gain between distinct nodes are mod-
eled as

|hij |2 = µ|i−j|cij , i, j ∈ L, (2.52)

where cijs are small-scale fading coefficients and the scalar µ ∈ [0,1] is
referred to as the interference coupling index, which parameterizes the
interference between direct links. The fading coefficients are assumed
to be exponentially distributed independent random variables to model
Rayleigh fading. An arbitrarily generated set Ć of fading coefficients,
where Ć = {cij | i, j ∈ L} is referred to as a single fading realization; we
use a discrete argument t sometimes, to indicate the fading realization
index. For example Ć(t) represents the tth fading realization. We define
the signal-to-noise ratio (SNR) operating point as (pmax

n = pmax
0 for all

n ∈ T )

SNR =
pmax
0
σ2 . (2.53)

We consider first the nonfading case, i.e., cij = 1, i, j ∈ L, and Algo-
rithm 2.1 was run with all possible combinations of the lower and
upper bound pairs. Figure 2.6 shows the evolution of the upper and

(a) (b)

Fig. 2.5 (a) Bipartite network, degree 1, N = 8, L = 4; (b) Bipartite network, degree 1,
N = 4, L = 2.
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lower bounds for the optimal value of problem (2.5)6 for SNR = 15
dB, µ = 0.25, and βl = 0.25 for all l ∈ L. Specifically in Figure 2.6(a),
we used the basic lower bound LBBasic in conjunction with all upper
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Fig. 2.6 Evolution of lower and upper bounds: (a) Basic lower bound in conjunction with
all upper bounds; (b) Improved lower bound in conjunction with all upper bounds.

6 The optimal value of problem (2.5) is the negative of the optimal value of problem (2.2).
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bounds and in Figure 2.6(b) we used the improved lower bound LBImp

in conjunction with all upper bounds. The results show that the conver-
gence speed of Algorithm 2.1 can be substantially increased by improv-
ing the lower bound whilst the tightness of the upper bound has a much
reduced impact. Note that this is in general the behavior of a branch
and bound method, where an approximative solution can be found rel-
atively fast but certifying it typically takes a much larger number of
iterations [16]. Note that in both Figures 2.6(a) and 2.6(b) the evolu-
tion of lower bounds is independent of the upper bound used. This is
due to the fact that in each iteration the branching mechanism depends
only on the lower bound.

In order to provide a statistical description of the speed of con-
vergence we turn to the fading case and run Algorithm 2.1 for a large
number of fading realizations. For each one we store the number of itera-
tions and the total CPU time required to find the optimal value of prob-
lem (2.5) within an accuracy of ε = 10−1 for SNR = 15 dB, µ = 0.25,
and βl = 0.25 for all l ∈ L. Figure 2.7 shows the empirical cumulative
distribution function (CDF) plots of the total number of iterations [Fig-
ure 2.7(a)] and the total CPU time [Figure 2.7(b)] for all possible com-
binations of lower and upper bounds pairs. Figure 2.7(a) shows that,
irrespective of the upper bound we use, the improved lower bound
LBImp provides a remarkable reduction in the total number of iterations
when compared to LBBasic. Results further show that, even though the
improved upper bound UBImpCGP makes use of advanced optimiza-
tion techniques, such as complementary geometric programming (see
Algorithm A.0.1, Appendix A), the benefits from UBImpCGP over the
improved upper bound UBImp is marginal in terms of the total number
of iterations. In terms of the total CPU time [Figure 2.7(b)], significant
improvements are often achieved by using the lower and upper bound
pairs (LBImp, UBImp) and (LBImp, UBBasic). Interestingly, the lower
and upper bound pair (LBImp, UBImpCGP) performs very poorly. This
behavior is due to the complexity of step 2 of Algorithm A.0.1, where
we have to rely on a GP solver.

Therefore, in all of the following numerical examples, Algorithm 2.1
is run with the lower and upper bound pair (LBImp, UBImp), unless
otherwise specified.
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Fig. 2.7 Empirical CDF plots of: (a) Total number of iterations; (b) Total CPU time.

2.5.2 Sum-rate Maximization in Singlecast
Wireless Networks

Let us now consider the problem of sum-rate maximization in a bipar-
tite singlecast network. To evaluate the benefits from multipacket
transmit/receive capabilities of nodes, we chose a network setup with
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Fig. 2.8 Bipartite network, degree 3, N = 5, L = 5.

degree 3, as shown in Figure 2.8. The network is symmetric and the
distances between nodes are chosen as shown in the figure. We assume
an exponential path loss model, where the channel power gains between
distinct nodes are given by

|hij |2 =
(

dij

d0

)−η

cij , (2.54)

where dij is the distance from the transmitter of link i to the receiver
of link j, d0 is the far field reference distance [64], η is the path loss
exponent, and cij are defined as in (2.52). Note that the interference
coefficients gij s are chosen as we discussed in Section 2.1. The first term
of (2.54) represents the path loss factor and the second-term models
Rayleigh small-scale fading. The SNR operating point is defined as
(pmax

n = pmax
0 for all n ∈ T )

SNR =
pmax
0
σ2

(
D0

d0

)−η

. (2.55)

In the following simulations we set D0/d0 = 10 and η = 4.
Figure 2.9(a) shows the dependence of average sum-rate (i.e., βl = 1

for all l ∈ L) on the SNR. Results show that the average sum-rate, in
the case of multipacket transmission/reception, is always better than, or
equal to, the case of singlepacket transmission/reception and the perfor-
mance gap increases as SNR decreases. However, as expected for prac-
tical SNR values, the benefits of multipacket transmission/reception
are negligible when the receivers perform singleuser detection [124]. For
comparison, we also plot the result obtained from a suboptimal solution
method based on complementary geometric programming [6, 20, 30].



44 A Branch and Bound Algorithm

−20 −15 −10 −5 0 5 10 15

10−1

100

SNR [dB]

A
ve

ra
ge

 s
um

−
ra

te
 [b

its
/s

/H
z]

Alg. 2.1, multipacket tran./rec.
CGP alg., multipacket tran./rec.
Alg. 2.1, singlepacket tran./rec.

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations, x

(a)

(b)

C
D

F
(x

)

singlepacket tran./rec., SNR = 10 dB
multipacket tran./rec., SNR = 10 dB

Fig. 2.9 (a) Dependence of the average sum-rate on SNR; (b) Empirical CDF of the total
number of iterations.

We refer to this suboptimal method as CGP algorithm for the rest of
the section. Note that, CGP algorithm is equivalent to running Algo-
rithm A.0.1 (Appendix A) with Q = Qinit and a proper initialization
γ̂. Specifically, we found the initial γ̂l, l ∈ L according to (2.30) by
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using a uniform feasible power allocation, which will be referred to as
uniform initialization in the rest of the section. Let us first focus on
CGP performance in the case of multipacket transmission/reception.
Results show that there is a significant performance loss due to the
suboptimality of CGP algorithm, especially for SNR > 0 dB. In the
case of singlepacket transmission/reception, the average sum-rate that
is obtained by using CGP algorithm is almost zero, irrespective of the
SINR and not plotted in Figure 2.9(a) to preserve clarity. Results con-
firm that CGP algorithm cannot handle the huge imbalance between
interference coefficient values.7

Figure 2.9(b) shows the empirical CDF plots of the total number of
iterations required to find the sum-rate by using Algorithm 2.1, which
gives insight into the complexity of Algorithm 2.1. The plots are for
the case of SNR = 10 dB and ε = 10−3. Roughly speaking, results show
that the total number of iterations required in the case of singlepacket
transmission/reception is smaller compared to the case of multipacket
transmission/reception.

2.5.3 Maxweight Scheduling in Multihop
Wireless Networks

Next, we consider a multihop wireless network, where the nodes have
only singlepacket transmit/receive capability and no node can transmit
and receive simultaneously. In such setups the WSRMax problem is
equivalent to the maximum weighted matching8 (MWM) problem [92].
Polynomial time algorithms are available for the problem in the case
of fixed link rates [68, sec. 4.2], [92]. When the link rates depend on
the power allocation of all other links, it is worth noting that the given
algorithm is able to find the MWM.

To show this, we use the symmetric multihop wireless network
shown in Figure 2.10(a). The channel power gains, between nodes are
given by (2.54) and the SNR operating point is given by (2.55). In the
following simulations we set D0/d0 = 10 and η = 4.

7 Recall from Figures 2.2(a) and 2.2(b) that, if nodes have singlepacket transmitter/receiver
capabilities, then some of the interference coefficients are infinite.

8 Borrowing terminology from graph theory, a matching is a set of links, no two of which
share a node [92].
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Fig. 2.10 (a) Multihop network, N = 8, L = 12; (b) Empirical CDF of the total number of
iterations.

Table 2.1 shows MWMs obtained for different link weights (see the
left most column) and the SNR combinations. Here we consider a non-
fading scenario (i.e., cij = 1, i, j ∈ L) and an accuracy of ε = 10−10.
Results show that the smaller the SNR, the larger the number of links
that are activated simultaneously in the maximum weighted matching.
This is intuitively expected since, at low SNR values, node transmission
power is small, and therefore the interference generated is very small
so that many links are activated simultaneously.

To gain some insight into the computational complexity of the algo-
rithm we plot the CDF of the total number of iterations by running
the algorithm for a large number of fading realizations.
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Figure 2.10(b) shows the empirical CDF plots of the total number
of iterations required to terminate Algorithm 2.1 (or to find the
MWM). Plots are drawn for the cases of SNR = 0, 5, 10, and 15 dB,
βl = 1 for all l ∈ L, and ε = 10−2. Results show that the smaller the
SNR, the smaller the total number of iterations required to find the
MWM. For example, in the case of SNR = 0 dB, with probability 0.9,
the MWM is found in less than 1500 iterations. However, in the case
of SNR = 5 dB, with the same probability 0.9, the MWM is found in
less than 4000 iterations.

2.5.4 Cross-layer Control Policies for NUM

In this section we specifically consider the problem of network utility
maximization subject to stability constraints [43, sec. 5]. Let us first
revisit briefly the commodity description of the network. Exogenous
data arrives at the source nodes and they are delivered to the destina-
tion nodes over several, possibly multihop, paths. The data is identi-
fied by their destinations, i.e., all data with the same destination are
considered as a single commodity, regardless of their source. We label
the commodities with integers s = 1, . . . ,S (S ≤ N). For every node,
we define Sn ⊆ {1, . . . ,S} as the set of commodities, which can arrive
exogenously at node n. The network is time slotted and at each source
node, a set of flow controllers decides the amount of each commodity
data admitted in every time slot in the network. Let xs

n(t) denote the
amount of data commodity s admitted in the network at node n during
time slot t. It is assumed that the data that is successfully delivered
to its destination exits the network layer. Associated with each node-
commodity pair (n,s)s∈Sn we define a concave and nondecreasing utility
function us

n(y), representing the “reward” received by sending data of
commodity s from node n to node ds at a long term average rate of y

[bits/slot]. Thus, the NUM problem under stability constraints can be
formulated as [43, sec. 5]

maximize
∑

n∈N
∑

s∈Sn
us

n(ys
n)

subject to (ys
n)n∈N ,s∈Sn ∈ Λ,

(2.56)

where the variable is (ys
n)n∈N ,s∈Sn and Λ represents the network layer

capacity region [43, def. 3.7].
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An arbitrarily close to optimal solutions for problem (2.56) is
achieved by a cross-layer control policy, which consists of solving
three subproblems: (1) flow control, (2) next-hop routing and in-node
scheduling, and (3) RA, during each time slot [43]. The RA subproblem
exactly resembles the WSRMax problem (2.2), where the weights are
given by the maximum differential backlogs of network links [43]. Here,
we implement the cross-layer control algorithm in [43] and, in the third
step, we use Algorithm 2.1 to solve the RA subproblem. The cross-
layer control algorithm is simulated for at least T́ = 10,000 time slots,
and the average rates x̄s

n are computed by averaging the last t0 = 3000
time slots, i.e., x̄s

n = 1/t0
∑T́

t=T́−t0
xs

n(t). We assume that the rates cor-
responding to all node-commodity pairs (n,s)s∈Sn ,n ∈ N are subject
to proportional fairness, and therefore we select the utility functions
us

n(y) = loge(y). For a detailed description of the cross-layer control
policy [43] the reader may refer to Section 3.1.2.

Two fully connected multihop wireless network setups, as shown
in Figure 2.11 are considered, where all nodes have multipacket trans-
mit/receieve capability and no node can transmit and receive simulta-
neously. Each of the networks consist of four nodes (i.e., N = 4) and
two commodities, which arrive exogenously at source nodes. In the case
of the first network setup, shown in Figure 2.11(a), commodity 1 arrives
exogenously at node 1, and is intended for node 4; commodity 2 arrives
exogenously at node 4, and is intended for node 1. Nodes are located in
a square grid such that the horizontal and the vertical distance between
adjacent nodes are D0 meters [m]. In the case of the second network

Fig. 2.11 (a) Multihop network 1, N = 4, fully connected, S = 2; (b) Multihop network 2,
N = 4, fully connected, S = 2.



50 A Branch and Bound Algorithm

setup, shown in Figure 2.11(b), commodity 1 arrives exogenously at
node 1, and is intended for node 2; commodity 2 arrives exogenously
at node 2, and is intended for node 3. Nodes are located such that
three of them form an equilateral triangle and the fourth one is located
at its center [see Figure 2.11(b)]. It is assumed that the distance from
the middle node to any other is D0 m. The channel power gains are
given by (2.54) and SNR operating point is given by (2.55). We set
D0/d0 = 10 and η = 4 in the following simulation.

Figure 2.12 shows the dependence of the average network layer sum-
rate on the SNR for the considered network setups. As a reference, we
first consider a suboptimal and more restrictive RA policy, where only
one link can be activated during each time slot. This policy is called
base line single link activation (BLSLA); BLSLA policy consists of acti-
vating, during each time slot, only the link that achieves the maximum
weighted rate. Other suboptimal RA policy is based on CGP algorithm
(see Section 2.5.2). Specifically, we use two initialization methods for
CGP algorithm: (1) the initial γ̂l, l ∈ L is found according to (2.30)
by using BLSLA power allocation, (2) the uniform initialization, as
discussed in Section 2.5.2.

Results show that the gains obtained by using Algorithm 2.1 are
always larger compared to other suboptimal methods. The relative
gains achieved by Algorithm 2.1 in the case of network setup 1
[Figure 2.12(a)] are more significant than in the case of network
setup 2 [Figure 2.12(b)]. Results further show that, the suboptimal
CGP algorithm is very sensitive to initialization. For example, in the
case of uniform initialization, CGP algorithm performs extremely
poorly compared to the case of BLSLA based initialization. Moreover,
in the case of BLSLA based initialization, the suboptimal CGP
algorithm can not perform beyond the limits that are achieved by
simple BLSLA RA policy.

2.5.5 Achievable Rate Regions in Singlecast
Wireless Networks

In this section we illustrate how Algorithm 2.1 can be used to find the
achievable rate region in singlecast wireless networks. Recall that we
consider the case where all receiver nodes perform singleuser detection,
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Fig. 2.12 (a) Dependence of average network layer sum-rate on SNR for network 1;
(b) Dependence of average network layer sum-rate on SNR for network 2.

and therefore the achievable rate regions we are referring to are different
from the information theoretic capacity regions [1, 126, 137]. Note that
the information theoretic capacity region is not known, even in the
simple case of two interfering links [36].
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To facilitate the graphical illustration, we consider a simple bipartite
singlecast network of degree 1, as shown in Figure 2.5(b). The channel
power gains are given by (2.52) and the SNR operating point is given
by (2.53).

We start by defining the directly achievable rate region, the instan-
taneous rate region, and the average rate region for singlecast wireless
networks. Let RDIR−SC(µ, Ć(t),pmax

1 ,pmax
2 ) denote the directly achiev-

able rate region for a given interference coupling index µ, a given fading
realization9

Ć(t) = {c11(t), c12(t), c22(t), c21(t)}, (2.57)

and maximum node transmission power pmax
1 and pmax

2 , i.e.,

RDIR−SC(µ, Ć(t),pmax
1 ,pmax

2 )

=




(R1,R2)

∣∣∣∣∣∣∣∣∣∣∣

R1 ≤ log
(

1 +
c11(t)p1

σ2 + µc21(t)p2

)

R2 ≤ log
(

1 +
c22(t)p2

σ2 + µc12(t)p1

)
0 ≤ p1 ≤ pmax

1 , 0 ≤ p2 ≤ pmax
2




. (2.58)

By invoking a time sharing argument, one can obtain the instan-
taneous rate region RINS−SC(µ, Ć(t),pmax

1 ,pmax
2 ); the convex hull of

RDIR−SC(µ, Ć(t),pmax
1 ,pmax

2 ). That is,

RINS−SC(µ, Ć(t),pmax
1 ,pmax

2 ) = conv
{

RDIR−SC(µ, Ć(t),pmax
1 ,pmax

2 )
}

,

where conv{R} denotes the convex hull of the set R. As noted in [48],
since the instantaneous rate region RINS−SC(µ, Ć(t),pmax

1 ,pmax
2 ) is con-

vex, any boundary point of the rate region can be obtained by using the
solution of an optimization problem in the form of (2.2) with β1 = α,
β2 = (1 − α) for some α ∈ [0,1].

Finally, we define the average rate region RAVE−SC(µ,pmax
1 ,pmax

2 )
for a given interference coupling index µ and a maximum node

9 The argument t is used to indicate the fading realization index.
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transmission power pmax
1 and pmax

2 as RAVE−SC(µ,pmax
1 ,pmax

2 ) =
1
T́

∑T́
t=1 RINS−SC(µ, Ć(t),pmax

1 ,pmax
2 ), where addition and scalar multi-

plication of sets is used.10 The nonnegative integer T́ is the total number
of fading realizations we used in averaging. Note that, any boundary
point (Rb

1 ,Rb
2) of RAVE−SC(µ,pmax

1 ,pmax
2 ) is obtained by using the fol-

lowing steps for some α ∈ [0,1]: (1) solve problem (2.2) with β1 = α

and β2 = 1 − α for T́ fading realizations, (2) for each fading realization
t ∈ {1, . . . , T́}, evaluate the rate of link 1 and 2 denoted by r1(t), r2(t)
according to (2.1), and (3) average r1(t) and r2(t) over all T́ fading
realizations to obtain Rb

1 = 1
T́

∑T́
t=1 r1(t) and Rb

2 = 1
T́

∑T́
t=1 r2(t).

Figure 2.13(a) shows RINS−SC(µ, Ć(t),pmax
1 ,pmax

2 ), the instantaneous
rate regions for different values of µ and for an arbitrary chosen fad-
ing realization in the case of SNR = 15 dB. Specifically, the fading
coefficients are c11(t) = 0.4185, c12(t) = 0.3421, c22(t) = 0.3700, and
c21(t) = 1.299. As a reference, we also plot the directly achievable
rate regions RDIR−SC(µ, Ć(t),pmax

1 ,pmax
2 ) for all the scenarios con-

sidered. Note that the problem of finding any boundary point of
RDIR−SC(µ, Ć(t),pmax

1 ,pmax
2 ) can be easily cast as a GP, or as a problem

of the form (2.35). Results show that the smaller the µ, the larger the
rate regions. This is intuitively explained by noting that the smaller
the µ, the smaller the interference coefficients, gij between links, and
therefore the higher the rates. When µ ≥ 0.2, the directly achievable
rate regions become nonconvex, whereas the instantaneous rate region
is a triangle referred to as time division multiple access (TDMA) rate
region, obtained by time sharing between the maximum rates of R1

and R2. Moreover, when µ < 0.2, the instantaneous rate region expands
beyond the TDMA rate region and for µ ≤ 0.01, the directly achievable
rate region almost overlaps with the instantaneous rate region.

Figure 2.13(b) shows the average rate region RAVE−SC

(µ,pmax
1 ,pmax

2 ) for different values of µ in the case of SNR = 15
dB. As a reference, we also plot the region obtained by using CGP
algorithm to problem (2.2). Results show that the region obtained
by CGP algorithm is always worse than the average rate region. The

10 For vector sets A1 and A2 and scalars α1,α2, the set α1A1 + α2A2 is defined as {α1a1 +
α2a2 |a1 ∈ A1,a2 ∈ A2} [22, p. 38].
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Fig. 2.13 Rate regions: (a) Directly achievable and instantaneous rate regions; (b) Average
rate regions.

gap in performance is more pronounced in the case of larger values
of µ. Note that, even in the case of µ = 1, the average rate region is
bounded by a concave function with end points C1 and C2, although
the corresponding instantaneous rate regions used in the averaging
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are triangles [see Figure 2.13(a)] in general. This phenomenon is
due to the property of the set addition used in the definition of
RAVE−SC(µ,pmax

1 ,pmax
2 ). Results also show that the smaller the µ, the

larger the average rate region.

2.5.6 Achievable Rate Regions in Multicast
Wireless Networks

We finally show the applicability of Algorithm 2.1 for finding the rate
regions in a multicast wireless networks. A multicast with only two
multicast transmissions [see Figure 2.14(a)] is considered for the sake
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Fig. 2.14 (a) Multicast network, T = {1,2}, M1 = 1, M2 = 1, O1(1) = {1,2}, O1(2) =
{3,4}; (b) Average rate region.
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of graphical illustration of the rate regions. Node 1 has common infor-
mation to send to nodes 3 and 4, whereas node 2 has common informa-
tion to send to nodes 3 and 5. We assume that node 3 has multipacket
receiver capability. The channel power gains are given by (2.54) and
SNR operating point is given by (2.55). Moreover, we set D0/d0 = 10
and η = 4.

