2090

[20] S. Vishwanath, N. Jindal, and A. Goldsmith, “Duality, achievable rates,
and sum-rate capacity of Gaussian MIMO broadcast channels,” IEEE
Trans. Inf. Theory, vol. 49, no. 10, pp. 2658-2668, Oct. 2003.

[21] W. Yu, “Sum-capacity computation for the Gaussian vector broadcast
channel via dual decomposition,” IEEE Trans. Inf. Theory, vol. 52, no.
2, pp. 754-759, Feb. 2006.

[22] C. Peel, B. Hochwald, and A. Swindlehurst, “A vector-perturbation
technique for near-capacity multiantenna multiuser communica-
tion—Part I: Channel inversion and regularization,” IEEE Trans.
Commun., vol. 53, no. 1, pp. 195-202, Jan. 2005.

[23] Code repository, Division of Communication Systems, Linkoping
Univ., Link&ping, Sweden [Online]. Available: http://www.commsys.
isy.liu.se/en/publications

Weighted Sum-Rate Maximization for MISO Downlink
Cellular Networks via Branch and Bound

Satya Krishna Joshi, Pradeep Chathuranga Weeraddana,
Marian Codreanu, and Matti Latva-aho

Abstract—The problem of weighted sum-rate maximization (WSRMax)
in multicell downlink multiple-input single-output (MISO) systems is con-
sidered. The problem is known to be NP-hard. We propose a method, based
on branch and bound technique, which solves globally the nonconvex WS-
RMax problem with an optimality certificate. Specifically, the algorithm
computes a sequence of asymptotically tight upper and lower bounds and
it terminates when the difference between them falls below a pre-speci-
fied tolerance. Novel bounding techniques via conic optimization are in-
troduced and their efficiency is demonstrated by numerical simulations.
The proposed method can be used to provide performance benchmarks
by back-substituting it into many existing network design problems which
relies on WSRMax problem. The method proposed here can be easily ex-
tended to maximize any system performance metric that can be expressed
as a Lipschitz continuous and increasing function of signal-to-interference-
plus-noise ratio.

Index Terms—Branch and bound, global (nonconvex) optimization, mul-
ticell networks, second-order cone program (SOCP), weighted sum-rate
maximization.

I. INTRODUCTION

We consider the problem of weighted sum-rate maximization (WS-
RMax) for multicell downlink systems with linear precoding. The base
stations (BSs) are assumed to have multiple antennas while all the re-
ceivers are equipped with single antenna. Although the WSRMax is
central to many network optimization methods [1]-[8], it is known to
be an NP-hard problem [9]. Therefore, we have to rely on global opti-
mization approaches [10], [11] for computing an exact solution.
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In the case of single-input single-output systems, the problem of WS-
RMax by using global optimization approaches has been addressed
in [12]-[16]. In multiple antenna systems, local methods have been
proposed in, e.g., [17] and [18]. In this case, the decision variables
space is large, i.e., joint optimization of transmit beamforming pat-
terns, transmit powers, and link activation is required. Therefore, de-
signing global optimal methods for WSRMax in multiantenna systems
is a more challenging task.

The main contribution of the paper is to propose a solution method,
based on the branch-and-bound (BB) technique, which solves globally
the nonconvex WSRMax problem in multiple-input and single-output
(MISO) systems within a predefined accuracy €. Specifically, the pro-
posed algorithm computes a sequence of asymptotically tight upper and
lower bounds for the maximum weighted sum rate, and it terminates
when the difference between the upper and lower bound is smaller than
€. Thus, our solution is certified to be at most e-away from the global
optimal value. It is worth noting that this paper extends our recent work
[16] to MISO systems. In addition, we derive an improved bounding
technique! that increases significantly the convergence speed as com-
pared with the basic bounds of [16]. The proposed bounds and the
transmit beamformers are computed via second-order cone program-
ming (SOCP) [19].

The proposed method can be used to provide performance bench-
marks by back-substituting it into many existing network design prob-
lems which relies on solving the WSRMax problem (e.g., it allows eval-
uation of the performance loss encountered by any heuristic method for
WSRMax). The proposed framework is not restricted to WSRMax; it
can be used to maximize any system performance that is Lipschitz-con-
tinuous and the increasing function of SINR values.

