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Motivation

Centralized RA requires gathering problem data at a central
location -> huge overhead

Large-scale communication networks -> large-scale
problems

Distributed solution methods are indeed desirable

Many local subproblems -> small problems
Coordination between subproblems -> light protocol
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Motivation

WSRMax: a central component of many NW control and
optimization methods, e.qg.,

Cross-layer control policies

NUM for wireless networks

MaxWeight link scheduling for wireless networks
power and rate control policies for wireless networks

achievable rate regions in wireless networks
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Challenges

WSRMax problem is nonconvex, in fact NP-hard
At least a suboptimal solution is desirable

Considering the most general wireless network (MANET) is
indeed difficult

A particular case is infrastructure based wireless networks
Cellular networks

Coordinating entities
MS-BS, MS-MS, BS-BS

Coordination between subproblems -> light protocol
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Our contribution

Distributed algorithm for WSRMax for MISO
interfering BC channel; BS-BS coordination required

Algorithm is based on primal decomposition methods and
subgradient methods

Split the problem into subproblems and a master problem
local variables: Tx beamforming directions and power
global variables: out-of-cell interference power

Subproblems asynchronous (one for each BS)
variables: Tx beamforming directions and power

Master problem resolves out-of-cell interference (coupling)

P. C. Weeraddana, M. Codreanu, M. Latva-aho, and A. Ephremides, IEEE Transactions on Signal Processing,
February, 2013
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System model

: number of BSs

=

N :set of BSs

L : number of data streams
[ : set of data streams

L(n) : set of data streams of BS n

T : number of BS antennas

rec(l) : receiver node of d.s. [

interference region Tx region tran(l) : transmitter node of d.s. [



signal vector transmitted by BS n

pI : power
d; :information symbol; E|d;|* =1, B{d;d;} =0

v; : beamforming vector; || V|2 = 1
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System model

signal received at rec(l)

intra-cell interference

Y

y=hyyordvi+ 3 hyypidiv;
jeL(tran(l)),j#!

+ D >, hypjdivi+ 2

ieN\{tran(l)} jEL(7)

out-of-cell interference

hg-{l : channel; tran(j) to rec(l)

. : . : 2
z] : cir. symm. complex Gaussian noise; variance 0]
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System model

received SINR of rec(l)

pi|hyvi)?

o+ X pjlhgvil*+ >z
jeL(tran(l)),j#l ieEN\{tran(l)}
_ e ———

intra-cell interference out-of-cell
interference

Y =

Zil = Zje L£(3) pj\hgv ;|* : out-of-cell interference power; i th BS to Tec(l)



System model

out-of-cell interference

power, e.g.,
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System model

received SINR of rec(l)

pi[hyvi|?
= 2 H 2
o+ 2. pjlhy v > Zil
jeL(tran(l)),j#l EN\{tran(l)}
N

out-of-cell
interference

intra-cell interference

Zil = Zje L£(3) pj‘hgvj‘2 : out-of-cell interference power; 7 th BS to rec(l)
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System model

received SINR of rec(l)

pi|hyvi)?

o+ 2 pilhyvilP+ Yz
jEL(tran(l)),j#l 1€ Nint (1)
—_— ) ~—_—_———

intra-cell interference out-of-cell
interference

Y =

z;1 . out-of-cell interference power (complicating variables)

Nint (1) : set of out-of-cell interfering BSs that interferes 7ec(!)



System model

e.g.,

N N N /N

O 1O b~ o0

N’ e N NS

SR RCRS



System model

e.g.,
Ling = {6,9,12}

Liqt - set of d.s. that are
subject to out-of-cell

Iinterference
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System model
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System model

Liqt - set of d.s. that are
subject to out-of-cell

Iinterference
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Problem formulation

( H. |2
C L 5 3 8log|1 + pihy v
miNImIzZe —) _,,cn 2 ier(n) Pl 08
R S S R
jeL(tran(l)),j#l 1€ Nt (1)
subject to z;; = Zjeﬁ(z’) pj|h%Vj 2, l € Lint, 7 € Nint(1)

ey pilvills < P, ne N

|vill2=1, m >0, leLl,

variables: 1P, Vitiec and {zi }leﬁint,z’eNmt(l)



Primal decomposition

subproblems (for all neN) :

minimize —) ;¢ L(n) 1 log

subject 10 2i; > > e (i) P

Zleg(n) pl||Vl||% <

vill2 =1, pi

variables: {91, Vi }lec(n)

f

1+
2.