As in the case of singlecast wireless networks, we first define the
directly achievable rate region, instantaneous rate region, and the aver-
age rate region for multicast wireless networks. Particularized to the
network setup in Figure 2.14(a), for a given set of interference coeffi-
cients/power gains

Ǵ(t) = {g11(t),g22(t),g33(t),g44(t),g14(t),g32(t)} (2.59)

and maximum node transmission power pmax
1 and pmax

2 , the instanta-
neous rate region RINS−MC(Ǵ(t),pmax

1 ,pmax
2 ) is defined as

RINS−MC(Ǵ(t),pmax
1 ,pmax

2 ) = conv
{

RDIR−MC(Ǵ(t),pmax
1 ,pmax

2 )
}

,

(2.60)
where RDIR−MC(Ǵ(t),pmax

1 ,pmax
2 ) denotes the directly achievable rate

region for multicast wireless networks, i.e.,

RDIR−MC(Ǵ(t),pmax
1 ,pmax

2 )

=




(R1,R2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R1 ≤ log
(

1 +
g11(t)p1

1

σ2 + g33(t)p1
2

)

R1 ≤ log
(

1 +
g22(t)p1

1

σ2 + g32(t)p1
2

)

R2 ≤ log
(

1 +
g33(t)p1

2

σ2 + g11(t)p1
1

)

R2 ≤ log
(

1 +
g44(t)p1

2

σ2 + g14(t)p1
1

)
0 ≤ p1

1 ≤ pmax
1 , 0 ≤ p1

2 ≤ pmax
2




. (2.61)

Finally, for a given maximum node transmission power pmax
1 and

pmax
2 , the average rate region RAVE−MC(pmax

1 ,pmax
2 ) is defined as

RAVE−MC(pmax
1 ,pmax

2 ) = 1
T́

∑T́
t=1 RINS−MC(Ǵ(t),pmax

1 ,pmax
2 ).
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Figure 2.14(b) shows the average multicast rate region for different
SNR values. Results show that, when the weights associated with rates
R1 and R2 are same, the resulting R1 is always greater than R2. For
example, in the case of SNR = 20 dB, we have R1 = 3.71 bits/sec/Hz
and R2 = 1.50 bits/sec/Hz. Roughly speaking, this observation can be
explained as follows: R1 is determined by the rate of link 2 (the weakest
of link 1 and link 2), R2 is determined by the rate of link 3 (the weakest
of link 3 and link 4) and rate of link 2 is larger than that of link 3 due
to path losses.

2.6 Summary and Discussion

We considered the general WSRMax problem for a set of interfering
links. In fact, this problem is NP-hard. A solution method, based on
the branch and bound technique, was presented for solving the noncon-
vex WSRMax problem globally with an optimality certificate. Efficient
and analytic bounds were given and their impact on convergence was
numerically evaluated. The convergence speed of the given algorithm
can be substantially increased by improving the lower bound, whilst the
tightness of the upper bound has a much reduced impact. Numerical
results showed that the algorithm converges fairly fast in all consid-
ered setups. Nevertheless, since the problem is NP-hard, the worst case
complexity can be exponential in the number of variables.

The considered link-interference model is fairly general so that
it can model a wide range of network topologies with various node
capabilities, such as single- or multipacket transmission (or reception)
and simultaneous transmission and reception. Unlike other branch and
bound based solution methods for WSRMax, the method given does
not require the problem to be convertible into a DC (difference of
convex functions) problem. Therefore, the given method applies to
a broader class of WSRMax problems (e.g., WSRMax in multicast
wireless networks). Moreover, the method can also be used to max-
imize any system performance metric that can be expressed as a
Lipschitz continuous and increasing function of SINR values and is
not restricted to WSRMax. Given its generality, the algorithm can be
adapted to address a wide range of network control and optimization
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problems. Performance benchmarks for various network topologies can
be obtained by back-substituting it into any network design method
which relies on WSRMax. Several applications, including cross-layer
network utility maximization and maximum weighted link scheduling
for multihop wireless networks, as well as finding achievable rate regions
for singlecast/multicast wireless networks, have been presented. Since
there are a number of suboptimal but low-complex algorithms are typ-
ically used in practice, the algorithm can also be used for evaluating
their performance loss.



3
Low Complexity Algorithms

In this section we first present efficient, low-complexity algorithms for
the WSRMax problem in multicommodity, multichannel wireless net-
works by using homotopy methods [4] and complementary geometric
program (or CGP) [6]. The considered problem formulation is fairly
general and it allows frequency reuse by activating multiple links in the
same channel simultaneously. Here, the interference is solely resolved
via power control. Furthermore, the formulation allows the possibil-
ity of exploiting multichannel diversity via dynamic power allocation
across the available channels. The gains that can be achieved at upper
layers in terms of end-to-end rates and network congestion are quanti-
tatively analyzed by incorporating the algorithms within Neely’s cross-
layer utility maximization framework [43, 80].

The algorithm based on homotopy methods, also handles the self-
interference problem in such a way that the combinatorial nature of
the problem is circumvented. Here the imperfect self interference can-
celation is modeled as a variable power gain from the transmitter to
the receiver at all nodes. This simple model gives insight into the
behavior of different network topologies when self interference cancela-
tion is employed in network nodes. A similar approach can be used in
a straightforward manner to model a wide range of network topologies

59
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with various node capabilities as well, for example, singlepacket trans-
mission, singlepacket reception, and many others. The method can also
be used to find the required level of accuracy for the self interference
cancelation such that certain gains are achieved at the network layer.
In addition, it provides a simple mechanism to evaluate the impact of
scaling the distance between network nodes on the accuracy level of the
self interference cancelation. Thus, from a network design perspective,
the method presented here can be very useful.

Recall that WSRMax problem is NP-hard and one has to rely on
exponentially complex global optimization techniques [5, 16, 52] to
obtain the optimal solution. Nevertheless, the numerical results show
that the algorithms presented in this section perform close to global
optimization methods. We further test the algorithms by carrying
them out on large-scale problems, where global optimization methods
[28, 97, 129, 135, 139] cannot be used, due to prohibitive computa-
tional complexity. Results show that the given algorithms can provide
significant gains at the network layer, in terms of end-to-end rates and
network congestion, by exploiting efficiently the available multichannel
diversity. We also evaluate the potential gains achievable at the net-
work layer when the network nodes employ self interference cancelation
techniques with different degrees of accuracy.

Finally, we consider different receiver capabilities and examine the
effect of the use of multiuser detectors.

3.1 System Model and Problem Formulation

3.1.1 Network Model

The wireless network consists of a collection of nodes that can send,
receive and relay data across wireless links. The set of all nodes
is denoted by N and we label the nodes with the integer values
n = 1, . . . ,N . A wireless link is represented as an ordered pair (i, j)
of distinct nodes. The set of links is denoted by L and we label the
links with the integer values l = 1, . . . ,L. We define tran(l) as the trans-
mitter node of link l, and rec(l) as the receiver node of link l. The
existence of a link l ∈ L implies that direct transmission is possible
from tran(l) to rec(l). We assume that each node can be equipped with
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multiple transceivers, that is, any node can simultaneously transmit to,
or receive from, multiple nodes. We define O(n) as the set of links that
are outgoing from node n, and I(n) as the set of links that are incom-
ing to node n. Furthermore, we denote the set of transmitter nodes by
T and the set of receiver nodes by R, i.e., T = {n ∈ N|O(n) �= ∅} and
R = {n ∈ N|I(n) �= ∅}.

The network is assumed to operate in slotted time with slots normal-
ized to integer values t ∈ {1,2,3, . . .}. All wireless links are sharing a set
C of orthogonal channels, labeled with integers c = 1, . . . ,C. When there
are many channels which fade independently, at any one time there is a
high probability that one of the channels will be strong. Thus, the main
motivation for considering multiple channels is exploitation of the diver-
sity that results from unequal links’ behavior across a given wide band.

Let hijc(t) denote the channel gain from the transmitter of link i

to the receiver of link j in channel c during time slot t. We assume
that hijc(t) are constant for the duration of a time slot and are inde-
pendent and identically distributed over the time slots, links as well
as over the channels. Let giic(t) represent the power gain of link i in
channel c during time slot t, i.e., giic(t) = |hiic(t)|2 (see Figure 3.1). For
any pair of distinct links i �= j, we denote the interference coefficient
from link i to link j in channel c by gijc(t). In the case of nonadjacent
links (i.e., links i and j do not have common nodes), gijc represents the
power of the interference signal at the receiver node of link j in chan-
nel c when one unit of power is allocated to the transmitter node of
link i in channel c, i.e., gijc = |hijc|2. When links i and j are adjacent,
the value of gijc represents the power gain in channel c within the
same node from its transmitter to its receiver, and is referred to as the

Fig. 3.1 Choosing the value of interference coefficients, i.e., gij for i �= j and link power
gains, i.e., gii and gjj (channel index c and time index t are omitted for clarity): A = {(i, j)},
gij = g, gji = |hji|2, gii = |hii|2, and gjj = |hjj |2.
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self-interference coefficient (see Figure 3.1). For notational convenience
let A denote the set of all link pairs (i, j) such that links i and j are
adjacent. In other words, A represents the set of all link pairs (i, j) for
which the transmitter of link i and the receiver of link j coincide, i.e.,
A = {(i, j)i,j∈L| tran(i) = rec(j)} (see Figure 3.1). Specifically, for all
(i, j) ∈ A, we set gijc(t) = g to model the residual self-interference gains
after a certain self interference cancelation technique was employed at
the network’s nodes in channel c, where g ∈ [0,1] is a scalar. We refer to
g as the self-interference gain (see Figure 3.1). A value g = 1 means that
no self interference cancelation technique is used and models the very
large self interference that would affect the incoming links of a node if
it simultaneously transmitted and received in the same channel. On the
other hand, a value g = 0 corresponds to a perfect self interference can-
celation. Note that, according to relative distances between network’s
nodes, gijc(t) for all (i, j) ∈ A (i.e., the self-interference coefficients) can
be several orders of magnitude larger than gijc(t) for all (i, j) �∈ A. The
particular class of network topologies, for which A = ∅ (i.e., T ∩ R = ∅)
is referred to as bipartite networks. On the other hand, the class of net-
work topologies, for which A �= ∅ (i.e., T ∩ R �= ∅) is referred to as
nonbipartite networks. Note that all multihop networks are necessarily
nonbipartite.

In every time slot a network controller decides the power and rates
allocated to each link in every channel. We denote the power allocated
to each link l in channel c during time slot t by plc(t). The power alloca-
tion is subject to a maximum power constraint

∑
c∈C

∑
l∈O(n) plc(t) ≤

pmax
n for each node n.

We consider first the case where all receivers perform singleuser
detection, i.e., any receiver decodes each of its intended signals by treat-
ing all other interfering signals as noise. Extensions to more advanced
multiuser detection techniques will be addressed in Section 3.3. Suppose
that the achievable rate of link l during time slot t is given by

rl(t) =
C∑

c=1

Wc log

(
1 +

gllc(t)plc(t)
NlWc +

∑
j �=l gjlc(t)pjc(t)

)
, (3.1)

where Wc represents the bandwidth of channel c and Nl is the power
spectral density of the noise at the receiver of link l. Note that for
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any link l, interference at rec(l)
[
i.e., the term

∑
j �=l gjlc(t)pjc(t)

]
is

created by self transmissions
[
i.e.,

∑
j∈O(rec(l)) gjlc(t)pjc(t)

]
, as well as

by the other node transmissions
[
i.e.,

∑
j∈L\{O(rec(l))∪{l}} gjlc(t)pjc(t)

]
.

To simplify the presentation, we assume in the sequel that all channels
have equal bandwidths and that the noise power density is the same
at all receivers (i.e., Wc = W for all c ∈ C and Nl = N0 for all l ∈ L).
The extension to the case of unequal bandwidths Wc and noise power
spectral densities Nl is straightforward. Let σ2 = N0W denote the noise
power, which is constant for all receivers in all channels. Furthermore,
we denote by P(t) ∈ IRL×C

+ the overall power allocation matrix, i.e.,
plc(t) = [P(t)]l,c. The use of the Shannon formula for the achievable
rate in (3.1) is approximate in the case of finite length packets and
is used to avoid the complexity of rate-power dependence in practical
modulation and coding schemes. This is common practice but it must
be noted that this is not strictly correct. However, as the packet length
increases it is asymptotically correct.

3.1.2 Network Utility Maximization

Exogenous data arrive at the source nodes and they are delivered to the
destination nodes over several, possibly multihop, paths. We identify
the data by their destinations, i.e., all data with the same destination
are considered as a single commodity, regardless of their source. Actu-
ally, formulation considered also permits the anycast case, in which any
data exits the network as soon as any of particular destination set of
nodes receives the data successfully. We label the commodities with
integers s = 1, . . . ,S (S ≤ N) and the destination node of commodity s

is denoted by ds. For every node, we define Sn ⊆ {1, . . . ,S} as the set
of commodities that can arrive exogenously at node n.

A network utility maximization, or NUM, framework similar to the
one given in [43, sec. 5.1] is considered. Specifically, exogenously arriv-
ing data is not directly admitted to the network layer. Instead, the
exogenous data is first placed in the transport layer storage reser-
voirs. To avoid complications that may arise that are extraneous to
the main focus, we assume that all commodities have infinite demand
at the transport layer. Nevertheless, the resource allocation (or RA)
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algorithms given in this section are still applicable when this assump-
tion is relaxed. At each source node, a set of flow controllers decides the
amount of each commodity data admitted during every time slot in the
network. Let xs

n(t) denote the amount of data of commodity s admit-
ted in the network at node n during time slot t. At the network layer,
each node maintains a set of S internal queues for storing the current
backlog (or unfinished work) of each commodity. Let qs

n(t) denote the
current backlog of commodity s data stored at node n. We formally
let qs

ds
(t) = 0, i.e., it is assumed that data, which is successfully deliv-

ered to its destination, exits the network layer. Associated with each
node-commodity pair (n,s)s∈Sn we define a concave and nondecreasing
utility function us

n(y), representing the “reward” received by sending
data of commodity s from node n to node ds at a long term average
rate of y [bits/slot].

The NUM problem under stability constraints is [43, sec. 5]

maximize
∑

n∈N
∑

s∈Sn
us

n(ys
n)

subject to (ys
n)n∈N ,s∈Sn ∈ Λ,

(3.2)

where the variable is (ys
n)n∈N , s∈Sn and Λ represents the network layer

capacity region. In particular, the network layer capacity region Λ is
the closure of the set of all admissible arrival rate vectors that can
be stably supported by the network, considering all possible strategies
for choosing the control variables that affect routing, scheduling, and
resource allocation (including those with perfect knowledge of future
events) [43, p. 28].

A dynamic cross-layer control algorithm, which achieves a utility
that is arbitrarily close to the optimal value of problem (3.2), has been
introduced in [43, sec. 5]. Specifically, the algorithm’s performance can
be characterized as follows:∑

n∈N

∑
s∈Sn

us
n(y�s

n) − liminf
T→∞

∑
n∈N

∑
s∈Sn

us
n

(
1
T

∑
t=1:T

E{xs
n(t)}

)
≤ B

V
, (3.3)

where (y�s
n)n∈N ,s∈Sn is the optimal solution of problem (3.2), B > 0 is

a well defined constant, and V > 0 is an algorithm parameter that can
be used to control the tightness of the achieved utility to the optimal
value [43, sec. 5.2.1]. The details are extraneous to the central objective



3.1 System Model and Problem Formulation 65

of this section. Particularized to the considered network model, in every
time slot t, the algorithm performs the following steps:

Algorithm 3.1 Dynamic cross-layer control algorithm [43, sec. 5.2].

1. Flow control; each node n ∈ N solves the following problem:

maximize
∑

s∈Sn
V us

n(xs
n) − xs

nqs
n(t)

subject to
∑

s∈Sn
xs

n ≤ Rmax
n , xs

n ≥ 0,
(3.4)

where the variable is (xs
n)s∈Sn . Set (xs

n(t) = xs
n)s∈Sn . The

parameter V > 0 is a chosen parameter that affects the algo-
rithm performance [see (3.3)] and Rmax

n > 0 is used to control
the burstiness of data delivered to the network layer.

2. Routing and in-node scheduling; for each link l, let

βl(t) = maxs

{
qs
tran(l)(t) − qs

rec(l)(t),0
}

c�
l (t) = argmax

s

{
qs
tran(l)(t) − qs

rec(l)(t),0
}
.

(3.5)

If βl(t) > 0, the commodity that maximizes the differential
backlog, i.e., c�

l (t), is selected for potential routing over link l.
This is the well known rule of next-hop transmission under
the backpressure algorithm [120].

3. Resource allocation; the power allocation P(t) is given by P
whose entries plc solve the following problem

maximize
∑
l∈L

βl(t)
∑
c∈C

log
(

1+
gllc(t)plc

σ2+
∑
j �=l

gjlc(t)pjc

)

subject to
∑
c∈C

∑
l∈O(n)

plc ≤ pmax
n , n ∈ N

plc ≥ 0, l ∈ L, c ∈ C.

(3.6)

Once the optimal power allocation P(t) is determined, com-
pute rate allocation rl(t) for all l ∈ L by using (3.1). The
resulting rate rl(t) is offered to the data of commodity c�

l (t).

In the first step, each node n determines the amount of data of com-
modity s

(
i.e., xs

n(t) for all s ∈ Sn

)
that are admitted in the network,
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based on the current backlogs
(
i.e., qs

n(t) for all s ∈ Sn

)
. In the second

step, each node n computes βl and the corresponding commodity c�
l (t)

for all l ∈ O(n). The commodity c�
l (t) is selected for potential rout-

ing over link l during time slot t. Recall that in-node scheduling refers
to selecting the appropriate commodity and it is not to be confused
with the links scheduling mechanism, which is handled by the RA sub-
problem, i.e., step 3. The third step is the most difficult part of Algo-
rithm 3.1, which computes the power allocation P(t) in each link l. Of
course, the RA subproblem maximizes the sum of weighted rates, i.e.,
WSRMax. The solution P(t) determines implicitly the links/channels
that should be activated in every time slot t. The power allocation P(t)
is used to determine rl(t) [see (3.1)] and the resulting link rate rl(t) is
offered to the data of commodity c�

l (t). Since thw main focus resides
in problem (3.6), extensive explanations of Algorithm 3.1 are avoided.
However, we refer the reader to [43, sec. 5] for more details.

3.2 Algorithm Derivation: CGP and Homotopy Methods

In this section we focus on resource allocation problem (3.6). By using
standard reformulation techniques, we first show that problem (3.6)
is equivalent to a CGP [6]. Then we obtain a successive approxima-
tion algorithm for problem (3.6) in bipartite networks. Next we explain
the challenges of the problem in nonbipartite networks (e.g., multihop
networks), due to the self-interference problem; when a node simulta-
neously transmits and receives in the same channel, its incoming links
are affected by very large self interference levels. Finally, we present
a method based on homotopy methods [4], together with CGP, which
circumvents the aforementioned difficulties.

3.2.1 CGP for WSRMax

Let us denote the negative of the objective function of problem (3.6)
by f0

(
P
)
. It can be expressed as

f0
(
P
)

= −
∑
l∈L

∑
c∈C

log
(

1 +
gllcplc

σ2 +
∑

j �=l gjlcpjc

)βl

(3.7)

= log
∏
l∈L

∏
c∈C

(
1 + γlc

)−βl , (3.8)
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where the time index t was dropped for the sake of notational simplicity,
and γlc represents the SINR of link l in channel c, i.e.,

γlc =
gllcplc

σ2 +
∑

j �=l gjlcpjc
, l ∈ L, c ∈ C. (3.9)

Since log(·) is an increasing function, problem (3.6) can be reformulated
equivalently as

minimize
∏

c∈C
∏

l∈L
(
1 + γlc

)−βl

subject to γlc =
gllcplc

σ2 +
∑

j �=l gjlcpjc
, l ∈ L, c ∈ C

∑
c∈C

∑
l∈O(n) plc ≤ pmax

n , n ∈ N

plc ≥ 0, l ∈ L, c ∈ C,

(3.10)

where the variables are (plc)l∈L,c∈C and (γlc)l∈L,c∈C . Now we consider
the related problem

minimize
∏

c∈C
∏

l∈L
(
1 + γlc

)−βl

subject to γlc ≤ gllcplc

σ2 +
∑

j �=l gjlcpjc
, l ∈ L, c ∈ C∑

c∈C
∑

l∈O(n) plc ≤ pmax
n , n ∈ N

plc ≥ 0, l ∈ L, c ∈ C,

(3.11)

with the same variables (plc)l∈L,c∈C and (γlc)l∈L,c∈C . Note that the
equality constraints of problem (3.10) have been replaced with inequal-
ity constraints. We refer to these inequality constraints as SINR con-
straints for simplicity. Since the objective function of problem (3.11) is
decreasing in each γlc, we can guarantee that at any optimal solution
of problem (3.11), the SINR constraints must be active.1 Therefore we
solve problem (3.11) instead of problem (3.10).