The remainder of this paper is organized as follows. The consid-
ered MISO system model and problem formulation are described
in Section II. The branch-and-bound algorithm is introduced in
Section III, and the computation of the proposed bounds is described
in Section IV. The numerical results are presented in Section V, and
Section VI concludes our paper.

Notations

All boldface lower case and upper case letters represent vectors and
matrices, respectively, and calligraphy letters represent sets. The nota-
tion IR% denotes the set of real L-vectors with nonnegative entries, €
denotes the set of complex T-vectors, || denotes the absolute value of
the scalar z, ||x||2 and [x]:, respectively denote the Euclidean norm
and the ith element of the vector x, I denotes the identity matrix, and
CN (m, C) denotes the complex circular symmetric Gaussian vector
distribution with the mean m and covariance matrix C. The superscript
(" and (+)* is used to denote a Hermitian transpose of a matrix and a
solution of an optimization problem, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A multicell MISO downlink system, with N BSs each equipped with
T transmit antennas, is considered. The set of all BSs is denoted by
and we label them with the integer values n = 1,..., N. The single
data stream 1is transmitted for each user, and we denote the set of all
data streams in the system by £ and label them with the integer values
l=1,...,L. The transmitter node (i.e., the BS) of the /th data stream
is denoted by tran (1), and the receiver node of the /th data stream is
denoted by rec(l). We have £ = U, e O(n), where O(n) denotes the
set of data streams transmitted by BS n.

INote that the efficiency of a branch and bound algorithm greatly depends on
the specific bounding method.

1053-587X/$26.00 © 2011 IEEE
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The antenna signal vector transmitted by the nth BS is given by

Y dmy M

LeO(n)

where d; € € and m; € C7 represent the information symbol and
the transmit beamformer associated to /th data stream, respectively.
We assume that data stream for different users are independent, i.e.,
E{did}} = Oforalll,j € L, where ! # j; and also assume d; is
normalized to E|d;|* = 1.

The signal received at rec(l) can be expressed as

v = dihjjm; + Z djh;ilmj + 2z 2
JEL jFL

where h], € ©*" is the channel matrix between tran(j) and rec (l)
and z; is circular symmetric complex Gaussian noise with variance 7 .
The received signal-to-interference-plus-noise ratio (SINR) of /th data
stream is given by

|hjjm|*

of + > |hfim,[*’
ety

= 3)

Let 3; be an arbitrary nonnegative weight associated with data
stream {, [ € L. We consider the case where all receivers are using
single-user detection (i.e., a receiver decodes its intended signal
by treating all other interfering signals as noise). Assuming that
the power allocation is subject to a maximum power constraint
Z[eo(n) |lmy||3 < p=** for each BS n € A, the problem of
WSRMax can be expressed as

maximize ZJ, log(1 4+ )
el
- |biimy|®
subject to v = L ler
of+ > pijlhlim;?
JEL j#
> iz < P neN 4)

1€0(n)

where the optimization variables are v; and m; forall/ €£.
By relaxing the SINR equalities constraints and changing the sign of
the objective function, problem (4) can be expressed equivalently as

Z— O log(l -+ ’n)

minimize

lec
j |hH1fl‘ll|2
subject to v < ler
DY |h m; |2
J€L,5#L
> llmllz < P, meN. 5)
eO(n)

The equivalence between problems (4) and (5) follows from the
monotonically increasing property of the log(-) function which ensures
that the SINR inequality constraints of problem (5) are tight (i.e., they
holds with equality at the optimal solution).

III. BRANCH AND BOUND ALGORITHM

We start by equivalently reformulating problem (5) as minimization
of a nonconvex function over an L-dimensional rectangle. Then, we
apply BB techniques [20] to minimize the nonconvex function over the
L-dimensional rectangle.
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Let us first denote the objective function of problem (5) as

fo(v) = Xep —Ailog(l + i) and the feasible set for variables
v =1[v,....7]" (or the achievable SINR values) by G, i.e.,
[hfim, |2
< 55— ———, 1
RO o-lz-'r Z \thlmj 2° €L
Gg=<(v JEL. i . 6)
> i3 < pie, neN
1€O(n)

For clarity, let us define a new function f : R} — IR as

= ifyeg
HOE {g‘] () v e g ™
otherwise,
and note that for any S C ]RJr such that G C S, we have
f = inf =p" 8
g/lésf 7) = A;Iégfo(v) P ®)

where p* is the optimal value of problem (5). Note that the first equality
follows from the fact that for any v € IR% we have fo(ry) < 0. It is
also worth noting that the function f is nonconvex over S and fy is a
global lower bound on £, i.e., fo (v) < f('y) forally € S.