\ Ul2 +
JEL(N),j#l

hivil% 1 e Lin(n)
max

Dn,
> 0,1 e L(n)

pilhyvi)?
pilhgvi®+ >z
zEMnt(l)

master problem: minimize )\ fn(2)

subjectto z = 0,

variables: 2 = {Znl}neN, leLin (n)



Subproblem (BS optimization)

|
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Subproblem
minimize —) ¢ L(n) Bilog (1 + )
pi|hyvi?
subject to VI S — T , L€ L(n)
of + > pilhygvilF+ >0z
JEL(n),jF#! i€Nint (1)

Zil 2 Zjeﬁ(@-)pj|h§lzvj|2a I € Lint(n)

max

Yecmpilvill3 < pp
[vill2=1, p=>0,1€L(n)

variables: {p1, Vi, Vl}leﬁ(n)

The problem above is NP-hard

Suboptimal methods, approximations
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Subproblem: key idea

The method is inspired from alternating convex
optimization techniques

Fix beamforming directions {Vi}ezm)

Approximate objective -3, Ailog(1+v) by an UB function
resultant problem is a GP; variables {pi, Vi};co(m)

Fix the resultant SINR values {7V }iecm)

Find beamforming directions {Vi}iccn) that can preserve
the SINR values with a power margin

this can be cast as a SOCP

Iterate until a stopping criterion is satisfied



Subproblem: key idea

72‘

0) ()

Vi,Va

fixed

BS optimization:
initialization

Y

/

BS optimization:
objective
approximation

\

BS optimization:
GP

'

Stopping criterion
is satisfied ?

BS optimization:
SOCP

71
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Subproblem: key idea

BS optimization:
initialization

72‘

Y
BS optimization:
objective
approximation

\

BS optimization:
GP

'

Stopping criterion
is satisfied ?

BS optimization:
SOCP

v v fixed

v v fived

T



Master problem




Master problem

minimize ), fn(2)
subject to z = 0,

variables: 2 = {Znl}neN, el (n)

Recall: subproblems are NP-hard -> we cannot even
compute the master objective value

Suboptimal methods, approximations

Problem is nonconvex -> subgradient method alone fails
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Master problem: key idea

The method is inspired from sequential convex
approximation (upper bound) techniques

subgradient method is adopted to solve the resulting
convex problems



Integrate master problem & subproblem

Increasingly important:

convex approximations mentioned above are such that we
can always rely on the results of BS optimizations to
compute a subgradient for the subgradient method.

thus, coordination of the BS optimizations



Integrate master problem & subproblem

each BS » carries out per BS
optimizations

J subgradient method; BS-BS

coordination

upper bound for master objective

-

master problem
objective

[

Zl Z9 out-of-cell interference 7
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Integrate master problem & subproblem

BS optimization:

i e out-of-cell interference: z

A
B optimization objective value computed by
objective N
apprcj>><imation BS n at'F': fn (Z)
BS optimization: we can ShOW that

GP

ZneN fn (Z) < Zné/\/’ 10g (fn (Z) )
> nen fn (@) < 30 arlog (fn (4)

_ﬁ
BS optimization: convex
SOCP
l optimal sensitivity values

of GP -> construct

subproblem subgradient



Integrate master problem & subproblem

each BS » carries out per BS o
optimizations upper bound for master objective

> e log (JE n ()
subgradient method; BS-BS

coordination

-

master problem
objective

Zn@\/‘ fn (ei)

Zl Z9 out-of-cell interference Z
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Integrate master problem & subproblem

BS optimization:
initialization

BS optimization:
objective
approximation

BS optimization:
GP

i

Stopping criterion
is satisfied ?