1 Otherwise, we can show by contradiction that the current solution is not optimal.
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Finally, by introducing the auxiliary variables vlc ≤ 1 + γlc and rear-
ranging the terms, problem (3.6) can be further reformulated as

minimize
∏

c∈C
∏

l∈L v−βl
lc

subject to vlc ≤ 1 + γlc, l ∈ L, c ∈ C
σ2g−1

llc p−1
lc γlc +

∑
j �=l g

−1
llc gjlcpjcp

−1
lc γlc ≤ 1, l ∈ L, c ∈ C∑

c∈C
∑

l∈O(n)
(
pmax

n

)−1
plc ≤ 1, n ∈ N

plc ≥ 0, l ∈ L, c ∈ C,
(3.12)

where the variables are (plc)l∈L,c∈C , (γlc)l∈L,c∈C , and (vlc)l∈L,c∈C . Prob-
lem (3.12) is a CGP.

3.2.2 Successive Approximation Algorithm
for WSRMax in Bipartite Networks

In this section we consider the case of bipartite networks. Recall from
Section 3.1.1 that for such networks we have A = ∅. By inspecting
problem (3.12), we notice the following: (1) the objective is a mono-
mial function [20, sec. 2.1], (2) the right-hand side (RHS) terms of the
first inequality constraints (i.e., 1 + γlc) are posynomial functions, and
(3) the left-hand side terms of all the inequality constraints are either
monomial or posynomial functions. Note that if the RHS terms of the
first inequality constraints were monomial functions (instead of posyno-
mial ones), problem (3.12) would become a geometric program (or GP)
in standard form. GPs can be reformulated as convex problems and
they can be solved very efficiently, even for large scale problems [20,
sec. 2.5]. These observations suggest that by starting from an initial
point, one can search for a close local optimum by solving a sequence
of GPs, which locally approximate the original problem (3.12). At each
step, the GP is obtained by replacing the posynomial functions in the
RHS of the first inequality constraints with their best local monomial
approximations near the the solution obtained at the previous step. The
solution methods achieved by monomial approximations [6, 20] can be
considered as a subset of a broader class of mathematical optimization
problems, known in mathematical literature as inner approximation
algorithms for nonconvex problems [77]. The monomial approximation
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for the RHS terms of the first inequality constraints in problem (3.12)
is described in the following lemma.

Lemma 3.1. Consider the function s(γ) = 1 + γ, γ > 0. Let m(γ) =
kγa, γ > 0, be a monomial function used to approximate s(γ) near an
arbitrary point γ̂ > 0. Then,

1. the parameters a and k of the best monomial local approxi-
mation are given by

a = γ̂(1 + γ̂)−1, k = γ̂−a(1 + γ̂). (3.13)

2. s(γ) ≥ m(γ) for all γ > 0.

Proof. To show the first part we note the following: the monomial func-
tion m is the best local approximation of s near the point γ̂ if

m(γ̂) = s(γ̂), m′(γ̂) = s′(γ̂). (3.14)

By replacing the expressions of m and s in (3.14) we obtain the follow-
ing system of equations: {

kγ̂a = 1 + γ̂

kaγ̂a−1 = 1,
(3.15)

which has the solution given by (3.13).
The second part follows from (3.14) and noting that s(γ) is affine

and m(γ) is concave on IR+; concavity of m(γ) follows from the fact
that k > 0 and 0 < a < 1 [22, sec. 3.1.5].

The approximation given in Lemma 3.1 turns out to be equivalent
to the lower bound approximation used in [94, sec. III-B] for dynamic
spectrum management in digital subscriber lines.

Let us now turn to the GP obtained by using the local approxi-
mation given by Lemma 3.1. The posynomial functions 1 + γlc of the
first inequality constraints of problem (3.12) are approximated near the
point γ̂lc. Consequently the approximate inequality constraints become

vlc ≤ klcγ
alc
lc , l ∈ L, c ∈ C, (3.16)
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where alc and klc have the forms given in (3.13). Since the objective
function of problem (3.12) is a decreasing function of vlc, l ∈ L, c ∈ C,
it can be easily verified that all of these modified inequality constraints
will be active at the solution of the GP. Therefore, we can eliminate
the auxiliary variables vlc and rewrite the objective function of prob-
lem (3.12) as

∏
l∈L

∏
c∈C

v−βl
lc =

∏
l∈L

∏
c∈C

k−βl
lc γ−βlalc

lc = K
∏
l∈L

∏
c∈C

γlc
−βl

γ̂lc
1+γ̂lc , (3.17)

where K is a multiplicative constant which does not affect the problem
solution.

In the following subsections, we examine computationally efficient
algorithms to obtain a suboptimal solution for problem (3.12). For
notational convenience it is useful to define the overall SINR matri-
ces γ, γ̂ ∈ IRL×C

+ as [γ]l,c = γlc and [γ̂]l,c = γ̂lc, respectively.
A very brief outline of the successive approximation algorithm is

as follows. It solves an approximated version of problem (3.12) in
every iteration and the algorithm consists of repeating this step until
convergence.

The first step initializes the algorithm and an initial feasible SINR
guess γ̂(i) is computed. For bipartite networks, there is no self-
interference problem, and a simple uniform power allocation can be
used.

The second step solves an equivalent GP approximation of prob-
lem (3.12) around the current guess γ̂(i) [see problem (3.18)]. Note
that the auxiliary variables (vlc)l∈L,c∈C of problem (3.12) are eliminated
and the objective function of problem (3.12) is replaced by using the
monomial approximation at γ̂(i) given in (3.17); K(i) is a multiplicative
constant which does not influence the solution of problem (3.18). These
monomial approximations are sufficiently accurate only in the closer
vicinity of the current guess γ̂(i). Therefore, the first set of inequality
constraints are added to confine the domain of variables γ to a region
around the current guess γ̂(i) [18]. The first set of inequality constraints
of problem (3.18) are sometimes called trust region constraints [18, 20],
which are not originally introduced in [6]. Therefore, Algorithm 3.2 is
a slightly modified version of the solution method proposed in [6]. The
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Algorithm 3.2 Successive approximation algorithm for WSRMax
1. Initialization; given tolerance ε > 0, a feasible power allo-

cation P0. Set i = 1. The initial SINR guess γ̂(i) is given
by (3.9).

2. Solving the GP:

minimize K(i) ∏

l∈L

∏

c∈C
γlc

−βl
γ̂
(i)
lc

1+γ̂
(i)
lc

subject to α−1γ̂
(i)
lc ≤ γlc ≤ αγ̂

(i)
lc , l ∈ L, c ∈ C

σ2g−1
llc p−1

lc γlc +
∑

j �=l

g−1
llc gjlcpjcp

−1
lc γlc ≤ 1, l ∈ L, c ∈ C

∑

c∈C

∑

l∈O(n)

(
pmax

n

)−1
plc ≤ 1, n ∈ N ,

(3.18)

with the variables (plc)l∈L,c∈C and (γlc)l∈L,c∈C . Denote the
solution by
(p�

lc)l∈L,c∈C and (γ�
lc)l∈L,c∈C .

3. Stopping criterion; if max(l,c)∈L×C
∣∣γ�

lc − γ̂
(i)
lc

∣∣ ≤ ε STOP; oth-
erwise go to step 4.

4. Set i = i + 1,
(
γ̂

(i)
lc = γ�

lc

)
l∈L,c∈C and go to step 2.

parameter α > 1 controls the desired approximation accuracy. However,
it also influences the convergence speed of Algorithm 3.2. At every
step, each entry of the current SINR guess γ̂(i) can be increased or
decreased at most by a factor α. Thus, a value of α close to 1 provides
good accuracy for the monomial approximations at the cost of slower
convergence speed, while a value much larger than 1 improves the con-
vergence speed at the cost of reduced accuracy. In most practical cases,
a fixed value α = 1.1 offers a good speed/accuracy tradeoff [20]. Though
we have trust region constraints for problem (3.18), it is not mandatary
to include those here and Algorithm 3.2 can still be carried out.

The third step checks whether the SINRs (γ�
lc)l∈L,c∈C obtained

from the solution of problem (3.18) have been significantly changed
compared to the entries of the current guess γ̂(i). If there are no
substantial changes, then the algorithm terminates and the link
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rate rl(t) =
∑C

c=1 W log(1 + γ�
lc) is offered to the data of commod-

ity c�
l (t) [given by (3.5)]. Otherwise, the solution (γ�

lc)l∈L,c∈C is taken
as the current guess and the algorithm repeats steps 2 to 4 until
convergence.

Note that the auxiliary variables (vlc)l∈L,c∈C were only used to
reformulate problem (3.11) as a CGP [6] [i.e., problem (3.12)], but
they do not appear in Algorithm 3.2. In fact, an identical algorithm
results if, at each step, the objective function of problem (3.11) is
locally approximated by a monomial function (see [34, lem. 4.2.2]).
This alternative derivation, known in optimization literature as signo-
mial programming [20]. Careful comparisons reveal that the algorithm
recently proposed in [78, p. 3034] is almost identical to Algorithm 3.2
for single channel case with no trust region constraints, i.e., C = 1 and
α = ∞.

The convergence of the Algorithm 3.2 to a Kuhn–Tucker solution of
the original nonconvex problem (3.12) is guaranteed [77, thm. 1], since
the algorithm falls into the broader class of mathematical optimization
problems, inner approximation algorithms for nonconvex problems [77].

One interesting and important remark is that the objective function
of the approximated problem (3.18) in each iteration i yields a upper
bound on the objective function of the original problem (3.11), i.e.,

K(i) ∏
l∈L

∏
c∈C

γlc

−βl
γ̂
(i)
lc

1+γ̂
(i)
lc ≥

∏
l∈L

∏
c∈C

(
1 + γlc

)−βl (3.19)

for (γlc > 0)l∈L, c∈C , with equality when γ = γ̂(i). This follows directly
from the second statement of Lemma 3.1. By using (3.19), we can
show immediately that Algorithm 3.2 is monotonically decreasing; the
monotonicity is established by the following theorem.

Theorem 3.2. Let i and i + 1 be any consecutive iterations of Algo-
rithm 3.2 and γ̂(i) and γ̂(i+1) be the SINR guesses at the beginning of
each iteration respectively. Then

∏
l∈L

∏
c∈C

(
1 + γ̂

(i)
lc

)−βl

≥
∏
l∈L

∏
c∈C

(
1 + γ̂

(i+1)
lc

)−βl

. (3.20)
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Proof. To show this we write the following relations:

∏
l∈L

∏
c∈C

(
1 + γ̂

(i)
lc

)−βl

= K(i) ∏
l∈L

∏
c∈C

(
γ̂

(i)
lc

)−βl
γ̂
(i)
lc

1+γ̂
(i)
lc (3.21)

≥ K(i) ∏
l∈L

∏
c∈C

(
γ̂

(i+1)
lc

)−βl
γ̂
(i)
lc

1+γ̂
(i)
lc (3.22)

≥
∏
l∈L

∏
c∈C

(
1 + γ̂

(i+1)
lc

)−βl

, (3.23)

where (3.21) follows from (3.19), (3.22) follows since γ̂(i+1) is the solu-
tion of problem (3.18), and (3.23) follows again from (3.19).

Therefore we see immediately that Algorithm 3.2 always yields a
solution, which is at least as good as the one in the previous iteration.
This is important in the context of practical implementations, since
in practice, one can always stop the algorithm within few iterations,
before it terminates.

3.2.3 The Self-interference Problem
in Nonbipartite Networks

Let us now consider the nonbipartite networks; networks for which
A �= ∅. In other words, the set of nodes cannot be divided into two
distinct subsets, T and R, i.e., T ∩ R �= ∅ (e.g., multihop wireless
networks). For example see Figures 3.1 and 3.2. For such network
topologies, there is the self-interference problem and, consequently,
the WSRMax problem must also cope with the self-interference prob-
lem. The difficulty comes from that the self-interference gains g2 can
typically be a few orders of magnitude larger than the power gains
between distinct network nodes {gjjc}j∈L, for example, when there is
no self interference cancelation. Therefore there can be a huge imbal-
ance between some entries of {gijc}i,j∈L, especially when g is large.
Roughly speaking, this can destroy the smoothness of the functions
associated with the WSRMax problem [e.g., the objective function of

2 Recall that gijc = g for all (i, j) ∈ A.
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Fig. 3.2 Two node network (channel index c and time index t are omitted for clarity):
A = {(1,2), (2,1)}, g12 = 1, g21 = 1, g11 = |h11|2, and g22 = |h22|2.

problem (3.6)] and can ruin the reliability and the efficiency of Algo-
rithm 3.2 that solves it, at least suboptimally. In other words, there can
be many highly suboptimal Kuhn–Tucker solutions for problem (3.12)
at which Algorithm 3.2 can terminate by returning an undesirable sub-
optimal solution. Moreover, the SINR values at the incoming links of a
node that simultaneously transmits in the same channel are very small
and the convergence of Algorithm 3.2 can be very slow if it starts with
an initial SINR guess γ̂ containing entries with nearly zero values.
Therefore, the direct application of Algorithm 3.2 can perform very
poorly and further improvements are necessary.

A standard way to deal with the self-interference problem consists
of adding a supplementary combinatorial constraint into the WSRMax
problem that does not allow any node in the network to transmit and
receive simultaneously in the same channel [13, 14, 46]. We will refer to
a power allocation, which satisfies this constraint as admissible. Note
that this approach would require solving a power optimization problem
(by using Algorithm 3.2) for each possible subset of links that can be
simultaneously activated. This results in a combinatorial nature for the
WSRMax problem in the case of nonbipartite networks [9, 25, 26, 62,
68, 112, 138]. Of course, since the complexity of this approach grows
exponentially with the number of links and number of channels, this
solution method becomes quickly impractical.

3.2.4 Successive Approximation Algorithm for WSRMax in
Nonbipartite Networks: A Homotopy Method

To avoid difficulties pointed out in Section 3.2.3, we present an algo-
rithm inspired from homotopy methods [4] that can be traced back to
late 80s; see [63] and the references therein. In fact, the well known
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interior-point methods [22, sec. 11],[85] for convex optimization prob-
lems also fall into this general class of homotopy methods.

The underlying idea is to first introduce a parameterized problem
that approximates the original problem (3.11). Specifically, we con-
struct the parameterized problem from the original problem (3.11) by
setting gijc = gv for all (i, j) ∈ A, where gv ∈ IR+ is referred to as the
homotopy parameter. Indeed, in the original problem (3.11) we have
gijc = g for all (i, j) ∈ A. Note that the quality of the approximation
improves as gv reaches g; the true self-interference gain. Of course,
when gv is small (e.g., gv and gjjc are roughly in the same order), Algo-
rithm 3.2 can be used reliably to find a suboptimal solution for the
parameterized problem. Thus, a sequence of parameterized problems
are solved, starting at a very small gv and increasing the parameter gv

(thus the accuracy of the approximation) at each step until gv reaches
the true self-interference gain g. Moreover, in each step, when solv-
ing the parameterized problem for the current value of gv, the initial
guess for Algorithm 3.2 is obtained by using the solution (power) of
the parameterized problem for the previous value of gv.

The algorithm based on homotopy methods can be summarized as
follows:

Algorithm 3.3 Successive approximation algorithm for WSRMax in
the presence of self interferers.

1. Initialization; given an initial homotopy parameter g0 < g,
ρ > 1, a feasible power allocation P0. Let gv = g0, P = P0.

2. Set gijc = gv for all (i, j) ∈ A. Find the SINR guess γ̂ by using
(3.9).

3. Solving parameterized problem; let γ̂(1) = γ̂, perform steps
2 to 4 of Algorithm 3.2 until convergence to obtain the
power (p�

lc)l∈L,c∈C and SINR values (γ�
lc)l∈L,c∈C . Let (plc =

p�
lc)l∈L,c∈C .

4. If ∃(i, j) ∈ A and c ∈ C such that picpjc > 0 (i.e., P is not
admissible), then set gv = min{ρgv,g} and go to step 5. Oth-
erwise (i.e., P is admissible) STOP.

5. If gv < g, go to step 2, otherwise STOP.
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The first step initializes the algorithm; the homotopy parameter gv

is initialized by g0, where g0 is chosen in the same range of values as
the power gains between distinct nodes. Specifically, in the simulations
we select g0 = maxj∈L,c∈C{gjjc}. Step 2 updates the problem data for
the parameterized problem and a feasible SINR guess is computed. The
third step finds a suboptimal solution for the parameterized problem.
The algorithm terminates in step 4 if P is admissible (thus none of
nodes in the network are transmitting and receiving simultaneously in
the same channel). On the other hand, if P is not admissible, then the
homotopy parameter gv is increased. If gv reaches its extreme allowed
value (i.e., the actual self-interference gain value of g), the algorithm
terminates. Otherwise (i.e., gv < g), it returns to step 2 and continues.
Terminating Algorithm 3.3 if the solution is admissible is intuitively
obvious for the following reason. The data associated with the param-
eterized problem that is solved in step 3 of Algorithm 3.3 becomes
independent of the homotopy parameter gv, and therefore a further
increase in gv after having an admissible solution has no effect on the
results. Computational experience suggests that Algorithm 3.3 yields
an admissible solution way before gv reaches value g (e.g., in the case
of no self interference cancelation, i.e., g = 1, an admissible power allo-
cation is achieved in about 1−4 iterations with ρ = 2).

Since Algorithm 3.3 runs a finite number of instances of Algo-
rithm 3.2, its computational complexity does not increase more than
polynomially with the problem size. Clearly, Algorithm 3.3 can con-
verge to a Kuhn-Tucker solution of the last parameterized problem
(the one just before the termination of Algorithm 3.3).

As a specific example to illustrate self interference, consider the
simple network shown in Figure 3.2 and suppose that no self inter-
ference cancelation technique is employed at the network’s nodes, i.e.,
g = 1. Here, N = 2, L = 2, and C = 1. Note that A = {(1,2),(2,1)}
and let β1,β2 �= 0. Suppose that g12 � g22 and g21 � g11, which is
often the case due to path losses. Since the gains g12 = 1 and g21 = 1
are very large compared to g22 and g11, for any nonzero power allo-
cation p1,p2 = p0 the initial SINR guess γ̂1, γ̂2 will have nearly zero
values. This results in difficulties in using Algorithm 3.2 directly.
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In Algorithm 3.3 this problem is circumvented by initializing the gains
g12 and g21 by a parameter g0 (e.g., g0 = max{g11,g22}) and executing
Algorithm 3.2 repeatedly, increasing incrementally the parameter gv

until it reaches 1, the true values of g12 and g21.
Regarding the complexity of the algorithm we make the following

remarks. The computational complexity of a GP depends on the num-
ber of variables and constraints, as well as on the sparsity pattern
of the problem [20]. Unfortunately, it is difficult to quantify precisely
the sparsity pattern, and therefore a general complexity analysis is
not available. To give a rough idea, let us consider a fully connected
network with N = 9 nodes and C = 8 channels. The number of vari-
ables in problem (3.18) is 2LC = 1152 and the number of constraints
is 3LC + N = 1737, and it was solved in about 12 seconds on desktop
computer. The number of iterations depends on the starting point, pmax

n

and channel gains gijc, but typically Algorithm 3.2 required around 100
iterations to converge.

Nevertheless, with some slight modifications it is possible to dra-
matically decrease the average complexity per iteration, which is very
important in the context of practical implementations. Two simple
modifications are as follows:

1. Use a large values for the parameter α in Algorithm 3.2:
as we discussed in Section 3.2.2, large α can improve the
convergence speed of Algorithm 3.2 at the cost of reduced
accuracy of the monomial approximation.

2. Eliminate (relatively) insignificant variables; we can
eliminate the power variables plc and the associated SINR
variables γlc from problem (3.18) when they have relatively
very small contributions to the overall objective value of
(3.18). Specifically, the exponent term βlγ̂

(i)
lc /

(
1 + γ̂

(i)
lc

)
in the

objective of (3.18) is evaluated for all l ∈ L, c ∈ C and if

βlγ̂
(i)
lc /

(
1 + γ̂

(i)
lc

)
� max

l̄∈L,c̄∈C
βl̄γ̂

(i)
l̄c̄

/
(
1 + γ̂

(i)
l̄c̄

)
,

then plcs and the associated γlcs are eliminated in succes-
sive GPs.
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3.2.5 Impact of Scaling the Node Distances on the
Accuracy of Self Interference Cancelation

Based on a simple exponential path loss model, in this section we dis-
cuss the impact of scaling the distance between network nodes on the
accuracy level of the self interference cancelation.

For simplicity, we focus on the single-channel case (i.e., C = 1).
Suppose an exponential path loss model, where the channel power gains
|hij(t)|2, between distinct nodes are given by

|hij(t)|2 =
(

dij

d0

)−η

cij(t). (3.24)

Here dij is the distance from the transmitter of link i to the receiver
of link j, d0 is the far field reference distance [64], η is the path loss
exponent, and cij(t) are exponentially distributed random variables
with unit mean, independent of the time slots and links. The first term
of (3.24) represents the path loss factor and the second term models
Rayleigh small-scale fading.

Suppose pmax
n = pmax

0 for all n ∈ N . For all l ∈ L we define the signal-
to-noise ratio (or SNR) of link l as

SNRl =
pmax
0
σ2

(
dll

d0

)−η

. (3.25)

It represents the average SNR at rec(l) when tran(l) allocates all its
transmission power to link l and all the other nodes are silent. Let p(t) ∈
IRL

+ denote the overall power allocation matrix, i.e., pl(t) = [p(t)]l (note
that the channel index is dropped for simplicity, since C = 1).

Let us consider a network that is obtained from another one, by
scaling the distance between distinct nodes and the maximum node
transmission power such that all link’s SNRs [see (3.25)] are conserved.
In the sequel, we show that, in order to preserve the achievable rate
region, the accuracy level of the self interference cancelation techniques
must also be scaled appropriately.