Let us define the L-dimensional rectangle Qini¢ as

Qinit = {7‘0 <% < ” ;;”Zp?,‘f;(,),l € L}. )
It is easy to check that G C Qinit.2 Therefore, from (8), it follows
that infyeg; ;, f (v) = p*. Thus, we have reformulated problem (5)
equivalently as a minimization of the nonconvex function f over the
rectangle Qi,i;. To maintain a cohesive presentation, in the sequel, we
review briefly the BB method introduced in [16] to minimize f over
Qinit for the single-input single-output (SISO) case.
For any L-dimension rectangle @ = {v|7i,min < 7 < Vi max,! €
L} such that @ C Qinit, let us define a function ¢umin (Q) as
Omin(Q) = - (10)

inf

yeQ

By using (8) and (10), it can be easily verified that Gmin (Qinit) =
inf f(v) =p".

The key idea of the BB algorithm is to generate a sequence of asymp-
totically tight upper and lower bounds for ¢.uin ( Qinit ). At each itera-
tion k, the lower bound L, and the upper bound U, are updated by
partitioning Qini¢ into smaller rectangles. To ensure the convergence,
the bounds should become tight as the number of rectangles in the par-
tition of Qinit grows. To do this, the BB uses two functions ¢y (Q)
and ¢, (Q), defined for any rectangle @ C Qinis s.t. following condi-
tions are satisfied [20], [21].

Cl1) The functions ¢;,( Q) and ¢y, (Q) compute a lower bound and

an upper bound, respectively on ¢min (Q), i.€.,

O1(Q) < Omin(Q) < Pun(Q) .

C2) As the maximum half length of the sides of Q (i.e., size(Q) =
% maxies{ Vi max — Vi,min}) gO€S to zero, the difference be-
tween the upper and lower bounds uniformly converges to zero,

ie.,
Ve > 036 >0 s.t. YQ C Qinit,
size(Q) <6 = dun(Q) — o1 (Q) < €. an
2t follows from Cauchy-Schwartz inequality (i.e., |hiim,|? <

Ihal[3p55%, oy for all [fmyl[3 < ppax, ) after neglecting the interfer-

ence terms in the denominator of SINR constraints in (6).
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Finding accurate and easy to compute upper and lower bound func-
tions ¢y, ( Q) and ¢, ( Q) is one of the most difficult part in deriving a
BB algorithm. For clarity, we first summarize the generic BB algorithm
and the bounding functions are defined in Section IV.

Algorithm 1: Branch and Bound Algorithm

1) Initialization: given tolerance €>0. Set k=1, B1={ Qinit },
Uir=¢ub(Qinit) » and L1 =¢p, ( Qinit )-
2) Stopping criterion: if U, — Lj, > € go to Step 3, otherwise STOP.
3) Branching:
a) Pick Q € By, for which ¢, (Q) = Ly, and set Qy, = Q.
b) Split Qi along one of its longest edge into Q; and Q.
¢) Let Beg1 = (Be\{Qx})U{Qr1,Qrr1}.
4) Bounding:
a) Set U]‘-,+1 = 111111965k+1{¢,,b(Q)}.
b) Set Lit1 = minoes, ,{¢(Q)}.
5) Set k = k 4+ 1 and go to step 2.

The convergence of the above algorithm is established by the fol-
lowing theorem.

Theorem 1: 1If for any Q Cc Qinit with Q =
{7 71,min €% < Ymax, [ € L}, the functions ¢u,(Q) and
¢1,(Q) satisfy the conditions Cl) and C2), then Algorithm 1
converges in a finite number of iterations to a value arbitrarily close to
prie,Ve >0, 3K > 0stUx —p* < €.