We start by defining two matrices, which will be useful for later
reference. Let D ∈ IRL×L

+ denote the node distance matrix defined as
[D]i,j = dij and G(t) ∈ IRL×L

+ denote the interference coefficient and
the power gain matrix during time slot t, defined as [G(t)]i,j = gij(t).
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The achievable rate region with singleuser detection at receivers for
a given G(t) and a maximum node transmission power pmax

0 can be
expressed as

R(G(t),pmax
0 ) =




(rl)l∈L

∣∣∣∣∣∣∣∣∣∣
rl ≤ log

(
1 +

gll(t)pl

σ2 +
∑

j �=l gjl(t)pj

)
, l∈L∑

l∈O(n) pl ≤ pmax
0 , n∈N

pl ≥ 0, l∈L




.

(3.26)

From (3.26), it follows that if the matrix G(t) is scaled by a factor of
1/κ, and the maximum node transmission power pmax

0 is scaled by a
factor of κ, then the achievable rate region is unchanged, i.e.,

R(G(t),pmax
0 ) = R(G(t)/κ,κpmax

0 ). (3.27)

Let κ = θη. According to the exponential path loss model given in
(3.24), the scaling of G(t) by a factor of 1/κ (or 1/θη) is equivalent
to the scaling of node distance matrix D by a factor of θ and the scal-
ing of self-interference gains g by a factor of 1/θη. Therefore, with a
slight abuse of notation, we rewrite (3.27) as

R(D,g,pmax
0 ) = R(θD,g/θη,θηpmax

0 ). (3.28)

To interpret the relation in (3.28), we consider a network characterized
by D,g, and pmax

0 . If we construct another network by scaling D by
a factor of θ and by scaling pmax

0 by a factor of θη, then to preserve
the achievable rate region, the accuracy level of the self interference
cancelation should be improved to g/θη. This is intuitively obvious
since, the larger the distance between network nodes, the larger the
power levels required to preserve the link SINRs, and therefore the
higher the accuracy level required by the self interference cancelation
techniques to remove the increased transmit power at nodes. Based
on (3.28) we can establish similar equivalences in terms of network layer
performance metrics as well. Roughly speaking, relation (3.28) suggests
that in networks where the nodes are located far apart (e.g., cellular
type of wireless networks), the accuracy of self interference cancelation
is more stringent compared to that in networks where the nodes are
located in close vicinity (e.g., a wireless network setup in an office).
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3.3 Extensions to Wireless Networks
with Advanced Transceivers

Until now the receiver structure was basically assumed to be equivalent
to a bank of match filters, each of which attempts to decode one of
the signals of interest at each node while treating the other signals
as noise. This is a suboptimal detector structure that is commonly
assumed. In this section, we investigate the possible gains achievable
by using more advanced receiver structures. For clarity, we discuss
only the single-channel case; see [134, app. B] for the extension to the
multichannel case. We assume that at every node n ∈ N the transmit-
ter performs superposition coding over its outgoing links O(n), and the
receiver decodes the signals of incoming links I(n) by using a multiuser
receiver based on successive interference cancelation (SIC) strategy.
One may of course assume other detector structure, including the
optimum one that implements maximum likelihood. The largest set of
achievable rates is obtained when the SIC receiver at every node n ∈ N
is allowed to decode and cancel out the signals of all its incoming
links I(n) and any subset of the remaining links in its complement
set L \ I(n). Let D(n) denote the set of links, which are decoded
at the node n, i.e., D(n) = I(n) ∪ U(n) for some U(n) ⊆ L \ I(n).
Furthermore, let RSIC(D(1), . . . ,D(N),pmax

1 , . . . ,pmax
N ) denote the

achievable rate region for given D(1), . . . ,D(N) and maximum node
transmission power pmax

1 , . . . ,pmax
N . We denote by RSIC(pmax

1 , . . . ,pmax
N )

the achievable rate region, which is obtained as a union of all
RSIC(D(1), . . . ,D(N),pmax

1 , . . . ,pmax
N ) over all possible 2

∑
n∈N (L−|I(n)|)

combinations of sets D(1), . . . ,D(N), i.e.,

RSIC(pmax
1 , . . . ,pmax

N ) = ⋃
D(1),...,D(N)|∀n∈N ∃U(n)⊆L\I(n) s.t. D(n)=I(n)∪U(n)

RSIC(D(1), . . . ,D(N),pmax
1 , . . . ,pmax

N ).

(3.29)

The receiver of each node n ∈ N is allowed to perform SIC in
its own order. Let πn =

(
πn(1), . . . ,πn(|D(n)|)

)
be an arbitrary per-

mutation of the links in D(n), which describes the decoding and
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cancelation order at node n. Specifically, the signal of link πn(l) is
decoded after all codewords of links πn(j), j < l have been decoded and
their contribution to the signal received at node n has been canceled.
Thus, only the signals of the links πn(j), j > l act as interference. The
rate region RSIC(D(1), . . . ,D(N),pmax

1 , . . . ,pmax
N ) is obtained by consid-

ering all possible combinations of decoding orders for all nodes, i.e., all
possible

∏
n∈N (|D(n)| !) combinations π

∆= π1 × π2 × ·· · × πN . Thus,
RSIC(D(1), . . . ,D(N),pmax

1 , . . . ,pmax
N ) can be expressed as

RSIC(D(1), . . . ,D(N),pmax
1 , . . . ,pmax

N ) =

⋃
π




(r1, . . . , rL)

∣∣∣∣∣∣∣∣∣∣∣∣

rπn(l) ≤ log
(

1 +
Gπn(l)n(t) pπn(l)

σ2 +
∑

j>l Gπn(j)n(t) pπn(j)

)
,

∀(n, l) s.t. n ∈ N , l ∈ {1, . . . , |D(n)|}∑
l∈O(n) pl ≤ pmax

n , n ∈ N
pl ≥ 0, l ∈ L




,

(3.30)

where Gln, l ∈ L, n ∈ N represents the power gain from the transmit-
ter of link l to the receiver at node n, and pl represents the power
allocated for the signal of link l. Clearly, the computational complexity
experiences a formidable increase. Nevertheless, the RA subproblem at
the third step of Dynamic Cross-Layer Control Algorithm 3.1 can be
written as3

maximize
∑

l∈L βl(t)rl

subject to (rl)l∈L ∈ RSIC(pmax
1 , . . . ,pmax

N ),
(3.31)

where the variable is (rl)l∈L.
The combinatorial description of RSIC(pmax

1 , . . . ,pmax
N ) implies that

solving problem (3.31) requires optimization over all possible combi-
nations of decoding sets D(1), . . . ,D(N) and decoding orders π. This
is intractable, even for off line optimization of moderate size networks.

3 Note that RSIC(pmax
1 , . . . ,pmax

N ) represents the set of directly achievable rates. By invoking
a time sharing argument, one can extend the achievable rate region to the convex hull of
RSIC(pmax

1 , . . . ,pmax
N ). However, this would not affect the optimal value of problem (3.31)

because the objective function is linear [69].
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Therefore, in the following we present two alternatives to find the solu-
tion of a more constrained version of problem (3.31) instead of solving
problem (3.31) itself. The first alternative limits the access protocol so
that only one node can transmit in all its outgoing links in each time
slot. The second alternative adopts a similar view by assuming that
only one node can receive from all its incoming links in each time slot.
The main advantage of the alternatives above is their simplicity. As a
result, a cheaply computable lower bound on the optimal value of prob-
lem (3.31) can be obtained. Moreover, these simple access protocols can
be useful in practical applications with more advanced communication
systems.

3.3.1 Single Node Transmission Case

By imposing the additional constraint that only one node can trans-
mit during each slot, problem (3.31) is reduced to a problem where
the optimal power and rate allocation can be computed via convex
programming. Specifically, problem (3.31) is reduced to N WSRMax
problems for the scalar broadcast channel, one for each possible trans-
mitting node.

For any node n ∈ N , let ρn =
(
ρn(1), . . . ,ρn(|O(n)|)

)
be a permuta-

tion of the set of outgoing links O(n) such that

gρn(1)ρn(1)(t) ≤ gρn(2)ρn(2)(t) ≤ . . . ≤ gρn(|O(n)|)ρn(|O(n)|)(t),

where gii(t) denotes the power gain from the transmitter of link i to the
receiver of link i during time slot t. Now we consider the case where node
n is the transmitter. This results in a scalar Gaussian broadcast channel
with |O(n)| users. Thus for all i ∈ {1, . . . , |O(n)|}, the optimal decoding
and cancelation order at the receiver node of links ρn(i) is specified
by ρn [124, sec. 6]. Specifically, the receiver of the link ρn(i) decodes
its own signal after all the codewords of links ρn(j), j < i have been
decoded and their contribution to the received signal has been canceled.
Thus, only the signals of the links ρn(j), j > i act as interference at
the receiver of the link ρn(i). Now we can rewrite problem (3.31) by
using the capacity region descriptions of the scalar Gaussian broadcast
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channels [125] as

maximize
∑

l∈O(n) βlrl

subject to n ∈ N

rρn(i) ≤ log
(

1+
gρn(i)ρn(i) pρn(i)

σ2+gρn(i)ρn(i)
∑|O(n)|

j=i+1 pρn(j)

)
,

i ∈ {1, . . . , |O(n)|}∑
l∈O(n) pl ≤ pmax

n

pl ≥ 0, l ∈ O(n)

pl = 0, l /∈ O(n),

(3.32)

where the variables are n, (pl)l∈L, and (rl)l∈L. Note that the time index
t is dropped for notational convenience. The solution of problem (3.32)
is obtained in two steps. First, we solve N independent subproblems
(one subproblem for each possible transmitting node n ∈ N ). Then we
select the solution of the subproblem with the largest objective value.
The subproblem can be expressed as

maximize
∑|O(n)|

i=1 βρn(i)rρn(i)

subject to rρn(i) = log
(

1 +
gρn(i)ρn(i) pρn(i)

σ2+gρn(i)ρn(i)
∑|O(n)|

j=i+1 pρn(j)

)
,

i ∈ {1, . . . , |O(n)|}∑
l∈O(n) pl ≤ pmax

n

pl ≥ 0, l ∈ O(n),

(3.33)

where the variables are (pl)l∈O(n) and (rl)l∈O(n). Problem (3.33) rep-
resents the WSRMax over the capacity region of a scalar Gaussian
broadcast channel [125, sec. 2] with |O(n)| users. The barrier method
[22, sec. 11.3.1], or the explicit greedy method proposed in [125,
sec. 3.2], can be used to efficiently solve this problem. Here we use the
barrier method and refer the reader to Appendix B for more details.
Let g(n), p

(n)
l , and r

(n)
l denote the optimal objective value and the cor-

responding optimal solution (i.e., power and rate) respectively. Then
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the rate/power relation can be expressed as

r
(n)
ρn(i) = log


1+

gρn(i)ρn(i) p
(n)
ρn(i)

σ2+gρn(i)ρn(i)
∑|O(n)|

j=i+1 p
(n)
ρn(j)


 , i ∈ {1, . . . , |O(n)|}

(3.34)
and the optimal solution of problem (3.32) is given by

n� = argmax
n∈N

g(n) ;

p�
l =

{
p
(n�)
l l ∈ O (n�)

0 otherwise ;
(3.35)

r�
l =

{
r
(n�)
l l ∈ O (n�)

0 otherwise.

Next we consider the case where only one node can receive during each
slot.

3.3.2 Single Node Reception Case

In this case, the associated problem (3.31) is reduced to a simpler form
where the optimal power and rate allocation can be computed very effi-
ciently by considering N WSRMax problems for the Gaussian multiple
access channel, one for each possible receiving node.

We start by considering the capacity region descriptions of the
Gaussian multiaccess channel with |I(n)|, n ∈ N users [126],[124, sec. 6].
For any receiving node n ∈ N , the capacity region of a the |I(n)| user
Gaussian multiaccess channel, with power constraints pl, l ∈ I(n), is
givenby the set of rate vectors that lie in the intersection of the constraints

∑
l∈V(n) rl ≤ log

(
1 +

∑
l∈V(n) gllpl

σ2

)
(3.36)

for every subset V(n) ⊆ I(n). Thus, we can rewrite problem (3.31) as

maximize
∑

l∈I(n) βlrl

subject to n ∈ N∑
l∈V(n) rl ≤ log

(
1 +

∑
l∈V(n) gllpl

σ2

)
, V(n) ⊆ I(n)

0 ≤ pl ≤ pmax
tran(l), l ∈ I(n)

pl = 0, l /∈ I(n),

(3.37)
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where the variables are n, (pl)l∈L, and (rl)l∈L. Again, the solution is
obtained in two steps. First, we solve N independent subproblems (one
subproblem for each possible receiving node n ∈ N ). Then we select
the solution of the subproblem with the largest objective value. The
subproblem has the form:

maximize
∑

l∈I(n) βlrl

subject to
∑

l∈V(n) rl ≤ log

(
1 +

∑
l∈V(n) gllpl

σ2

)
, V(n) ⊆ I(n)

0 ≤ pl ≤ pmax
tran(l), l ∈ I(n),

(3.38)
where the variables are (pl)l∈I(n) and (rl)l∈I(n). Problem (3.38) is
equivalent to the WSRMax over the capacity region of the Gaussian
multiaccess channel with |I(n)| users [124, sec. 6]. The solution is read-
ily obtained by considering the polymatroid structure of the capacity
region [126, lem. 3.2]. Again we denote by g(n), p

(n)
l , and r

(n)
l the opti-

mal objective value and the optimal solution of problem (3.38) respec-
tively. Thus, the solution of problem (3.38) can be written in closed
form as p

(n)
l = pmax

tran(l) for all l ∈ I(n) and

r
(n)
�n(i) = log


1+

g�n(i)�n(i) p
(n)
�n(i)

σ2+
∑|I(n)|

j=i+1 g�n(j)�n(j) p
(n)
�n(j)


 , i ∈ {1, . . . , |I(n)|},

(3.39)
where �n = (�n(1), . . . ,�n(|I(n)|)) is a permutation of the set of incom-
ing links I(n) such that

β�n(1) ≤ β�n(2) ≤ ·· · ≤ β�n(|I(n)|). (3.40)

One can in fact identify �n as the SIC order at the receiving
node n ∈ N . Finally, the optimal solution of problem (3.37) can be
expressed as

n� = argmax
n∈N

g(n) ;

p�
l =

{
p
(n�)
l l ∈ I (n�)

0 otherwise ;

r�
l =

{
r
(n�)
l l ∈ I (n�)

0 otherwise.

(3.41)
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3.4 Numerical Examples

In this section, we use the algorithms of the preceding sections to iden-
tify the solutions to the selected NUM problem and their properties,
so as to get insight into network design and provisioning methods.
Specifically, in every time slot t, the rate allocation at step 3 of the
Dynamic Cross-Layer Control Algorithm (i.e., Algorithm 3.1, sec. 3.1)
is obtained by using the algorithms presented for WSRMax described
in Sections 3.2 and 3.3.

We assume a block fading Rayleigh channel model where the channel
gains are constant during each time slot and change independently from
slot-to-slot. The small-scale fading components of the channel gains are
assumed to be independent and identically distributed over the time
slots, links, and channels. Recall that we consider equal power spectral
density for all receivers, i.e., Nl = N0 for all l ∈ L and equal channel
bandwidths, i.e., Wc = W for all c ∈ C. Furthermore, the maximum
power constraint is assumed to be the same for all nodes, i.e., pmax

n =
pmax
0 for all n ∈ N (independent of the number of channels C). For a

fair comparison between cases with different numbers of channels, we
have assumed that the total available bandwidth is constant regardless
of C, i.e.,

∑C
c=1 Wc = Wtot. In all the simulations we have selected the

total bandwidth to be normalized to one, i.e., Wtot = 1 Hz.
For comparing different algorithms, we consider the following two

performance metrics: (1) the average sum-rate
∑

n∈N
∑

s∈Sn
x̄s

n and
(2) the average network congestion

∑
n∈N

∑S
s=1 q̄s

n. For each net-
work instance, the Dynamic Cross-Layer Control Algorithm (i.e.,
Algorithm 3.1) is simulated for at least T́ = 10,000 time slots and
the average rates x̄s

n and queue sizes q̄s
n are computed by averag-

ing the last t0 = 3000 time slots, i.e., x̄s
n = 1/t0

∑T́
t=T́−t0

xs
n(t) and

q̄s
n = 1/t0

∑T́
t=T́−t0

qs
n(t). We assume that the rates corresponding to

all node-commodity pairs (n,s)s∈Sn ,n ∈ N are subject to proportional
fairness, and therefore we select the utility functions us

n(y) = loge(y).
In all considered setups, we selected V = 100 [see (3.4)] and the param-
eters Rmax

n [see (3.4)] were chosen such that all conditions presented in
[82, sec. III-D] were satisfied.
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We start with a simple network instance (Section 3.4.1); a bipartite
network where no self interferers exist (i.e., A = ∅) and the succes-
sive approximation algorithm, Algorithm 3.2 (Section 3.2.2) is used
in resource allocation. The associated results show important conse-
quences on upper layers due to the successive approximation algorithm.
We then consider more general networks (Section 3.4.2), with the pres-
ence of self interferers (i.e., A �= ∅) and no self interference cancelation
at network’s nodes (i.e., g = 1). Here Algorithm 3.3 (Section 3.2.4) is
used in resource allocation. The gains achievable at the network layer,
due to different degrees of the self interference cancelation performed
at the network nodes, are investigated quantitatively in Section 3.4.3.
By changing g in the interval [0,1], the results are able to capture the
effect of self interference cancelation performed with different levels
of accuracy. Finally, we look at the multiuser receiver scenario, again
using the same network instance as in Section 3.4.2. The associated
results (Section 3.4.4) show impacts in upper layer performance due to
advanced receiver architectures.

3.4.1 NUM for Bipartite Networks with Singleuser
Detection at Receivers

A bipartite network, as shown in Figure 3.3, is considered. There
are N = 8 nodes, L = 4 links, and S = 4 commodities. One distinct
commodity arrives exogenously at every node n from the subset
{1,2,3,4} ⊆ N . Without loss of generality we assume that the nodes
and commodities are labeled such that commodity i arrives at node i for

Fig. 3.3 Bipartite wireless network with N = 8 nodes, L = 4 links, and S = 4 commodities.
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any i ∈ {1,2,3,4}. The destination nodes are specified by the following
commodity-destination node pairs (s,ds) ∈ {(1,5),(2,6),(3,7),(4,8)}.

The channel power gains between distinct nodes are given by

|hijc(t)|2 = µ|i−j|cijc(t), i, j ∈ L, c ∈ C, (3.42)

where cijc(t) are exponentially distributed independent random vari-
ables with unit mean used to model Rayleigh small-scale fading and
the scalar µ ∈ [0,1] is referred to as the interference coupling index,
which parameterizes the interference between direct links. For exam-
ple, if µ = 0, transmissions of links are interference free. The interfer-
ence between transmissions increases as the parameter µ grows. Similar
channel gain models for bipartite networks has also been used in [91].
Of course, this simple hypothetical model provides useful insights into
the performance of presented algorithms in bipartite networks (e.g.,
cellular networks). We define the SNR operating point as

SNR =
pmax
0

N0Wtot
. (3.43)

Figure 3.4 shows the dependence of the average sum-rate [Fig-
ure 3.4(a)] and the average network congestion [Figure 3.4(b)] on the
interference coupling index µ for Algorithm 3.2 and for the optimal
base line single link activation (or BLSLA) policy.4. We consider the
single-channel case C = 1 operating at three different SNR values 2, 8,
and 16 dB. The initial power allocation P0 for Algorithm 3.2 is chosen
such that [P0]l,1 = pmax

0 unless otherwise specified. Here we can make
several observations. First, Algorithm 3.2 provides substantial gains,
both in the average sum-rate, as well as in the average network conges-
tion, especially for small and medium values of the interference coupling
index. The gains diminish as interference between direct links become
significant. This is intuitively expected since for large SNR values the
BLSLA policy becomes optimal when the interference coupling index

4 A channel access policy where, during each time slot, only one link is activated in each
channel is called BLSLA policy. Finding the optimal BLSLA policy that solves prob-
lem (3.6) is a combinatorial problem with exponential complexity in C. Thus, it quickly
becomes intractable, even for moderate values of C. However, for the case C = 1 the opti-
mal BLSLA policy can be easily found and it consists of activating, during each time slot,
only the link that achieves the maximum weighted rate [84, sec. IV-B].
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Fig. 3.4 Dependence of the average sum-rate and the average network congestion on the
interference coupling index µ; C = 1 and SNR = 2,8,16 dB.

µ approaches 1. It is interesting to note that at small SNR values the
network can still benefit from scheduling multiple links per slot, even
for the case µ = 1. This gain comes from the fact that the channel gains
between interfering links are also affected by fading. Thus, links that
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experience low instantaneous interference levels can be simultaneously
scheduled. Results suggest that, especially for small and medium val-
ues of the interference coupling index, the given method often yields
designs that are far superior to those obtained by BLSLA.