Proof: The proof is similar to the one provided in [20], [21] and it
is provided here for the sake of completeness. First note that, there are &
rectangles in the set By.. Let vol( Qinit ) denote the volume of rectangle
Qinit. Thus, we have

VOl( Qinit )

P (12)

min vol(Q) <
QeBy, :

Therefore, as k increases at least one rectangle in the partition become
small. Then it is required to show that, the smaller vol(Q) the smaller
size(Q). To do this, we first define the condition number of rectangle
Q= {'7 |")"l,min <y <L Yl,maxs le E} as

nlaXl(')"l,max - A)/l,min)
ming (Y, max — Vi,min)

cond(Q) = (13)

Note that the branching rule we use (see Algorithm 1, Step 3), always
ensures that for any k and any rectangle ©Q € 55;[21, Lemma 1]

cond(Q) < max{cond(Qinit),2} . (14)
Moreover, we have
L
VO](Q) = H(’Y’l,max - A)’/!,min) (15)
=1

Y

L—1
Hl?ﬂx(’w,ulax - ’Yl,uliu) <nllin(’yl,1nax - Aﬂ,l[lill)) (16)

(2 size(Q))*

= (eond ()" "
2 size(Q) \
2 <c0nd(Q)) (18)

where the last inequality follows by noting that cond(Q) > 1. Thus,
from (18), we have

size(Q) < %cond(Q)Vol(Q)% . (19)
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By using (12), (14), and (19), we get

Vv 01( anlt) . (20)

1
min size(Q) < = max{cond(Qinit),2} ———=
QenB, 2
We are now ready to show that there exist a positive integer /X such that
forany e > 0,Ux —p* < €. To see this, we select K as the maximum
number of iterations such that

1 1 1ni
3 max{cond(Qinit ), 2} M

21
Thus, from (20), for some o= Bre, size( Q) < & and from C2) [see
(11)], we have ¢u,(Q) = 1,(Q) < . However, note that U <
dun(Q) (since Ux = mingen, {¢un(Q)}) and p* > (le(Q) Thus,
Uk — p* < ¢, and the result follows. u

IV. UPPER AND LOWER BOUND FUNCTIONS

In this section, we derive the bounding functions ¢.1,(Q) and
¢1,(Q) for Algorithm 1 by exploiting the monotonic nonincreasing
property of fo. First, basic bounding functions are established, and
then a method to improve the basic lower bounding function is pro-
posed.

A. Basic Upper and Lower Bounds

The basic bounding functions ¢, and ¢ proposed in [16] for the
case of SISO networks can be formally expressed as

asic { i €
(bﬁ» (Q) = { fo(Vmax)  Ymin . g (22)
0 otherwise
and
( Basic £ A min min € g
OEI(Q) = F ) = {fD(”’ ) i €9 o3
0 otherwise
where
T T
Ymax — |:‘}”l,1nax7 ERER) ‘}"L,Inaxil s Ymin = I:‘}”l,uliu-/ sy 7L,1niu:| ”

and G is defined in (6). These general expressions hold true for the case
of MISO system as well. Furthermore, it is easy to show that func-
tions ¢5**'°(Q) and (b?ﬁq‘“(Q) satisfy conditions C1) and C2); the
proof is similar to the one provided in [16, Lemmas 1 and 2]. However,
checking the condition-y,;, € G, which is central to computing ¢!
and ¢B25°, is much more difficult in the case of multiple transmit an-
tenna. Thus, a computationally efficient method based on SOCP is pre-
sented in the sequel.

Let {~ }1ec be a specified set of SINR values. Testing if these values
are achievable (i.e., testing if {71 }iez € G) is equivalent to solving the
following feasibility problem [22, Sect. 4.1.1]:

find mp,...,my,
] |hﬁmz|2 ,
subject to . >y, l€L
i+ > |h],m]|2 ’
JEL 3#I
Z lml5 < pi™, neN, 24)

leO(n)

with variables m;, ! € L. Feasibility problem (24) determines whether
the SINR constraints are achievable, and if so, returns a set of feasible
transmit beamformers {m; };c. that satisfies them.