Figure 3.5 shows the dependence of the average sum-rate
[Figure 3.5(a)] and of the average network congestion [Figure 3.5(b)]
on the number of iterations of Algorithm 3.2. We consider the single-
channel case C = 1 with interference coupling index µ = 0.5 and SNR
values 2, 8, and 16 dB. To facilitate faster convergence, Algorithm 3.2
is run without considering the trust region constraints; to do this, we
can simply set the parameter α in Algorithm 3.2 to a very large positive
number, e.g., α = 10100 [see problem (3.18)]. As a reference, we consider
the optimal BLSLA policy. Results show that the incremental benefits
are very significant for the first few iterations and are marginal later.
For example, in the case of SNR = 16 dB, when the numbers of iter-
ations changes from 1 to 3, the improvement in the average sum-rate
is around 18.1%, whereas when it changes from 7 to 9, the improve-
ment is around 0.30%. Therefore, by running Algorithm 3.2 for a few
iterations (e.g., 5 iterations) we can yield performance levels that are
almost indistinguishable from those that would have been obtained by
running Algorithm 3.2 until it terminates (see the stopping criterion in
step 3). This observation can be very useful in practice, since we can
terminate Algorithm 3.2 when the incremental improvements between
consecutive iterations become negligible.

Figure 3.6 shows the dependence of the average sum-rate
[Figure 3.6(a)] and of the average network congestion [Figure 3.6(b)]
on the SNR for Algorithm 3.2 and optimal BLSLA policy. We have
considered the case C = 1 and µ = 0.3. For comparison, we also plot
the results due to a commonly used high SINR approximation [29]
where the achievable rates log(1 + γlc) are approximated by log(γlc).
In particular, the objective function of problem (3.11) is approximated
by

∏
c∈C

∏
l∈L γ−βl

lc . Recall that γlc represents the SINR of link l in
channel c and βl represents the differential backlog of link l. This
results in a convex approximation (i.e., a GP) of problem (3.11).
One should not confuse high SINR with high SNR, since those are
fundamentally different and a high SNR value does not ensure high
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Fig. 3.5 Dependence of the average sum-rate and the average network congestion on the
iteration; µ = 0.5, C = 1, and SNR = 2,8,16 dB.

SINR values in all links. Results show that, when compared with other
methods, RA based on Algorithm 3.2 offers larger average sum-rate
as well as reduced average network congestion. The relative gains
of Algorithm 3.2 reduce, compared to the BLSLA at high SNR, for
example, the relative gain offered by Algorithm 3.2 in the average
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Fig. 3.6 Dependence of the average sum-rate and the average network congestion on the
SNR; C = 1 and µ = 0.3.

sum-rate changes from 40% to 17% [Figure 3.6(a)] and the relative
gain in the average network congestion changes from 23% to 15%
[Figure 3.6(b)] when the SNR value is increased from γ = 16 dB to
γ = 24 dB respectively. This observation is consistent with that at
high SNR it is very likely the optimal RA has a BLSLA structure. As a
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result, at the optimal RA, different links correspond to different SINR
regions, and therefore the high SINR approximation is, of course,
unreasonable and suffers a large penalty, especially at high SNR values.
This poor performance is qualitatively consistent with intuition: the
solution obtained by employing high SINR approximation in RA must
contain all nonzero entries (i.e., nonzero γlc) to drive the approximated
objective

(
i.e.,

∏
c∈C

∏
l∈L γ−βl

lc

)
into a nonzero value, and therefore

never yields a solution to the form of BLSLA.
Figure 3.7 shows the dependence of the average sum-rate [Fig-

ure 3.7(a)] and of the average network congestion [Figure 3.7(b)] on
the number of channels C for Algorithm 3.2. We consider the case
SNR = 16 dB and µ = 0.3 and the initial power allocation P0 for
Algorithm 3.2 is simply chosen such that [P0]l,c = pmax

0 /C. The plots
illustrate that increasing the number of channels will yield better
performance in both the average sum-rate and the average network
congestion (e.g., when the number of channels C changes from 1 to 8,
the improvement in the average sum-rate and the reduction in average
network congestion is around 12% and 12.4%, respectively). We stress
that the benefits are solely achieved by opportunistically exploiting
the available multichannel diversity in the network via Algorithm 3.2
without any supplementary bandwidth or power consumption. More-
over, the incremental benefits are very significant for small C, for
example, when the number of channels C changes from 1 to 2, the
improvement in the average sum-rate is around 6%, whereas when
C changes from 7 to 8, the improvement is around 0.25%. The plots
give much insight into why multichannel designs are important and
beneficial compared to the single-channel counterpart.

3.4.2 NUM for Nonbipartite Networks with Singleuser
Detection at Receivers

First, two small fully connected multihop wireless network setups,
which are identical to the once shown in Figure 2.11 are considered.

We assume an exponential path loss model; the channel power gains
|hijc(t)|2 between distinct nodes are given by

|hijc(t)|2 =
(

dij

d0

)−η

cijc(t), (3.44)
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Fig. 3.7 Dependence of the average sum-rate and the average network congestion on the
number of channels C; SNR = 16 dB and µ = 0.3.

where dij is the distance from the transmitter of link i to the receiver
of link j, d0 is the far field reference distance [64], η is the path loss
exponent, and cijc(t) are exponentially distributed random variables
with unit mean, independent over the time slots, links, and channels.
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The first term of (3.44) represents the path loss factor and the second
term models Rayleigh small-scale fading. The SNR operating point is
defined as

SNR =
pmax
0

N0Wtot

(
D0

d0

)−η

. (3.45)

In the following simulations we set D0/d0 = 10 and η = 4.
Figure 3.8 shows the dependence of the average network layer sum-

rate on the SNR for the considered network setups, where we use C = 1.
As a benchmark, we first consider the branch and bound algorithm pre-
sented in Section 2.2 to optimally solve the RA subproblem. It should
be stressed that the optimality of the algorithm given in Section 2.2
is achieved at the expense of prohibitive computational complexity,
even in the case of very small problem instances. We then consider
the optimal BLSLA policy and Algorithm 3.3 with two initialization
methods: (1) Uniform initialization and (2) BLSLA based initializa-
tion. In the case of uniform initialization the initial power allocation
P0 is chosen such that [P0]l,1 = pmax

0 /(|Otran(l)|). In the case of BLSLA
based initialization the initial power allocation P0 is chosen such that
[P0]l�,1 : [P0]j,1 = P : 1 for all j ∈ L, j �= l� where l� is the index of the
active link obtained based on the optimal BLSLA policy and P � 1 is a
real number. For comparison, we also plot the results for Algorithm 3.2
with uniform and BLSLA initializations.

Results show that the performance of Algorithm 3.3 is very close to
the optimal branch and bound algorithm. Specifically, Algorithm 3.3
with BLSLA initialization is almost indistinguishable from the opti-
mum and at least as good as the optimal BLSLA, for all considered
cases. In contrast, Algorithm 3.3 with uniform initialization exhibits
significant deviations from both the optimal branch and bound algo-
rithm and BLSLA, specially at high SNR values. This behavior is not
surprising since Algorithm 3.3 is a local method for the nonconvex
problem (3.6). Therefore, the initialization point of the algorithm can
influence the resulting solution [22, sec. 1.4.1]. Nevertheless, a care-
fully selected initialization point can improve the performance of Algo-
rithm 3.3 to very close to the optimum. For example, at high SNR
values, the performance of Algorithm 3.3 with BLSLA initialization is
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Fig. 3.8 (a) Dependence of the average network layer sum-rate on SNR for network 1
[Figure 2.11(a)]; (b) Dependence of the average network layer sum-rate on SNR for network 2
[Figure 2.11(b)].

almost identical to the optimum, whereas the performance with uni-
form initialization deviates a bit from the optimum. It is important to
remark that at low and moderate values of SNR, results derived from
Algorithm 3.3 are not significantly affected by the initialization method.
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Results also show that, in the presence of self interferers, Algorithm 3.2
cannot perform well and it can converge to a very bad suboptimal point,
as we pointed out in Section 3.2.4. Therefore, even though the com-
putational complexity of Algorithm 3.3 does not increase more than
polynomially with the problem size, results show that Algorithm 3.3
with a proper initialization performs close to the optimum.

Next, a larger network; a fully connected multihop, multicommodity
wireless network as shown in Figure 3.9 is considered. There are N = 9
nodes and S = 3 commodities. The commodities arrive exogenously
at different nodes in the network as described in Table 3.1. Thus we
have S1 = {2},S2 = {3},S3 = {3},S5 = {2},S7 = {1,3}, and Si = ∅ for
all i ∈ {4,6,8,9}. The nodes are located in a rectangular grid such that
the horizontal and vertical distances between adjacent nodes are D0 m.
The channel power gains, between nodes, are given by (3.44) and the
SNR operating point is given by (3.45). Moreover, we set D0/d0 = 10
and η = 4.

Figure 3.10 shows the dependence of the average sum-rate
[Figure 3.10(a)] and of the average network congestion [Figure 3.10(b)]

Fig. 3.9 Multihop wireless network with N = 9 nodes and S = 3 commodities.

Table 3.1. Network commodities, destination nodes, and
source nodes.

Commodity (s) Destination node (ds) Source nodes

1 2 7
2 3 1,5
3 9 2,3,7
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Fig. 3.10 Dependence of the average sum-rate and the average network congestion on the
SNR; C = 1.

on the SNR for several algorithms, where we use C = 1. First we have
considered the optimal BLSLA policy and Algorithm 3.3 with the two
initialization methods: (1) Uniform initialization and (2) BLSLA based
initialization (the same initializations as used when plotting Figure 3.8).
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For comparison, we also plot the results for the low-complex approaches
where the set of nodes N is first partitioned into two disjoint subsets,
the set of transmitting nodes T and the set of receiving nodes R and
then Algorithm 3.2 and high SINR approximation are used in RA. The
partitioning of the set of nodes N into two disjoint subsets is performed
using two simple methods: (1) random partitioning and (2) greedy par-
titioning based on differential backlogs. In random partitioning, each
node is allocated either to T or to R with equal probabilities. Greedy
partitioning is performed as follows. We start with an empty set of links
L̄ = ∅. At each step, the link l� from the set L \ L̄ which has the largest
differential backlog βl (i.e., l� = argmaxl∈L\L̄ βl) is added to the set L̄.
Then all links outgoing from rec(l�) and all links incoming to tran(l�)
are deleted from L. This procedure continues until there are no links
left in L \ L̄. The sets T and R can be found as T = {tran(l)|l ∈ L̄}
and R = {rec(l)|l ∈ L̄}.

From Figure 3.10 we make the following observations. First, Algo-
rithm 3.3 with BLSLA based initialization yields results better than any
other counterpart. In contrast, Algorithm 3.3 with uniform initializa-
tion shows significant deviations from the BLSLA solution at high SNR,
especially in the terms of average sum-rate [Figure 3.10(a)]. Moreover,
it is important to observe again that at low and moderate values of
SNR, results derived from Algorithm 3.3 are not substantially affected
by the initialization method. These observations are almost the same
as those we saw in Figure 3.8. We also observe that Algorithm 3.3 with
a proper initialization, can significantly outperform Algorithm 3.2 in
conjunction with either random or greedy partitioning. This elaborates
the importance of gradual self-interference gain increments (i.e., step 4
of Algorithm 3.3) in finding a better RA compared to the direct appli-
cation of Algorithm 3.2 with heuristic partitioning. In most cases there
is no advantage to using high SINR approximation. These observa-
tions are very useful in practice since they illustrate that Algorithm 3.3
often works well when initialized with a reasonable starting point (e.g.,
BLSLA based initialization). In addition, we note that even with a very
simple initialization, for example, uniform initialization, Algorithm 3.3
yields substantial gains, especially at small and moderate SNR values
(e.g., 0 dB–20 dB).
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Fig. 3.11 Dependence of the average sum-rate and the average network congestion on the
number of channels C; SNR = 16 dB.

Figure 3.11 shows the dependence of the average sum-rate
[Figure 3.11(a)] and of the average network congestion [Figure 3.11(b)]
on the numbers of channels C for Algorithm 3.3. We have considered
the case SNR = 16 dB and have considered a uniform initialization for
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Algorithm 3.3 where the initial power allocation P0 is chosen such that
[P0]l,c = pmax

0 /(C.|Otran(l)|). For comparison, we also plot the results
for Algorithm 3.2 with random and greedy partitioning of nodes N .
The results are consistent with the previous observations in Figure 3.7,
that is, as the number of channels increases better performance in both
the average sum-rate and the average network congestion is achieved.
These benefits are again obtained by opportunistically exploiting the
available multichannel diversity in the network via the algorithms pre-
sented. Moreover, the results suggest that using Algorithm 3.3 in the
RA can increase the gains very significantly, compared to the RA based
on simple extensions to Algorithm 3.2, which runs with either random
or greedy partitioning of nodes. For example, the relative gains in the
average sum-rate are above 23% [Figure 3.11(a)] and the relative gains
in the average network congestion are above 4.7% [Figure 3.11(b)] over
the range of interest, C = 1 to C = 8.

3.4.3 Effect of Self Interference Cancelation

For the considered network setups in this section, the channel power
gains between nodes are given by (3.44) and the SNR operating point is
given by (3.45). For illustration purposes we consider a single-channel
case (i.e., C = 1). Moreover, we set D0/d0 =

√
10 and η = 4. In all the

simulations in this subsection, Algorithm 3.3 with BLSLA based ini-
tialization is considered.

Inspired by the Gaussian two-way channel [36], we first consider a
simple two node wireless network as shown in Figure 3.12(a). There are
two commodities, the first one arrives at node 1, and is intended for
node 2; the second commodity arrives at node 2, and is intended for

(a) (b)

Fig. 3.12 (a) Two node wireless network with N = 2 nodes, L = 2 links, and S = 2 com-
modities. Different commodities are represented by different color; (b) Tandem wireless
network with N = 4 nodes and S = 2 commodities. Different commodities are represented
by different color.
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node 1. As explained in [36], a Gaussian two-way channel is equivalent
to two independent Gaussian channels where perfect self interference
cancelation is realized (i.e., g = 0). As a result, the sum-capacity of the
symmetric Gaussian two-way channel becomes twice the capacity of
either of the equivalent Gaussian channels. The considered two node
network allows us to illustrate similar behavior in terms of the network
layer average sum-rate.

Figure 3.13 shows the dependence of the average sum-rate
[Figure 3.13(a)] and of the average network congestion [Figure 3.13(b)]
on the self-interference gain g. We consider three link SNR values,
5,16, and 30 dB, which correspond to low, medium, and high data rate
systems respectively. The results show that the average sum-rate with
perfect self interference cancelation (i.e., g = 0) is increased by a factor
of 2 and the average network congestion reduced significantly, as com-
pared to no self interference cancelation (i.e., g = 1); see Figure 3.13(a).
Similar gains are achieved in terms of average network congestion as
well; see Figure 3.13(b). The results also reveal that, even with an
imperfect self interference cancelation technique, we can achieve the
performance limits guaranteed by perfect self interference cancelation.
For example, a decrease of the self-interference gain up to a value
g = 10−4 is enough to double the average sum-rate for link SNR = 5 dB.

Let us now consider a tandem wireless network, as shown in
Figure 3.12(b). There are two commodities, the first one arrives at
node 1, and is intended for node 4; the second commodity arrives at
node 4, and is intended for node 1. Thus we have S1 = {1},S4 = {2},
and Sn = ∅ for all n ∈ {2,3}.

Figure 3.14 shows the dependence of the average sum-rate and of
the average network congestion on the self-interference gain g for SNR
values 5,16, and 30 dB. The behavior is very similar to the case of Fig-
ure 3.13. For example, in the case SNR = 5 dB, the results show that by
decreasing the self-interference gain from g = 10−1 to g = 10−4 the aver-
age sum-rate is increased by a factor of around 1.82 [see Figure 3.14(a)]
and the average network congestion has reduced significantly as well
[see Figure 3.14(b)].

Let us next consider a fully connected multihop, multicommodity
wireless network as shown in Figure 3.9. Figure 3.15 shows the
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Fig. 3.13 Dependence of the average sum-rate and of the average network congestion on
the self-interference gain g in the case of the two node wireless network.

dependence of the average sum-rate and of the average network con-
gestion on the self-interference gain g for SNR values 5,16, and 30 dB.
Let us first consider the case of a low SNR value, i.e., SNR = 5 dB. The
results show that by decreasing the self-interference gain from g = 10−1
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Fig. 3.14 Dependence of the average sum-rate and of the average network congestion on
the self-interference gain g in the case of the four node tandem wireless network.

to g = 10−4 the average sum-rate is increased by a factor of about
1.22 [see Figure 3.15(a)]. From Figure 3.15(b), we see reductions in the
average network congestion as well. The network performance remains
the same as in the case of perfect self interference cancelation for all
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Fig. 3.15 Dependence of the average sum-rate and of the average network congestion on
the self-interference gain g in the case of the nine node multihop wireless network.

values of g < 10−4. In this region the network performance is limited
by the interference between distinct nodes, and no further improve-
ment is possible by only increasing the accuracy of the self interference
cancelation. On the other hand, no gain in the network performance is
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achieved by using an imperfect self interference cancelation technique
which leads to g > 10−1. In this region the RA solution provided by
Algorithm 3.3 is always admissible (i.e., no node transmits and receives
simultaneously).

In each considered network setup (i.e., Figures 3.12(a), 3.12(b),
and 3.9) a similar behavior of the results holds for medium and high
SNR values as well (i.e., SNR = 16 and 30 dB). Moreover, as we change
SNR from low values to high values, the accuracy level required by
the self interference cancelation becomes more stringent. For example,
in the case of the fully connected multihop, multicommodity wireless
network in figure 3.9, if the SNR operating point is changed from
5 to 30 dB, then the accuracy level required by the self interference
cancelation should be improved from g = 10−1 to g = 10−3 to start
gaining in network layer performances. This is intuitively expected
since, the larger the SNR operating point, the larger the power levels
of the nodes, and therefore the higher the accuracy level required by
the self interference cancelation techniques to remove the increased
transmit power at nodes.

Note that the relative gains due to self interference cancelation
in the considered fully connected multihop network [Figure 3.9] are
smaller compared to the relative gains experienced in the tandem wire-
less network [Figure 3.12(b)]. This behavior is intuitively explained
by looking in to the network topology. When the self interference is
significantly canceled, the resultant interference at the receiver node
of any link in the case of the tandem multihop wireless network in
Figure 3.12(b) is smaller on average to that of the multihop wireless
network in Figure 3.9; note that any receiver node of the fully con-
nected multihop network has many adjacent interfering nodes. Thus,
with zero self interference, links in the tandem network can operate at
larger rates, and therefore yields larger relative gains.

Finally, we show by an example, how to apply rate-
equivalence (3.28) to find the required value of self-interference
gain g in order to preserve network layer performances if the distance
between nodes is scaled. Let us construct a new network by scaling the
distances between the nodes of the original network (see Figure 3.9) by
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a factor of θ =
√

10 and the maximum node transmission power pmax
0

by a factor of θη = 100 (note that η = 4). We refer to this new network
as the scaled network. To illustrate the idea let us consider the case
SNR = 5 dB in Figure 3.10 and focus to the point g = 10−4 for which
the average sum-rate is 3.5 [bits/slot]. The value of g at this point can
be considered as the minimum required accuracy level of self inter-
ference cancelation to achieve an average sum-rate of 3.5 bits/slot in
the original network. Now we ask what is the required self-interference
gain gnew that would result in the same average sum-rate value (i.e.,
3.5 bits/slot) in the scaled network. From (3.28) it follows that the
required accuracy level of self interference cancelation should be
improved at least to a level of gnew = g/θη = 10−4/100 = 10−6.

3.4.4 NUM for Networks with Multiuser Detection at
Receivers

The network in Figure 3.9 is considered. The assumptions and the
simulation parameters are exactly the same as in Section 3.4.2.

Figure 3.16 shows the dependence of the average sum-rate
[Figure 3.16(a)] and of the average network congestion [Figure 3.16(b)]
on the SNR for RA where only one node is allowed to transmit in each
slot and receivers perform multiuser detection. For illustration pur-
poses we consider the single-channel case (i.e., C = 1). We also show
the results for a nonfading case [i.e., by having cijc(t) = 1 in (3.24)]
for comparison. Here we can make several observations. Fading can
significantly improve the overall performance in average sum-rate and
average network congestion. This observation has an analogy with mul-
tiuser diversity in downlink fading channels [124, sec. 6.6]. Intuition
suggests that when there are many links which fade independently, at
any time slot there is a high probability that the resulting rate and
power allocation yields a better schedule (see [43, sec. 4.7]) compared
to the nonfading case. There are significant advantages to having mul-
tiuser detection, especially for high SNR values. At low SNR, gains are
marginal. Thus, multiuser detectors have a practical advantage over
singleuser detectors, especially in a high SINR regime. For example,



108 Low Complexity Algorithms

0 5 10 15 20
0

1

2

3

4

5

6

SNR [dB]

 A
ve

ra
ge

 n
et

w
or

k 
la

ye
r 

su
m

−
ra

te
 [b

its
/s

lo
t]

multiuser receivers (with fading)
singleuser receivers (with fading)
multiuser receivers (with no fading)
singleuser receivers (with no fading)

0 5 10 15 20

10
4

SNR [dB]

A
ve

ra
ge

 n
et

w
or

k 
co

ng
es

tio
n 

[b
its

] 

singleuser receivers (with no fading)
multiuser receivers (with no fading)
singleuser receivers (with fading)
multiuser receivers (with fading)

Fig. 3.16 Dependence of the average sum-rate and the average network congestion on the
SNR; C = 1.

in a fading environment, at SNR = 24 dB we obtain around a 7.5%
increase in the average sum-rate and a 5% decrease in the average net-
work congestion. In a nonfading environment multiuser detectors offer
around a 16% increase in the average sum-rate and a 13.5% decrease
in the average network congestion.
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3.5 Summary and Discussion

We considered the power and rate control problem in a wireless net-
work in conjunction with the next-hop routing/scheduling and the flow
control problem. Thus, although the focus lies on the so-called resource
allocation problem that is confined to the physical/medium access con-
trol layers, its formulation captures interactions with the higher-layers
in a manner similar to the one employed in [82]. The result is a cross
layer formulation. The problem, unfortunately, is NP-hard, and there-
fore there are no polynomial time algorithms to solve it. Our presen-
tation has been to consider first a general access operation, but with
a relatively simple form of receiver structure (bank of match filters),
and then to limit the access operation to a single node at a time (either
transmitting or receiving) but allowing for increased multiuser detector
complexity at the receiver.

In the first case, we presented a new optimization methodology
based on homotopy methods and complementary geometric program-
ming solution methods. Numerical results showed that the presented
algorithms perform close to exponentially complex optimal solution
methods. In addition, they are in fact fast and are capable of handling
large-scale problems.

The considered method was also used to evaluate the gains achiev-
able at the network layer when the network nodes employ self
interference cancelation techniques with different degrees of accuracy.
Numerical results showed that the self interference cancelation requires
a certain level of accuracy to obtain quantifiable gains at the network
layer. The gains saturate after a certain cancelation accuracy. The level
of accuracy required by the self interference cancelation techniques
depends on many factors, such as the distances between the network
nodes and the operating power levels of the network nodes. For the
considered network setups, the numerical results showed that a self
interference reduction in the range 20−60 dB leads to significant gains
at the network layer. We emphasize that this level of accuracy is prac-
tically achievable, for example, the recent proposals [32, 100, 101, 102]
provide cost effective mechanisms for an up to 55 dB reduction in the
self-interference coefficient. These observations are indeed important in
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the context of certain future cellular systems. For example, as the trend
in cellular systems is to increase the data rates of users by introducing
very small cells (e.g., femtocells), the difference between transmitted
and received power might not be very large. Therefore, self interfer-
ence cancelation strategies can be of great benefit to such systems.
Numerical results further showed that the topology of the network has
a substantial influence on performance gains. For example, in the case
of tandem multihop wireless networks, the benefits due to self inter-
ference cancelation are more pronounced when compared to those of a
multihop network, in which the nodes are located in a square grid.

In the second case, we obtained a complete solution and illustrate
numerically the performance gain due to multiuser detector capability.
The main benefit here is the simplicity of the solution methods. As a
result, these simple access protocols can be potentially useful in prac-
tical applications with more advanced communication systems.



4
A Distributed Approach

This section present a distributed method for WSRMax problem in
a multicell MISO downlink system. Unlike the WMMSE algorithm1

proposed in [110], the method presented in this section does not rely
on user terminals’ assistance such as estimations, computations, and
feedback information to base stations over the air interface. Only base
station to base station (BS) synchronized communication is required,
where all the signalling overhead is exchanged through reliable back-
haul links (e.g., fiber and microwave links). All the necessary com-
putation can be carried out asynchronously at each BS without any
involvement of the user terminals. Thus, the algorithm presented in
this section is well suited for systems where the user terminal sup-
port is not allowed or not desirable. The algorithm is based on primal
decomposition methods and subgradient methods [17, 19]. Specifically,
primal decomposition techniques [17] are applied to split the problem
into a master problem and many subproblems. In the case of master
problem, a sequential convex approximation strategy [18] together with
a subgradient method [19] that relies on BS coordinations is adopted.

1 We use the same acronym WMMSE to refer to this algorithm as suggested in [110].
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In the case of subproblems, an existing algorithm originally proposed
in [34, sec. 4.3], which is based on second-order cone programming
(SOCP) [73] and geometric programming (or GP) [20] is adopted. The
subproblems (or BS optimizations) can be carried out in a fully asyn-
chronous manner. With appropriate choice of stopping criteria, the
monotonic convergence of the algorithm is guaranteed. Practical stop-
ping criteria, which are favorable for implementing the algorithm, but
at the expense of a sacrificing the monotone convergence are also pre-
sented. Numerical results are provided to compare this method with
WMMSE algorithm [110], the GP/SOCP based algorithm proposed
in [34, sec. 4.3], and the distributed algorithm proposed in [10, 11].
The behavior of the algorithm under different degrees of BS coordina-
tion is also discussed and numerically illustrated.

4.1 System Model and Problem Formulation

A multicell MISO downlink system, with N BSs each equipped with T

transmit antennas is considered. The set of all BSs is denoted by N and
we label them with the integer values n = 1, . . . ,N . The transmission
region of each BS is modeled as a disc with radius RBS centered at
the location of the BS. Single data stream is transmitted for each user.
We denote the set of all data streams in the system by L and label
them with the integer values l = 1, . . . ,L. The transmitter node (i.e.,
the BS) of lth data stream is denoted by tran(l) and the receiver node
of lth data stream is denoted by rec(l). We have L = ∪n∈N L(n), where
L(n) denotes the set of data streams transmitted by nth BS. Note that
the users of the data streams transmitted by each BS are necessarily
located inside the transmission region of the BS (see Figure 4.1).

The antenna signal vector transmitted by nth BS is given by

xn =
∑

l∈L(n)
√

pldlvl, (4.1)

where pl ∈ IR+ denotes the power, dl ∈ C represents the information
symbol, and vl ∈ CT is the beamformer, all associated to lth data
stream. We assume that dl and vl are normalized such that E|dl|2 = 1
and ‖vl‖2 = 1. Moreover, we assume independent data streams, i.e.,
E{dld

∗
j} = 0 for all l, j ∈ L, where l �= j.
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The signal received at rec(l) is given by

yl = hH
ll

√
pldlvl +

∑
j∈L(tran(l)),j �=l

hH
jl
√

pjdjvj +
∑

j∈L\L(tran(l))
hH

jl
√

pjdjvj + zl

(4.2)

= hH
ll

√
pldlvl+

∑
j∈L(tran(l)),j �=l

hH
jl
√

pjdjvj +
∑

i∈N\{tran(l)}

∑
j∈L(i)

hH
jl
√

pjdjvj+zl,

(4.3)

where hH
jl ∈ C1×T is the channel matrix between tran(j) and rec(l), and

zl is circular symmetric complex Gaussian noise with variance σ2
l . Note

that the second term in (4.3) represents the intra-cell interference. The
third term represents the out-of-cell interference. The received SINR of
lth data stream is given by

γl =
pl|hH

llvl|2

σ2
l +

∑
j∈L(tran(l)),j �=l

pj |hH
llvj |2 +

∑
i∈N\{tran(l)}

zil

, (4.4)

where zil =
∑

j∈L(i) pj |hH
jlvj |2 represents the out-of-cell interference

power from ith BS to rec(l), which is typically known as interference
temperature [152].

The out-of-cell interference term in (4.4) (i.e.,
∑

i∈N\{tran(l)} zil

)
pre-

vents resource allocation (RA) on an intra-cell basis and demands cen-
tralized RA methods. To facilitate potential distributed algorithms for
RA, we make the following assumption: transmissions from ith BS do
interfere the lth data stream transmitted by BS n �= i, if the distance
between ith BS and rec(l) is smaller than a threshold Rint.2 The disc
with radius Rint centered at the location of any BS is referred to as
the interference region of the BS (see Figure 4.1). Thus, if ith BS is
located at a distance larger than Rint to rec(l), then the associated zil

components are set to zero.3 Based on the assumption above, we can

2 Similar assumptions are made in [44] in the context of arbitrary wireless networks.
3 The value of Rint is chosen such that the power of the interference term is below the noise
level and this commonly used approximation is made to avoid unnecessary coordinations
between distant BSs. The effect of nonzero zil terms can be accurately modeled by chang-
ing the statistical characteristics of noise zl at rec(l). However, those issues are extraneous
to the main focus of the section.
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Fig. 4.1 Multicell network, N = {1,2,3}, L = {1, . . . ,12}, L(1) = {1, . . . ,4}, L(2) =
{5, . . . ,8}, L(3) = {9, . . . ,12}. The area inside solid-lined circles around BS 1,2, and 3 rep-
resent the associated transmission regions of each BS and the area inside dash-lined circles
around BSs represent the associated interference regions of each BS.

express γl as

γl =
pl|hH

llvl|2

σ2
l +

∑
j∈L(tran(l)),j �=l

pj |hH
llvj |2 +

∑
i∈Nint(l)

zil

, (4.5)

where Nint(l) ⊆ N \ {tran(l)} is the set of out-of-cell interfering BSs
that are located at a distance less than Rint to rec(l). For example,
in Figure 4.1 we have Nint(9) = {1}, Nint(12) = {2}, Nint(6) = {1,3},
and Nint(l) = ∅ for all l ∈ L \ {6,9,12}. Finally, it is useful to define
the set Lint of data streams that are subject to out-of-cell interference,
i.e., Lint = {l | l ∈ L,Nint(l) �= ∅}. For example, in Figure 4.1 we have
Lint = {6,9,12}.

Let βl be an arbitrary positive weight associated with lth data
stream. We consider the case where all receivers are using single-user
detection (i.e., a receiver decodes its intended signal by treating all
other interfering signals as noise). Assuming that the power allocation
is subject to a maximum power constraint

∑
l∈L(n) pl||vl||2 ≤ pmax

n for
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each BS n ∈ N , the problem of WSRMax can be expressed as

maximize
∑

n∈N

∑
l∈L(n)

βl ln


1 +

pl|hH
llvl|2

σ2
l +

∑
j∈L(n),j �=l

pj |hH
llvj |2 +

∑
i∈Nint(l)

zil




subject to zil =
∑

j∈L(i) pj |hH
jlvj |2, l ∈ Lint, i ∈ Nint(l)∑

l∈L(n) pl||vl||22 ≤ pmax
n , n ∈ N

||vl||2 = 1, pl ≥ 0, l ∈ L,
(4.6)

where the variables are (pl,vl)l∈L and (zil)l∈Lint,i∈Nint(l) and ln(·) is the
natural logarithm.

4.2 Problem Decomposition, Master Problem,
and Subproblems

In this section, we present the main building blocks required to derive
the distributed algorithm for problem (4.6), namely, the master prob-
lem and the subproblems. To do this, we first break problem (4.6) into a
master problem and N subproblems (one for each BS), by treating out-
of-cell interference powers {zil}l∈Lint,i∈Nint(l) as complicating variables.
In the case of the master problem, a sequential convex approximation
strategy to circumvent the difficulties due to the inherent nonconvexity
of problem (4.6) is presented. In the case of the subproblem, we adopt
the method originally proposed in [34, sec. 4.3], which is essentially
based on SOCP and GP techniques.

4.2.1 Primal Decomposition

We start by first reformulating problem (4.6) as

minimize −
∑

n∈N

∑
l∈L(n)

βl ln


1+

pl|hH
llvl|2

σ2
l +

∑
j∈L(n),j �=l

pj |hH
llvj |2 +

∑
i∈Nint(l)

zil




subject to zil ≥
∑

j∈L(i) pj |hH
jlvj |2, l ∈ Lint, i ∈ Nint(l)∑

l∈L(n) pl||vl||22 ≤ pmax
n , n ∈ N

||vl||2 = 1, pl ≥ 0, l ∈ L,
(4.7)
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where the variables are (pl,vl)l∈L and (zil)l∈Lint,i∈Nint(l). Problem (4.6)
and (4.7) are equivalent, since (1) function ln(·) is increasing and (2) the
objective function of problem (4.7) is increasing in zil, and therefore
the first set of constraints holds with equality at the optimal point.

Let Lint(n) denote the set of links for which base station n acts as
an out-of-cell interferer. In particular, Lint(n) = {l|l ∈ Lint,n ∈ Nint(l)}.
By noting that the sets {(l, i)|l ∈ Lint, i ∈ Nint(l)} and {(l,n)|n ∈ N , l ∈
Lint(n)} are identical, we can rewrite the first inequality constraint of
problem (4.7) as

znl ≥
∑

j∈L(n) pj |hH
jlvj |2, n ∈ N , l ∈ Lint(n). (4.8)

Now we treat znl as complicating variables and use primal decom-
position techniques to split problem (4.7) into a master problem and N

subproblems (one for each BS). The master problem updates the com-
plicating variables (znl)n∈N ,l∈Lint(n) to maximize the overall weighed
sum rate [i.e., to maximize the objective of original problem (4.6)].
To express the master problem compactly, let us denote the vector
(znl)n∈N ,l∈Lint(n) of out-of-cell interference components by z. The mas-
ter problem is given by

minimize
∑

n∈N fn (z)
subject to z � 0,

(4.9)

where the variable is z and fn(z) is the optimal value of the nth sub-
problem given by

minimize −
∑

l∈L(n)
βl ln


1+

pl|hH
llvl|2

σ2
l +

∑
j∈L(n),j �=l

pj |hH
llvj |2 +

∑
i∈Nint(l)

zil




subject to znl ≥
∑

j∈L(n) pj |hH
jlvj |2, l ∈ Lint(n)∑

l∈L(n) pl||vl||22 ≤ pmax
n

||vl||2 = 1, pl ≥ 0, l ∈ L(n),

(4.10)

with variables (pl,vl)l∈L(n). To simplify the presentation, it is
also useful to introduce the following equivalent reformulation of
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problem (4.10):

minimize −
∑

l∈L(n) βl ln(1 + γl)

subject to γl ≤ pl|hH
llvl|2

σ2
l +

∑
j∈L(n),j �=l

pj |hH
llvj |2 +

∑
i∈Nint(l)

zil
, l ∈ L(n)

znl ≥
∑

j∈L(n) pj |hH
jlvj |2, l ∈ Lint(n)∑

l∈L(n) pl||vl||22 ≤ pmax
n

||vl||2 = 1, pl ≥ 0, l ∈ L(n),
(4.11)

where the variable is (pl,γl,vl)l∈L(n). The equivalence of problem (4.10)
and (4.11) follows since the objective function of problem (4.11) is
decreasing in γl, and therefore the first set of constraints holds with
equality at the optimal point.

4.2.2 Master Problem

Computing the objective value of the master problem (4.9) requires the
solution of each subproblem (4.10), which is NP-hard [75]. Moreover,
even if we would be able to solve the subproblems, we cannot apply
standard subgradient methods to solve the master problem (4.9) since
it is not convex. To address these difficulties, we present a method that
solves successive approximated variants of the original master prob-
lem (4.9). Each approximated problem can be transformed into a con-
vex problem by a change of variables. To solve the resulting convex
problems, we use a subgradient method. It is important to note that,
the approximations and variable transformations mentioned above are
such that we can always rely on subproblems (4.10) (i.e., BS optimiza-
tions) to compute a subgradient. Details of the subproblem solution
method are deferred to Section 4.2.3.

We start by approximating the objective function of problem (4.9)
with an upper bound function, which in turn is used to obtain the
approximation of the master problem. We refer to the resulting approx-
imation as the approximated master problem. Next, we derive an equiv-
alent convex form of the approximated master problem, followed by the
subgradient methods to solve it.
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4.2.2.1 Derivation of an Upper Bound Function for the
Master Problem

The key idea is as follows: we first carry out partial minimization of
problem (4.11) to yield an initial upper bound on fn (z).4 Then the
initial upper bound is further modified by using a well known monomial
approximation, so that convex optimization techniques can be readily
employed.

To simplify the presentation, let H denote the feasible set of
problem (4.11). For some fixed normalized v̌l, let Ȟ((v̌l)l∈L(n)) ={
(pl,γl)l∈L(n)

∣∣(pl,γl, v̌l)l∈L(n) ∈ H
}
. Now we can write the following

relations:

fn (z) = inf
(pl,γl,vl)l∈L(n)∈H

−
∑

l∈L(n) βl ln(1 + γl) (4.12)

≤ inf
(pl,γl)l∈L(n)∈Ȟ((v̌l)l∈L(n))

−
∑

l∈L(n) βl ln(1 + γl) (4.13)

= inf
(pl,γl)l∈L(n)∈Ȟ((v̌l)l∈L(n))

ln
(∏

l∈L(n)(1 + γl)−βl
)

(4.14)

≤ inf
(pl,γl)l∈L(n)∈Ȟ((v̌l)l∈L(n))

ln

( ∏
l∈L(n)

(
γ̌

− γ̌l
1+γ̌l

l (1 + γ̌l) γl

γ̌l
1+γ̌l

)−βl
)

(4.15)

= ln

(
inf

(pl,γl)l∈L(n)∈Ȟ((v̌l)l∈L(n))

∏
l∈L(n)

(
γ̌

− γ̌l
1+γ̌l

l (1 + γ̌l) γl

γ̌l
1+γ̌l

)−βl

︸ ︷︷ ︸
f̌n(z)

)

(4.16)

= ln
(
f̌n (z)

)
. (4.17)

The first equality follows from the definition of fn(z) and from the
equivalence of problems (4.10) and (4.11), (4.13) follows from partial
minimization of the function over (pl,γl)l∈L(n) while (vl)l∈L(n) being
fixed such that (vl = v̌l)l∈L(n), (4.14) follows trivially from the proper-
ties of ln(·) function, (4.15) follows from the monomial lower bound on

4 The minimum value of a function with respect to the all set of variables is always better
than the minimum value of the function with respect to a subset of variables while others
being fixed.
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1 + γl, i.e., 1 + γl ≥ γ̌
− γ̌l

1+γ̌l
l (1 + γ̌l)γl

γ̌l
1+γ̌l , where γ̌l is an arbitrary posi-

tive number5[134, lem. 1], (4.16) follows from the monotonic properties
of ln(·), and f̌n (z) is the optimal value of the following problem6:

minimize
∏

l∈L(n)
(
γ̌

−γ̌l/(1+γ̌l)
l (1 + γ̌l)

)−βl ∏
l∈L(n) γl

−βl
γ̌l

1+γ̌l

subject to γl ≤ pl|hH
ll v̌l|2

σ2
l +

∑
j∈L(n),j �=l

pj |hH
ll v̌j |2+

∑
i∈Nint(l)

zil
, l ∈ L(n) \ Llocal(n)

γl ≤ pl|hH
ll v̌l|2

σ2
l +

∑
j∈L(n),j �=l

pj |hH
ll v̌j |2

, l ∈ Llocal(n)

znl ≥
∑

j∈L(n) pj |hH
jlv̌j |2, l ∈ Lint(n)∑

l∈L(n) pl ≤ pmax
n

pl ≥ 0, l ∈ L(n),
(4.18)

where the variable is (pl,γl)l∈L(n) and Llocal(n) is the subset of data
streams transmitted by nth BS, which are not interfered by any out-of-
cell interference, i.e., Llocal(n) = {l | l ∈ L(n),Nint(l) = ∅}. Note that,
the inequality (4.13) holds with equality if the optimal normalized
beamforming directions of problem (4.11) is identical to (v̌l)l∈L(n) and
the inequality (4.15) holds with equality if (γl = γ̌l)l∈L(n).

From (4.12)–(4.17) we have fn (z) ≤ ln
(
f̌n (z)

)
, which holds for all

n ∈ N . Thus we have∑
n∈N fn (z) ≤

∑
n∈N ln

(
f̌n (z)

)
, (4.19)

which gives an upper bound on the objective function of (4.9). The
approximated master problem is obtained by replacing the objective
function of the original master problem (4.9) by the upper bound func-
tion given in (4.19), i.e.,

minimize
∑

n∈N ln
(
f̌n (z)

)
subject to z � 0,

(4.20)

5 This bound is typically used in conjunction with an iterative method, which uses local
approximations. The parameter γ̌l is usually the point at which the approximation is
made.

6 Here we have explicitly characterized the constraint (pl,γl)l∈L(n) ∈ Ȟ((v̌l)l∈L(n)).
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where the variables is z. Though Problem (4.20) is not convex in its
current form, it can be equivalently reformulated into a convex problem
via a variable transformation as shown in the next section.

4.2.2.2 Convex Reformulation of the Approximated
Master Problem

Let us first transform problem (4.20) by the logarithmic change of
variables z̄il = lnzil (so zil = ez̄il). This yields the problem

minimize
∑

n∈N ln
(
f̌n

(
ez̄

))
, (4.21)

where the variable is z̄ = (z̄il)l∈Lint,i∈Nint(l). Here we use the nota-
tion ey, where y is a vector, to mean componentwise exponentiation:
[ey]k = eyk .

Next we show that problem (4.21) is convex. To see this, we
capitalize on perturbation and sensitivity analysis results for convex
optimization problems [22, 42, 89].7 In particular, we apply pertur-
bation results to the convex form of GP (4.18). To do this, let us
first perform the logarithmic change of variables p̄l = lnpl, γ̄l = lnγl,
logarithmic change of parameters z̄il = lnzil, and a logarithmic trans-
formation of the objective and constraint functions of GP (4.18) to
get its convex form:

minimize
∑

l∈L(n)
βlγ̌l

1 + γ̌l
γ̄l + ln

(∏
l∈L(n)

(
γ̌

− γ̌l
1+γ̌l

l (1 + γ̌l)
)−βl

)

subject to ln
(

g−1
ll eγ̄l−p̄l

(
σ2

l +
∑

j∈L(n),j �=l

gjle
p̄j +

∑
i∈Nint(l)

ez̄il

))
≤ 0,

l ∈ L(n) \ Llocal(n)

ln
(

g−1
ll eγ̄l−p̄l

(
σ2

l +
∑

j∈L(n),j �=l gjle
p̄j

))
≤ 0, l ∈ Llocal(n)

ln
(∑

j∈L(n) gjle
−z̄nlep̄j

)
≤ 0, l ∈ Lint(n)

ln
(∑

l∈L(n)(p
max
n )−1ep̄l

)
≤ 0,

(4.22)

7 Basic sensitivity results are documented in [22, sec. 5.6] and more general results can be
found in [42, chap. 2] and [89, sec. 5.6].
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where the variable is (p̄l, γ̄l)l∈L(n) and gjl = |hH
jlv̌j |2. Problem (4.22)

possesses the following key features:

1. Since the optimal value of GP (4.18) is f̌n (z), the optimal
value of problem (4.22) is given by ln(f̌n (ez̄)).

2. Objective function of problem (4.22) is jointly convex in
(p̄l, γ̄l)l∈L(n) and z̄.

3. The constraint functions of problem (4.22) become jointly
convex in (p̄l, γ̄l)l∈L(n) and z̄.

By using the perturbation and sensitivity result given in [89, lem. 1] it
follows that ln

(
f̌n

(
ez̄

))
is convex in z̄. Consequently, problem (4.21) is

convex.