Problem (24) is not convex as such, but following the approach
of [19, Sec. IV-B], it can be reformulated as a standard SOCP
and solved efficiently via interior points methods [22], [23]. Let



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 4, APRIL 2012

M, = [my];co(n). Then, problem (24) can be cast as the following
SOCP feasibility problem:

find mi,...,mjy
(1 =+ %)m}]h”
subject to T | >s 0, el
] [m%ih”,...,ml,jhu] =S0C
gy
>soc 0, 9 N 25
{Vec(Mn) =soc 0, n€ (25)

where the optimization variable is {m;};cc; and we use notation
>soc to denote the generalized inequalities with respect to the
second order cone [19], [22], i.e,, forany + € IR and y € cr,
[2,¥"]" »soc 0 is equivalent to 2 > ||y]|2.

B. Improved Lower Bound

Tighter bounds3 are very important as they can increase substantially
the convergence speed of the BB algorithm. By exploiting the mono-
tonically nonincreasing property of fo, an improved lower bound is
proposed in this subsection.

Note that, in the case of y,;, & G [i.e., QNG = 0, see Fig. 1(a)],
f(y) = 0foranyy € Q. Thus, both the basic lower bound (22) and the
basic upper bound (23) are trivially zero and no further improvement
is possible since they are tight. Consequently, tighter bounds can be
found only in the case ¥,,;,, € G [i.e., QNG # 0, see Fig. 1(b)]. Thus,
we consider only this case in the sequel.

Roughly speaking, a tighter lower bound can be obtained as follows.
We first construct the smallest rectangle O* C Q which encloses the
intersection QNG (see Fig. 1(b)). Let us denote this rectangle as Q* =
{7 71,min < v <7, 1 € L}. The improved lower bound is given by

Recall that @ = {7 |Vi,min < % < Vmax> | € L }. Forany Q C

Qinit, the improved lower bound can be formally expressed as

¢i;nP(Q) = {fo(’?*) if’Ymin € g

. (26)
0 otherwise

where ¥* = [37,..., :,/z]T is the maximum corner of the rectangle
Q*, and ¥} can be found by using bisection search on each edge of the
rectangle © as discussed below.

Let us define a corner point along e; edge of the rectangle Q as
i = Ypun + (Yi,max — ¥i,min )€;. If a corner point a; lies inside G,
i.e.,a;, € G [see a; in Fig. 1(c)], then ¥ = 7, max. Otherwise (i.e.,
a; € G ), a bisection search over the line segment between the points
Yrin @nd a; can be used to find ;. The bisection search used to find
7 (when a; € G) is summarized below.

Algorithm 2: Bisection Search for Finding %;

1) Initialization: 1 = «y, ;, and u = a,, and tolerance €, > 0.
2) If |lu — 1||2 < € return 5 = [u]; and STOP.

3) Sett = (1+u)/2.

4) Ift € G set]l = t. Otherwise, set u = t. Go to step 2.

Note that the SOCP feasibility problem formulation (25) is used for
checking if t € G at step 4 of the bisection search.

V. NUMERICAL EXAMPLE

In this section, we first evaluate the impact of the proposed bounds
(Section IV) on the convergence of Algorithm 1. Next, we use the pro-

3We say a bound is tighter in the following sense: ¢, (Q) is a tighter lower
bound if for any Q@ C Qinit, We have gmin(Q) > o1,(Q) > ¢i*°(Q).
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Fig. 1. Tlustration of G, Qinis, Q, and Q* in a 2-dimensional space.

Fig. 2. MISO downlink wireless network with N = 2,7 = 2,and L = 4.

posed Algorithm 1 to evaluate the performance loss of several subop-
timal algorithms.

‘We consider a multicell wireless downlink system as shown in Fig. 2.
There are N = 2 base stations, each with " = 2 transmit antennas.
The distance between the BSs is denoted by Ds. We assume circular
cells, where the radius of each one is denoted by R. For simplicity, we
assume two users per cell. The locations of users associated with BSs
are arbitrarily chosen as shown in Fig. 2.

‘We assume an exponential path loss model, where the channel matrix
between BSs and users is modeled as

n
dji\
hj'[ = (i) C“

where d;; is the distance from the transmitter of data stream j (i.e.,
BS tran(j)) to the receiver of data stream [ (i.e., user rec(l)), do is
the far field reference distance [24], n is the path loss exponent, and
cji € C7 is arbitrarily chosen from the distribution CA/(0,T) (i.e.,
frequency-flat fading channel with uncorrelated antennas). Here, we
refer an arbitrarily generated set of fading coefficients C = {c;:|j,{ €
L} as a single fading realization.