4.2.2.3 Subgradient Method to Solve the Convex Form of
the Approximated Master Problem

In this subsection, we derive the subgradient method for solving prob-
lem (4.21). By invoking [89, lem. 1], we can compute a subgradi-
ent of

∑
n∈N ln

(
f̌n

(
ez̄

))
at z̄. Specifically, a subgradient is given by∑

n∈N (dn
il(z̄))l∈Lint,i∈Nint(l) and

dn
il(z̄) =




λ�
l (e

z̄)ez̄il

σ2
l +

∑
j∈L(n),j �=l

gjle
p̄�

j (ez̄) +
∑

m∈Nint(l)
ez̄ml

l ∈ L(n) \ Llocal(n),

i ∈ Nint(l)

−µ�
l (e

z̄) l ∈ Lint(n), i = n

0 otherwise,
(4.23)

where (λ�
l (e

z̄))l∈L(n)\Llocal(n) denotes the optimal Lagrange multipli-
ers associated with the first set of constraints of problem (4.22),
(µ�

l (e
z̄))l∈Lint(n) denotes the optimal Lagrange multipliers associated

with the third set of constraints of (4.22), and (p̄�
l (e

z̄), γ̄�
l (ez̄))l∈L(n)

denotes the optimal solution of problem (4.22). Each BS n can compute
(dn

il(z̄))l∈Lint,i∈Nint(l) independently, which in turn are used to construct
the subgradient of

∑
n∈N ln

(
f̌n

(
ez̄

))
at z̄ via BS–BS coordination. Note

that the zero in Equation (4.23) are used to simplify the presenta-
tion, and these zeros need not be exchanged between BSs during their
coordinations.
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The subgradient method for problem (4.21) is given by [19]

z̄
(j+1)
il = z̄

(j)
il − θ(j)∑

n∈N dn
il(z̄

(j)), l ∈ Lint, i ∈ Nint(l) (4.24)

= z̄
(j)
il − θ(j)

(
di

il(z̄
(j)) + d

tran(l)
il (z̄(j))

)
, l ∈ Lint, i ∈ Nint(l).

(4.25)

where j is the current iteration index of the subgradient method and
θ(j) ∈ IR+ is a step size.8 The second equality (4.25) follows from (4.23)
after ignoring the zero elements. This suggest that, for computing the
(i, l)th component of the subgradient, only two BSs [i.e., i and tran(l)]
need to coordinate.

4.2.3 Subproblem: BS Optimization

Note that subproblem (4.11) is NP-hard [75], and therefore any solution
method is reliant on approximations. The subproblem solution method
presented in this section is essentially based on Algorithm 4.3.1 origi-
nally proposed in [34, sec. 4.3]. Here we briefly discuss the key idea of
this algorithm for the sake of completeness.

The key idea of the algorithm is to carry out the optimization with
respect to different subsets of variables by considering others fixed [34,
sec. 4.3]. First, by fixing the beamformers (vl)l∈L(n), a GP of the
form (4.18) is solved which locally approximates the original subprob-
lem (4.11). This is a decent step. Then, for fixed (γl)l∈L(n) values, a
maximum power reduction factor t� is found such that the SINR val-
ues are preserved. The maximum power reduction factor is given by
the optimum t� that solves the following problem:

minimize t

subject to γl ≤ pl|hH
llvl|2

σ2
l +

∑
j∈L(n),j �=l

pj |hH
llvj |2 +

∑
i∈Nint(l)

zil
, l ∈ L(n)

t2znl ≥
∑

j∈L(n) pj |hH
jlvj |2, l ∈ Lint(n)∑

l∈L(n) pl||vl||22 ≤ t2pmax
n

||vl||2 = 1, pl ≥ 0, l ∈ L(n),

(4.26)

8 We chose diminishing nonsummable step lengths (i.e., θ(j) = 1/j), that guarantees the
asymptotic convergence of the subgradient method [19].
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where the variables are t and (pl,vl)l∈L(n).9 Note that, we always
have t� ≤ 1, and, hence, the saved power can be used to decrease
the objective of original problem (4.11) by (1) setting (vl = v�

l )l∈L(n)
and (pl = p�

l /t�)l∈L(n) and (2) increasing (γl)l∈L(n) until the SINR con-
straints become tight. The result is again a descent step. The discus-
sion above leads to the following descent algorithm which can be asyn-
chronously solved by nth BS:

Algorithm 4.1 Finding a suboptimal solution for BS optimization
problem (4.11) [34, sec. 4.3]

1. Initialization; given a feasible beamformer configuration(
v(0)

l

)
l∈L(n), a feasible power allocation

(
p
(0)
l

)
l∈L(n), and z.

Set iteration index i = 0.
2. By setting pl = p

(i)
l and vl = v(i)

l , compute γ̌l for all l ∈ L(n)
from (4.5).

3. By setting v̌l = v(i)
l for all l ∈ L(n), solve problem (4.18).

Denote the solution by (p�
l ,γ

�
l )l∈L(n) and the optimal

Lagrange multipliers by (λ�
l )l∈L(n)\Llocal(n) and (µ�

l )l∈Lint(n).
4. Stopping criterion; if the stopping criterion is satisfied STOP

by returning dn
il(·) by using (4.23) and the suboptimal

solution (p̌l, γ̌l, v̌l)l∈L(n), where p̌l = p�
l . Otherwise, update

achieved SINR values γtmp
l = γ�

l for all l ∈ L(n).
5. By setting γl = γtmp

l for all l ∈ L(n), solve problem (4.26).
Denote the solution by t� and (p�

l ,v
�
l )l∈L(n). Update p

(i+1)
l =

p�
l /(t�)2 and v(i+1)

l = v�
l for all l ∈ L(n). Set i = i + 1 and go

to step 2.

The block diagram shown in Figure 4.2(a) summarizes Algorithm 4.1.
It is a descent algorithm and we refer the reader to [34] for more details.

Note that, step 3 of Algorithm 4.1 solves problem (4.18) for some
normalized v̌l. This is the problem that should be solved to find
dn

il(z̄) given in (4.23), which is then used to compute a subgradi-
ent

∑
n∈N (dn

il(v̄))l∈Lint,i∈Nint(l) for the objective of the approximated

9 It is well known that problem (4.26) is equivalently formulated as a SOCP (see [34, sec. 4.3])
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Fig. 4.2 Block diagrams of the algorithms.

master problem (4.21). The observations above suggest that the local
BS optimizations (i.e., Algorithm 4.1) can be employed to compute the
subgradient in a distributed fashion. Specifically, the dual variables and
the optimal solutions required to compute the subgradient elements
dn

il(z̄) are obtained as a by-product of the BS optimization process.
These are, of course, desirable and favorable features that are exploited
in the distributed WSRMax algorithm discussed in Section 4.3.

4.3 Distributed Algorithm

In this section we blend (1) the subgradient method, which solves an
approximation of the master problem (4.9) (see Section 4.2.2) and
(2) Algorithm 4.1, which finds a suboptimal solution to subprob-
lem (4.10) (see Section 4.2.3). The result is an algorithm, which solves
a series of approximated variants of the original master problem (4.9)
via a subgradient method. Subgradients for the subgradient method are
computed by coordinating the subproblems or the BS optimizations.

The main skeleton of the distributed algorithm is depicted in
Figure 4.2(b), which is a smooth integration of the subgradient
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method (4.24) and Algorithm 4.1 in an iterative manner. The detailed
algorithm is as follows (see Figure 4.2(b) for a concise block diagram).

Algorithm 4.2 Distributed algorithm for WSRMax
1. Initialization; given the globally agreed initial out-of-

cell interference z, a feasible beamformer configuration(
v(0)

l

)
l∈L(n), and a feasible power allocation

(
p
(0)
l

)
l∈L(n). Set

subgradient iteration index j = 0.
2. for n = 1 to N

— perform Algorithm 4.1 and return the subgradient
contribution (dn

il(z̄))l∈Lint,i∈Nint(l) and the suboptimal
solution (p̌l, γ̌l, v̌l)l∈L(n).

3. Set (z̄(j)
il = lnzil)l∈Lint,i∈Nint(l) and perform (4.24) to yield

(z̄(j+1)
il )l∈Lint,i∈Nint(l) and set z =

(
ez̄

(j+1)
il

)
l∈Lint,i∈Nint(l)

.
4. for n = 1 to N

— solve problem (4.18). Denote the solution by
(p�

l (z),γ�
l (z))l∈L(n) and the optimal Lagrange multi-

pliers by (λ�
l (e

z̄))l∈L(n)\Llocal(n) and (µ�
l (e

z̄))l∈Lint(n).

— Compute dn
il(z̄) by using (4.23).

5. Stopping criterion; if the stopping criterion is satisfied, reset
subgradient iteration index j, i.e., j = 0, set

(
v(0)

l = v̌l

)
l∈L(n),(

p
(0)
l = p�

l (z)
)
l∈L(n), and go to step 2. Otherwise increment

subgradient iteration index j, i.e., j = j + 1 and go to step 3.

The first step initializes Algorithm 4.2. Steps 2 represent the BS
optimizations that are performed asynchronously in a decentralized
fashion by each BS for fixed out-of-cell interference z. BS optimiza-
tions terminate after the per BS stopping criterion is satisfied; see
step 4 of Algorithm 4.1. At this stage each BS has its own solution and
the subgradient part (dn

il(z̄))l∈Lint,i∈Nint(l). BS coordination is initiated
at step 3. For example each BSs coordinate to construct a subgradi-
ent

∑
n∈N (dn

il(z̄))l∈Lint,i∈Nint(l) and perform subgradient method (4.24).
This updates global out-of-cell interference variable z. At step 4, each
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BS performs their own GP to compute (dn
il(z̄))l∈Lint,i∈Nint(l) for the

next subgradient iteration. Step 5, is the stopping criterion for the
subgradient method. If the stopping criterion is satisfied, Algorithm
switches back to BS optimizations, i.e., step 2. Otherwise, the subgra-
dient method is performed until the stopping criterion is satisfied. The
algorithm continues in an iterative manner.

Figure 4.3(a) depicts graphically the behavior of Algorithm 4.2. The
nonconvex curve is the objective function of the master problem (4.9)
after the logarithmic change of variables z̄il = lnzil. The convex curves
are the objective functions of approximated master problems of the
form (4.21), which are essentially parameterized by the current beam-
forming directions. The vertical arrows correspond to asynchronous per
BS optimizations, i.e., step 2 depicted in Figure 4.2(b). The horizontal
arrows correspond to the subgradient method, i.e., step 3–5 depicted in
Figure 4.2(b). Figure 4.3(a) shows that the algorithm switches between
the per BS optimizations and the subgradient method. For example, by
fixing out-of-cell interference at z̄1, the algorithm performs per BS opti-
mizations. Once a specified stopping criterion is satisfied, the algorithm
stops BS optimizations and performs the subgradient method until a
specified stopping criterion is satisfied. As a result, the out-of-cell inter-
ference values are changed from z̄1 to z̄2. The algorithm continues in
an iterative manner.

The algorithm presented in this section has following features, which
simplify its practical implementation:

1. Asynchronism: All the subproblems or BS optimizations can
be carried out in a fully asynchronous fashion until a stopping
criterion is satisfied.

2. Fast Local optimization: Each subsystem need to solve convex
problems, which can be performed very fast provided the
significant computing power available at each BS.

3. Thin protocol : Each BS does not need to reveal the entirety
of its own subproblem during the BS coordination; only a
little communication is needed, and therefore the protocol
between BSs can be very light.
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Fig. 4.3 The behavior of Algorithm 4.2; the objective function of problem (4.9) and (4.21)
are shown in the domain of z̄.
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4. Reliability : To carry out the algorithm, only BS to BS
synchronized signalling is required. This signalling can be
carried out via reliable backhaul communication links such
as microwave and fibre links.

5. No user terminal involvement : The user terminals do not
require performing any processing associated with algorithm
iterations and user to BS signalling is not required.

4.3.1 Monotonic Convergence of Algorithm 4.2

In this section we first show that Algorithm 4.2 can generate a mono-
tonically nonincreasing sequence of objective values, with appropriate
choice of stopping criteria. In particular, we measure the objective
value given by the algorithm just after each GP; see point “F1” of Fig-
ure 4.2(a) and point “F2” of Figure 4.2(b). Then we show the monotonic
convergence of Algorithm 4.2.

Algorithm 4.2 starts with Algorithm 4.1 (see step 2). Let
f (0),f (1), . . . ,f (K1) denote the sequence of objective values obtained
during Algorithm 4.1 iterations. Here K1 is the number of Algorithm 4.1
iterations until its stopping criterion is satisfied. Natural stopping cri-
teria includes (1) running Algorithm 4.1 for a fixed number of itera-
tions or (2) running Algorithm 4.1 until the objective value decrement
between two successive iterations is below a certain predefined thresh-
old. Since Algorithm 4.1 contains nonascent steps (see Section 4.2.3)
we have

f (0) ≥ f (1) ≥ ·· · ≥ f (K1), (4.27)

as depicted in Figure 4.3(b).
Next, Algorithm 4.2 switches to the subgradient method (4.24) (see

step 3). Note that, the subgradient method is not a descent algorithm.
Therefore, in order to obtain a monotonically nonincreasing sequence
of objective values, we consider the following stopping criterion: run-
ning subgradient method until an objective value f (K2) is achieved,
such that f (K1) ≥ f (K2) [see Figure 4.3(b)], where K2 is the number of
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subgradient iterations.10 Thus, we have

f (0) ≥ f (1) ≥ . . . ≥ f (K1) ≥ f (K2). (4.28)

The switching between Algorithm 4.1 and the subgradient method
is done in an iterative manner. The result is a monotonically non-
increasing sequence of objective values f (0),f (1),f (2), . . . such that
f (i) ≥ f (i+1), i = 0,1,2, . . .. Moreover, note that the optimal objective
value of problem (4.7) is bounded. This guarantees the monotonic con-
vergence of Algorithm 4.2 to an equilibrium point [103, thm. 3.14].

Note that the development of Algorithm 4.2 is not based on Karush-
Kuhn-Tucker (KKT) optimality conditions for the nonconvex prob-
lem (4.7). As a result, characterizing completely the solution structure
of the algorithm is a difficult task. For example, the (suboptimal) solu-
tion after the convergence of Algorithm 4.2 may not necessarily be a
locally optimal point of problem (4.7).

4.3.2 A Practical Stopping Criterion/Signalling Strategy

The stopping criteria discussed in Section 4.3.1 are, of course, important
to ensure the monotonic convergence of the algorithm. However, it is
desirable to seek for stopping criteria, which are favorable for practical
implementations of the algorithm, but with a violation of the monotonic
convergence.

In the sequel, such an example strategy is explained. The key idea
is to define time barriers; i.e., system checkpoints at which all BS must
start their local optimizations (i.e., Algorithm 4.1) and system check-
points at which all BS start coordination (i.e., the subgradient method).
In particular, each BS transmissions are synchronized and the data
transmission phase of each BS is preceded by a signalling phase, in
which the rate/power allocation of each BS is determined via WSR-
Max; see Figure 4.4. The signalling phase consists of three types of time

10 In fact, the subgradient method, with diminishing nonsummable step lengths, ensures
asymptotic convergence [19]. However, the requirement here is to iterate until a better
objective value (compared to the initial objective value f (K1)) is obtained.
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Fig. 4.4 An example signalling frame structure.

slots called initial signalling window, BS optimization window, and BS
coordination window. The initial signalling window is used for step 1
of Algorithm 4.2, i.e., the initialization step. The latter two types of
windows (i.e., BS optimization window and BS coordination window)
are repeated until the data transmission phase is reached as shown
in Figure 4.4. We define the BS optimization windows to be the time
periods where Algorithm 4.1 is performed asynchronously. Therefore,
during BS optimization windows, step 2 of Algorithm 4.2 is carried
out. The width of the window is determined by the maximum number
of Algorithm 4.1 iterations. The BS coordination windows are defined
to be the time periods where the subgradient method is performed.
Therefore, during any BS coordination window, step 3, step 4, and
step 5 of Algorithm 4.2 are carried out repeatedly. The width of the BS
coordination window is determined by the maximum number of sub-
gradient iterations. Typically, we may assume that the time period of
any BS optimization window is significantly smaller compared to the
time period of any BS coordination window because of the following
reasons: (1) significant computing power available at BSs so that the BS
optimization can be performed very fast, (2) BS coordination require
backhaul message exchanges between BSs, which in turn demand strin-
gent time requirements.
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4.4 Numerical Examples

In this section we run Algorithm 4.2 (Section 4.3) in multiuser multicell
environments and the benefits due to different degrees of BS coordina-
tion are numerically evaluated. As benchmarks, we consider three algo-
rithms: (1) distributed WMMSE algorithm [110], (2) GP-SOCP based
centralized algorithm proposed in [34, sec. 4.3], and (3) the distributed
algorithm proposed in [10, 11], which is based on a ZF beamforming
strategy. To emphasize the practical relevance of the algorithm, we
consider only the stopping criterion discussed in Section 4.3.2, which is
based on time barriers or system checkpoints as shown in Figure 4.4.

We consider an exponential path loss model, where the channel
gains between BSs and users are given by

hij =

√(
dij

d0

)−η

cij , (4.29)

where dij is the distance from the transmitter of ith data stream to
the receiver of jth data stream, d0 is the far field reference distance
[64], η is the path loss exponent, and cij ∈ CT such that cij ∼ CN (0,I)
(i.e., frequency-flat fading with uncorrelated antennas). The first term
of (4.29) represents the path loss factor and the second term models
the Rayleigh small-scale fading. An arbitrarily generated set C of fading
coefficients where C = {cij | i, j ∈ L} is referred to as a single fading
realization. The variance of the noise is considered equal for all data
streams, i.e., σ2

l = N0 for all l ∈ L and the maximum power constraint
is assumed the same for all nodes, i.e., pmax

n = pmax
0 for all n ∈ N . We

define the signal-to-noise ratio (or SNR) operating point at a distance
d [distance units] as

SNR(d) =




pmax
0
N0

d ≤ d0

pmax
0
N0

(
d

d0

)−η

otherwise.
(4.30)

In all the simulations we set d0 =1, η=4, pmax
0 /N0 =45 dB, SNR

(Rint) = 0 dB, where Rint is the radius of the interference regions of
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Fig. 4.5 (a) Multicell network 1, N = {1,2}, L = {1, . . . ,8}, L(1) = {1, . . . ,4}, L(2) =
{5, . . . ,8}, Lint = {3, . . . ,7}; (b) Multicell network 2, N = {1,2,3}, L = {1, . . . ,12},
L(1) = {1, . . . ,4}, L(2) = {5, . . . ,8}, L(3) = {9, . . . ,12}, Lint = {1,2,4,6, . . . ,11}.

each BS,11 and SNR(RBS) = 8 dB, where RBS is the radius of the trans-
mission regions of each BS.

In the simulations two multicell multiuser wireless cellular networks
as shown in Figure 4.5 are considered. In the case of first network [i.e.,
Figure 4.5(a)], there are N = 2 BSs with T = 4 antennas at each one.
The BSs are located such that the distance between the two BSs is
DBS = 1.5 × RBS. In the case of second network [i.e., Figure 4.5(b)],
there are N = 3 BSs with T = 4 antennas at each one. Moreover, the
BSs are located such that they form an equilateral triangle and the
distance between any two BSs is DBS = 1.5 × RBS. There are four users
per each BS located inside the transmission region of the BS. The
locations of users associated with BSs are arbitrarily chosen as shown
in Figure 4.5. A single data stream is transmitted for each user.

To see the behavior of Algorithm 4.2, we first consider a nonfad-
ing case and run the algorithm in both networks shown in Figure 4.5.
Figure 4.6 shows the objective value of problem (4.6) computed at
points “F1” and “F2” [see Figures 4.2(a) and 4.2(b)] for arbitrary gen-
erated fading realizations. Here the X-axis of Figure 4.6 represents

11 Signal strength of BS’s transmitted signal at a distance Rint is at most on the order
of noise, Therefore, as we modeled in Section 4.1, it is reasonable to consider that the
interference cased by the BS outside the interference region is negligible.
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Fig. 4.6 Objective value versus GP iteration: (a) Multicell network 1; (b) Multicell
network 2.

combined Algorithm 4.1 iterations and subgradient iterations. For sim-
plicity, we denote the number of Algorithm 4.1 iterations carried out
during the BS optimization window by JBS−opt and denote the number
of subgradient iterations performed during the BS coordination window
by Jsubgrad.
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Plots are drawn for the cases of JBS−opt = 15 and Jsubgrad = 1,10,50.
Note that Jsubgrad is a measure of the degree of BS coordination. For
example, Jsubgrad = 1 means that the subgradient method is performed
only once during any BS coordination window and Jsubgrad = 50 means
that the subgradient method is carried out 50 consecutive times dur-
ing any BS coordination window. Weights βl of each data stream is
arbitrarily chosen from the interval (0,1]. In step 1 of Algorithm 4.2,
the components of initial out-of-cell interference vector z are chosen
on the order of noise variance N0 (e.g., 0.5 N0). Moreover, the nor-
malized initial beamformers (v(0)

l )l∈L(n) are randomly generated and
a feasible uniform initial beamformer power allocation is chosen, i.e.,
(p(0)

l = αpmax
0 /T )l∈L(n), where α ∈ (0,1] is chosen to ensures the feasi-

bility of problem (4.18).
In order to describe the algorithm’s behavior, let us first focus to

Figure 4.6(a), the case of Jsubgrad = 1. To distinguish Algorithm 4.1
iterations from the subgradient iterations, we use two types of squares;
transparent squares and solid squares. Specifically, the transparent
squares correspond to the Algorithm 4.1 iterations and the solid squares
correspond to the subgradient iterations. Since Jsubgrad = 1, only a sin-
gle subgradient iteration is performed during any BS coordination win-
dow. Furthermore, each BS perform 15 Algorithm 4.1 iterations dur-
ing any BS optimization window, since we have JBS−opt = 15. Note
that the BS optimizations (Algorithm 4.1) are always nondecreasing
steps.12 The flattening of these line segments means that BS optimiza-
tions cannot further improve the system objective. Violation of overall
monotonic behavior is inevitable since the subgradient method is not
a descent algorithm in general [19]. Results show that BS coordination
can gracefully resolve the out-of-cell interference (i.e., z) via subgradi-
ent method. For example, the plot in the case of Jsubgrad = 1, shows a
22% increase in the weighted sum-rate (WSR), after having 5 subgra-
dient iterations.

Figure 4.6(a) further shows that the value of Jsubgrad, which param-
eterizes the degree of BS coordination has a significant effect on the

12 Nondecreasing because we have plotted the positive weighted sum-rate value instead of
the negative value of it.
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overall WSR value. It is interesting to note that, a smaller number of
consecutive subgradient iterations (e.g., Jsubgrad = 1,10) can perform
better compared to a larger number of consecutive subgradient itera-
tions (e.g., Jsubgrad = 50). Such a behavior is very important in prac-
tice to reduce significantly the backhaul message exchanges during any
BS coordination window. We can intuitively explain the behavior by
considering the two points “A” and “B” in Figure 4.3(a). In partic-
ular, point “A” corresponds to a smaller Jsubgrad, where the (convex
form) approximated master problem (4.21) is solved to a low accu-
racy. Point “B” corresponds to a larger Jsubgrad, where the (convex
form) approximated master problem is solved to a high accuracy. Of
course, point “B” is better than point “A” for the approximated mas-
ter problem, but not necessarily for the original master problem (4.9);
see the master objective depicted in Figure 4.3(a). This suggest that
one need not solve each approximation to a high accuracy. Refining the
approximation more often (which corresponds to a smaller Jsubgrad),
rather than solving some approximated master problem to a high accu-
racy (which corresponds to a larger Jsubgrad) is more beneficial.

Figure 4.6(b) shows the algorithm behavior in the case of network
setup 2 in Figure 4.5(b). The behavior is very similar to the previ-
ous plots in Figure 4.6(a). The network can yield substantial gains by
performing just one subgradient iterations during any BS coordination
window, that is, less backhaul message exchanges between BSs. For
example, the plot in the case of Jsubgrad = 1, shows a 23% increase
in the WSR, after having 5 subgradient iterations; see Figure 4.6(a).
Figure 4.6 also shows the performance of the considered benchmark
algorithms after their convergence. In both networks, for the consid-
ered channel realizations, the performance of the distributed algorithm
in [10] is significantly low. It is intuitively clear that the performance
drop is due to the lack of degrees of freedom available at BS transmis-
sions to avoid interference. Results further show that the distributed
WMMSE algorithm outperforms Algorithm 4.2 in both scenarios. Such
results are intuitively expected because WMMSE algorithm do rely
on user terminal assistance during algorithm’s iterations compared to
Algorithm 4.2. The good performance of the centralized algorithm
compared to Algorithm 4.2 agrees with the intuition that methods
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with a centralized controller can always outperform decentralized
methods.

It is important to note, however, that all the considered algorithms
are suboptimal methods to problem (4.6), and therefore their opti-
mality is not guaranteed. As a result, they may experience different
performance ranking for different channel realizations. One such case
is illustrated in Figure 4.7. The algorithms’ parameters are same as
in Figure 4.6 except the fading realizations. Results show that Algo-
rithm 4.2 can outperforms WMMSE and the centralized algorithms.

In order to see the average behavior of the algorithm, we consider a
fading case. Here, we run Algorithm 4.2 for 500 fading realization with
Jsubgrad = 1 and JBS−opt = 15. Recall that the algorithm parameter
Jsubgrad = 1 means that during any BS coordination window only one
subgradient iteration is performed. These are the only operations that
require message exchanging between BSs via backhaul links. Moreover,
subgradient iterations are the main implementation-level bottleneck,
provided significant computing power at BSs, where Algorithm 4.1 iter-
ations can be performed fast and efficiently. Thus, it is interesting to
see the average WSR value of problem (4.6) achieved at point ‘F3’ of
Algorithm 4.2 [see Figure 4.2(b)] after m (= 0,1, . . .) subgradient itera-
tion. In other words, we examine the evolution of average WSR versus
the number of BS coordinations.

Figure 4.8 shows the dependence of the average WSR value on the
number of subgradient iterations in the case of considered network 1
and network 2. Note that, we have used the same figure to plot the
dependence of the average objective value of WMMSE algorithm on the
number of iterations.13 Results show that the BS coordination plays a
critical role in the performance of Algorithm 4.2. For clarity, we denote
the situation where the subgradient iterations = 0 as noncoordinat-
ing case. In the case of network 1 [see Figure 4.8(a)], more than 12%
improvement in the average objective value is achieved within five BS

13 The subgradient iterations are analogous to WMMSE iterations in the following sense:
both the subgradient iterations and the WMMSE algorithm iterations require message
exchanges between nodes. Specifically, the subgradient method requires BS–BS message
exchanges and WMMSE requires BS-user terminal as well as user terminal-BS message
exchanges.
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Fig. 4.7 Objective value versus GP iteration: (a) Multicell network 1; (b) Multicell
network 2.

coordinations compared to the noncoordinating case. For network 2 [see
Figure 4.8(b)], within five BS coordinations, more than 24% improve-
ment in the average objective value is achieved as compared to the
noncoordinating case.
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Fig. 4.8 Average objective value versus number of BS coordinations: (a) Multicell network 1;
(b) Multicell network 2.

Figure 4.8 also shows that the average performance of WMMSE
algorithm is better compared to that of Algorithm 4.2. This behavior
is intuitively expected since, unlike Algorithm 4.2, the WMMSE algo-
rithm benefits from user terminal assistance. Recall that, during each
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iterations, WMMSE algorithm requires user terminals assistance such
as signal covariance estimations, computations, and feedback informa-
tion to BSs over the air interface. In contrast, the given method require
only BS-level synchronized communication and all the necessary com-
putation is concentrated at the BSs. The result is naturally a trade
off between performance gains and the implementation-level simplic-
ity. For a fair comparison of Algorithm 4.2 and WMMSE algorithm,
we examine the sensitivity of WMMSE algorithm to imperfections on
the signal covariance estimations at user terminals. Specifically, dur-
ing each WMMSE iteration, we randomly perturb the error free signal
covariance matrix Jl (which is a scalar in the case of MISO) at each
user terminal l as follows: Jl = Jl + Jl(xecov/100), where x is a random
variable with 2 equiprobable outcomes −1,1 and ecov is the amount
of covariance perturbation. Results show that such small estimation
errors have a significant effect on the performance of WMMSE algo-
rithm. Moreover, in such situations, the convergence of the WMMSE
method becomes less predictable. Thus, the algorithm presented is well
suited for systems where the user terminal assistance is not desirable
due to potential errors such as estimation errors and feedback errors.

Figure 4.8 further shows that, the performance of Algorithm 4.2
within several BS coordinations is comparable with that of the cen-
tralized algorithm [34, sec. 4.3]. For example, in the case of network 1,
Algorithm 4.2 achieves around 99% of the average WSR value given
by the centralized algorithm [34, sec. 4.3]. Moreover, in the case of
network 2, Algorithm 4.2 yields around 94% of the average WSR value
given by the considered centralized algorithm. Finally, we see that there
is a substantial performance gap between Algorithm 4.2 and the dis-
tributed algorithm in [10]. The main reason for such a performance
drop of algorithm in [10] is the insufficient degree of freedom available
at BS transmissions to cancel the interference it causes to the user
terminals.

4.5 Summary and Discussion

The weighted sum-rate maximization problem in a multicell multiple-
input and single-output downlink system was considered. The problem
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is nonconvex; in fact it is NP-hard. A distributed solution method
for the problem was presented. The main advantage of the given
distributed algorithm is its implementation-level simplicity. Unlike the
minimum weighted mean-squared error based algorithms, the method
presented does not demand user terminal assistance during each
iteration. It essentially requires base station to base station (BS) com-
munication, which are reasonably realizable, provided reliable backhaul
links (e.g., fibre and microwave links) and significant computing power
at BSs. As a result, a good trade-off between the performance gains
and the implementation-level simplicity was achieved. The algorithm
was based on primal decomposition and subgradient methods. In
particular, the main problem was split into a master problem and
many subproblems (one for each base station). A sequential convex
approximation strategy together with a subgradient method were blent
to address the nonconvex master problem. Master problem solution
relies on synchronous BS coordinations. A descent algorithm based on
second-order cone programming and a geometric programming were
adopted in the case of subproblems. The subproblems can be performed
in a fully asynchronous manner. The monotonic convergence of the
algorithm was established, with appropriate choice of stopping criteria
at intermediate steps. Practical stopping criteria were also presented.
Numerical experiments were presented to compare the method with
other state-of-the-art algorithms. Results suggest that the algorithm
is well suited for systems where the user terminal assistance is not
allowed or not desirable. Results further showed that the algorithm
could significantly improve the overall system performance with a
small amount of BS coordinations. These observations are indeed
important for deriving simple signalling protocols in the context of
large-scale practical cellular communication systems.



5
Conclusions

In this volume a greater emphasis was placed on the general weighted
sum-rate maximization (WSRMax) problem, which is NP-hard; it plays
an important role in various problems of recent interest in wireless com-
munication, including network utility maximization, cross-layer design,
link scheduling, and many others.

The first section was mainly intended to highlight the motivation
for the WSRMax problem and to review earlier and parallel work. In
Section 2, a global optimization approach based on the branch and
bound technique was presented to solve the nonconvex WSRMax prob-
lem with an optimality certificate. Efficient analytic bounding methods
were given and their effect on the convergence of the branch and bound
algorithm was analyzed numerically. Though the convergence speed was
dramatically increased by improving the lower bound, the benefits of
improving the upper bounding methods are imperceptible. This sug-
gests that a grater emphasis should be placed on exploring better lower
bounding techniques. Unlike other branch and bound based algorithms
for WSRMax, the method presented does not rely on the convertibility
of the problem into a DC (difference of convex functions) problem.
Therefore, the method applies to a broader class of WSRMax problems

141
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(e.g., WSRMax in multicast wireless networks). More importantly, it
can address any system performance metric that can be expressed as a
Lipschitz continuous and increasing function of signal-to-interference-
plus-noise ratio (SINR) values (not restricted to WSRMax).

The worst case complexity of the branch and bound algorithm
increases exponentially with the problem size for a given accuracy. Even
a small-scale problems (e.g., one with few tens of variables) can take
a long time, and therefore such global methods are applicable when
the computing time requirements are not critical. This means that,
in the case of wireless networks, where the computing time is often
crucial, any global optimization method is hardly applicable. However,
it is indeed useful to provide performance benchmarks, e.g., for evalu-
ating the performance loss encountered by any suboptimal method for
WSRMax.

The link-interference model considered in Section 2 is very general;
it accommodates a wide variety of network topologies. Moreover, the
considered link-interference model supports different node capabilities,
including single- or multipacket transmission, single- or multipacket
reception, and many others. Numerical examples of diverse application
domains of WSRMax were presented to demonstrate the branch and
bound algorithm.

Fast, suboptimal algorithms for the WSRMax problem in general
multicommodity, multichannel wireless networks were considered in
Section 3. The algorithms were used within a general cross-layer util-
ity maximization framework and the quantitative impact of gains that
can be achieved at the network layer in terms of end-to-end rates and
network congestion was numerically evaluated.

First, a general access operation with a relatively simple form of
receivers structure (a bank of match filters) was considered; a receiver
decodes each of its intended signals by treating all other interfering sig-
nals as noise. The presented algorithms were based on complementary
geometric programming and homotopy methods. The algorithm based
on homotopy methods handled the self-interference problem without
combinatorial constraints to enforce simultaneous transmissions and
receptions in the same frequency band; thus the combinatorial nature
of the problem has been circumvented. Numerical results showed that
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the algorithms could exploit the multichannel diversity via dynamic
power allocation across the available channels. It was interesting to
see numerically that they performed closely to the exponentially com-
plex optimal branch and bound algorithm. The methods also provide a
mechanism, based on which the gains achievable at the network layer
could be evaluated when the network nodes employ self interference
cancelation techniques with different degrees of accuracy. Numerical
results showed that quantifiable gains at the network layer have been
achieved after a certain level of the self interference cancelation accu-
racy, e.g., a self interference reduction in the range 20−60 dB led to
significant gains at the network layer.

The latter part of Section 3 considered a case where all receivers
perform multiuser detection and the gains that can be achieved at the
network layer were numerically evaluated. The solution methods here
were obtained by imposing additional constraints, such as that only
one node can transmit to others at a time or that only one node can
receive from others at a time. The main benefit of such constraints
was the problem tractability and simplicity of the solution methods.
Consequently, these simple access protocols can be potentially useful
in practice with more advanced communication systems.

Note that all the algorithms presented in Section 3 are reliant on
the well known interior-point methods. Therefore, the algorithms are
fast, compared to the optimal branch and bound algorithm presented in
Section 2 and they can be deployed in relatively large-scale problems
(e.g., one with few hundreds of variables), which are not, of course,
apparently handled by exponentially complex optimal algorithms. How-
ever, to facilitate the use of the algorithms in real-time applications
further improvements in the efficiency are required. There are many
important issues and methods in linear algebra that can be used to
improve the efficiency of the algorithms. For example, the structure of
the problem can be heavily exploited. We may assume in a wireless
network that, the problem variables (e.g., power and SINRs) are not
fully coupled due to exponential path losses. Such assumptions, which
are reasonable in practice, can result desirable sparsity patterns of the
involved problem data (e.g., sparse matrices), and can dramatically
increase the efficiency of the methods.
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An easy to implement distributed method for WSRMax problem
in a multicell multiple antenna downlink system was presented in
Section 4. Unlike the recently proposed minimum weighted mean-
squared error based algorithms, where at each iteration all mobile
terminals needs to estimate the covariance matrices of their received
signals, compute and feedback over the air certain parameters to the
base stations (BS), the presented algorithm operates without any
user terminal assistance. It requires only BS to BS signalling via
reliable backhaul links (e.g. fiber, microwave links) and all required
computation is performed at the BSs. The algorithm is based on primal
decomposition and subgradient methods, where the original nonconvex
problem is split into a master problem and a number of subproblems
(one for each BS). A sequential convex approximation strategy
was used to address the nonconvex master problem. In the case of
subproblems, an existing iterative approach based on second-order
cone programming and geometric programming was adopted. The
subproblems were coordinated to find a (possibly suboptimal) solution
to the master problem. Subproblems can be solved by BSs in a fully
asynchronous manner, though the coordination between subproblems
should be synchronous. Numerical results were provided to see the
behavior of the algorithm under different degrees of BS coordination.
They showed that the algorithm could yield a good tradeoff between
the implementation-level simplicity and the performance.



A
Improving Upper Bound for Branch

and Bound via Complementary
Geometric Programming

We show in this appendix how to compute efficiently γImpCGP via
CGP [6], when f0(γ) =

∑
l∈L −βl log(1 + γl). Note that this is the only

place where the exact expression of the rate function (2.1) has been
explicitly taken into account. In the derivation of all other bounds only
the monotonicity property has been used. We start by equivalently
reformulating problem (2.48) as

minimize
∏

l∈L
(
1 + γl

)−βl

subject to γl,min ≤ γl ≤ γl,max, l ∈ L

γl ≤ gllpl

σ2 +
∑

j �=l gjlpj
, l ∈ L

∑
l∈O(n) pl ≤ pmax

n , n ∈ T
pl ≥ 0, l ∈ L,

(A.1)

where the variables are (pl)l∈L and (γl)l∈L. The equivalence between
problem (2.48) and problem (A.1) follows from the monotonically
increasing property of log(·) function and the explicit description of the
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constraints. To obtain a suboptimal solution, we adopt Algorithm 3.2
(see Section 3.2.2) in a straightforward manner as follows:

Algorithm A.0.1 CGP based algorithm for finding γImpCGP

1. Given tolerance ε > 0. Let γ̂ = āl� .
2. Solve the following GP:

minimize
∏

l∈L γl
−βl

γ̂l
1+γ̂l

subject to γl,min ≤ γl ≤ γl,max, l ∈ L

γl ≤ gllpl

σ2 +
∑

j �=l gjlpj
, l ∈ L∑

l∈O(n) pl ≤ pmax
n , n ∈ T ,

(A.2)

with the variables (pl)l∈L and (γl)l∈L. Denote the solution by
(p�

l )l∈L and (γ�
l )l∈L.

3. If maxl∈L |γ�
l − γ̂l| > ε set (γ̂l = γ�

l )l∈L and go to step 2. Oth-
erwise set γImpCGP = γ̂ and STOP.



B
The Barrier Method

In this appendix we outline the basic steps involved in solving
problem (3.33) using the barrier method [22, sec. 11.3.1]. For the
sake of notational simplicity let us define σ̄ρn(k) = σ2/gρn(k)ρn(k) for
k = 1, . . . , |O(n)| and σ̄ρn(|O(n)|+1) = 0. Furthermore, let ui be the ith

column of the upper triangular matrix U ∈ IR|O(n)|×|O(n)|
+ with all

nonzero entries being equal to 1.
By denoting the feasible set of rate allocation vector rn =

(rρn(1) . . . rρn(|O(n)|)) [125, sec. 3], problem (3.33) can be equivalently
expressed as

maximize
∑

l∈O(n) βlrl

subject to ui(rn) ≤ 0, i = 1, . . . , |O(n)| + 1,
(B.1)

where the variable is rn. The function ui(rn) can be compactly
expressed as

ui(rn) =




−eT
i rn 1 ≤ i ≤ |O(n)|

|O(n)|∑
j=1

bn(j)euT
j rn − σ̄ρn(1) − pmax

n i = |O(n)| + 1,
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where bn(j) = σ̄ρn(j) − σ̄ρn(j+1). Problem (B.1) is a convex optimization
problem [22], and therefore can be solved efficiently. It is worth noting
that, given any feasible rn the corresponding power variables pρn(k),
k = 1, . . . , |O(n)| are given by [125]

pρn(k) = (erρn(k) − 1)
∑
i≥k

bn(i)e
∑

k<j≤i rρn(j) .

The barrier method [22, sec. 11.3.1] can be used to solve problem (B.1).
The gradient and the Hessian of the function ui(rn) are given by

∇ui(rn) =

{
−ei 1 ≤ i ≤ |O(n)|∑|O(n)|

j=1 bn(j)euT
j rnuj i = |O(n)| + 1

and

∇2ui(rn) =

{
0 1 ≤ i ≤ |O(n)|∑|O(n)|

j=1 bn(j)euT
j rnujuT

j i = |O(n)| + 1.

The expressions above are used to evaluate the gradient and the Hessian
of the logarithmic barrier function [22, sec. 11.2.1].
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Notations and Acronyms

E{·} Expectation
ei ith standard unit vector
I Identity matrix; size of the matrix is implicit
1 Vector of 1s, i.e., (1, . . . ,1); size of the vector is implicit
|x| Absolute value of the complex number x

||x||2 �2-norm of complex vector x
XH Conjugate transpose (Hermtian) of matrix X
XT Transpose of matrix X
X−1 Inverse of matrix X
[X]i,j Element at the ith row and the jth column of matrix X
|X | Cardinality of set X
∇f(x) Gradient of function f at x
∇2f(x) Hessian matrix of function f at x
C Set of complex numbers
Cn Set of complex n-vectors
Cm×n Set of complex m × n matrices
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IR,IR+,IR++ Set of real, and nonnegative real numbers
IRn

+ Cone of nonnegative, real n-vectors
IRm×n

+ Set of nonnegative, real m × n matrices
CN (m,K) Circularly symmetric complex Gaussian vector

distribution with mean m and covariance matrix K
∼ Distributed according to
≥ Greater than or equal operator; between real

matrices, it represents componentwise inequality

CGP Complementary Geometric Programming
GP Geometric Programming
MWM MaxWeight Matching
NUM Network Utility Maximization
RA Resource Allocation
SINR Signal-To-Interference-Plus-Noise Ratio
SNR Signal-To-Noise Ratio
SOCP Second-Order Cone Programming
SP Signomial Programming
WSR Weighted Sum-Rate
WSRMax Weighted Sum-Rate Maximization
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