We set pi®* = pi™** foralln € A, and oy = o foralll € £. We
define the signal-to-noise ratio (SNR) operating point at a distance r as

- —n _ max
SNR(r) = <(;—0> Po .

(2

g

In the following simulations, we set do = 1, n = 4, o2 =1, and the
cell radius R is fixed throughout the simulations such that SNR(R) =
10 dB for p!‘;njx = 40 dB. Furthermore, we let % = 1.6.

Fig. 3 shows the evolution of upper and lower bounds for the optimal
value of problem (5) for a single fading realization, and 5; = 0.25
for all I € L. Specifically, in Fig. 3, we used the basic upper bound
(UBgasic) in conjunction to both the basic lower bound (LBgRasic) and
the improved lower bound (LBimp). Results show that both lower/
upper bound pairs (LBimp, UBBasic) and (LBBasic, UBBasic) become
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Fig. 4. Empirical CDF plot of total number of iterations.

tighter as the number of iterations grows. However, the convergence
speed of Algorithm 1 is substantially increased by the improved lower
bound as compared to the basic one. For example, when € = (0.2, the
basic bound requires more than 10* iterations to converge, where as the
improved lower bound, with the bisection search tolerance ¢, = 0.1,
achieves the same level of accuracy in only 525 iterations.

In order to provide a statistical description for the speed of conver-
gence, we run Algorithm 1 for 100 fading realizations. For each one
we store the number of iterations required to find the optimal value
of problem (5) within an accuracy of ¢ = 0.1 with both lower/upper
bound pairs (LBimp, UBBasic) and (LBBasic, UBBasic), respectively.

Fig. 4 shows the empirical cumulative distribution function (CDF)
plots of total number of iterations required to terminate Algorithm 1.
Results show that the improved lower bound increases significantly
(about 100 times) the convergence speed of Algorithm 1. For example,
when the improved lower bound is used the algorithm finishes in less
than 1500 iterations for more than 90% of the simulated cases, but with
the basic lower bound the algorithm needs about 1.5 x 10° iterations to
find the optimal solution with the same probability.

In the sequel, we use the proposed Algorithm 1 to evaluate numer-
ically the performance loss of the following suboptimal algorithms:
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Fig. 5. Average weighted sum-rate on SNR.

1) generalized asynchronous distributed (GAD) algorithm [25, Sec.
I1], 2) distributed interference alignment (DIA) algorithm [26], and 3)
weighted sum mean-square error minimization (WMMSE) algorithm
[27]. The algorithms GAD and DIA can handle only interference chan-
nels (IC), and therefore we limit our simulations to a two-user MISO
IC. Specifically, in the following simulation we consider one user per
BSin Fig. 2, i.e., only user 2 of BS 1 and user 3 of BS 2 are considered.

Fig. 5 shows the weighted sum-rate of the considered algorithms for
different SNR values.# Each curve is averaged over 500 fading realiza-
tions. Transmit beamforming vectors with full transmit power are used
for initializing the beamformers of suboptimal algorithms. For Algo-
rithm 1, the accuracy ¢ is set to 0.01. Results show that, the performance
of GAD algorithm is very close to the optimal value irrespective of SNR
values for the considered system setup. The DIA algorithm has a no-
ticeable performance loss at low SNR values, however, it approaches
to the optimal value at high SNR values. In contrast, the performance
of WMMSE algorithm is close to the optimal value at low SNR values
and exhibits a noticeable performance loss at high SNR values.

VI. CONCLUSION

We have considered the problem of weighted sum-rate max-
imization (WSRMax) in multicell downlink multi-input single-
output (MISO) systems. In fact, this problem is NP-hard. A solution
method, based on the branch and bound technique has been pro-
posed for solving the nonconvex WSRMax problem globally with
an optimality certificate. Efficient bounding methods based on conic
optimization are proposed. The convergence speed of the proposed al-
gorithm can be substantially increased by improving the lower bound.
Performance benchmarks for various network design problems can be
obtained by back-substituting the proposed algorithm into any network
design method which relies on WSRMax. Moreover, the method pro-
posed here is not restricted to WSRMax. It can also handle any system
performance metric that can be expressed as a Lipschitz continuous
and increasing function of signal-to-interference-plus-noise ratio.
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