NO

BS optimization:
SOCP

:

Algorithm 1
(subproblem)

Algorithm
initialization

o

Algorithm 1

>iFa

Subgradient
method

l

BS optimization:
GP

g

Stop. criterion

is satisfied ? YES

Algorithm 2
(overall problem)



An example signaling frame

- data transmission phase —»I

—» {4+—signalling phase

- BS coordination window s
\\\\\\\ time periods for which per BS stopping
\\\\\\ criterion is satisfied

Dk T
-
-
-
-a
-
-
-
-~
-~

BS optimization window s
Initial signalling window time periods for which per BS
used for Algorithm 2 initialization stopping criterion is not satisfied

note: 1in Alg. [ or subgradient method,
‘BS optimization GP’is always carried out

in our simulations:

- fixed Alg.1 iterations (J/BS—opt )

- fixed subgrad iterations ( Jsubgrad )
per switch

structure

Algorithm
initialization

o

Algorithm 1

Fs
A

Subgradient
method

:

BS optimization:
GP

g

Stop. criterion

is satisfied ? YES

Algorithm 2
(overall problem)



Numerical Examples

10 20

15

10

Y-Coordinate [distance unit]
=)
Y-Coordinate [distance unit]
(3]

-10 10
-0 20 25 -0 5 ~~~~~~ R 5 i 10 i 20 25
X-Coordinate [distance unit] X-Coordinate [distance unit]
° _4 . °
channel gains: h;; =/ dij * cij SNR operating point:
max
. . . Po d<1

d;; : distance from tran(i) to rec()) SNR(d)— o2

Cij : small scale fading coefficients pax J—4 otherwise
o

anaX/a% =45dB, Dps=1.5Rpg
SNR(Rps)=8dB, SNR(Rin)= 0dB
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Numerical Examples
15

14

—_—
W

—
N

—
—
B

—_WMMSE [Luo-11]

WSR value [bits/sec/HZ]

10 I
---------- centralized alg. [Codreanu-07]
__oproposed Alg. 2, Jsubgrad 1 Subgrad
9 _ . proposed Alg. 2, J =10

subgrad — H
proposed Alg. 2, Jsubgrad 50 | F
------------- distributed alg. [Emil-10]
8 ; ' ' T2 s
20 40 60 80 100 120 e

(Algorithm 1 iterations + subgradient iterations)

Jsubgrad  -> the degree of BS coordination

note -> subgradient is not an ascent method

out-of-cell interference is resolved -> objective value is increased
smaller Joungaa performs better compared to large Jsubgrad

light backhaul signaling
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Numerical Examples

each BS » carries out per BS N
optimizations upper bound for master objective

> nenlog (fn (%) )
subgradient method; BS-BS

coordination

master problem
objective

ZnGN fn (62)

[

out-of-cell interference 7

NI
’_l
(\V]

accuracy of the solution of an approximated master problem is
irrelevant in the case of overall algorithm

refining the approximation more often is more beneficial
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30

N
(o8}

N
(e}

N
NG

WSR value [bits/sec/HZ]

\Y]
N

Fs

T ----------- centralized alg. [Codreanu-07] Subgrad

—_ WMMSE [Luo-11]

N
o

__o proposed Alg. 2, Jsubgrad =1 |
_ o proposed Alg. 2, Jsubgrad =50 @

T ------------- distributed alg. [Emil-10] Fa

18 20 40 60 80 100 120 %

(Algorithm 1 iterations + subgradient iterations )

same behavior

smaller Jsubgrad performs better compared to large



Numerical Examples

14

—
w

—
[\

—
o

WSR value [bits/sec/Hz]

algorithm performs better than the centralized algorithm

—
—

_ o proposed Alg. 2, J

— WMMSE [Luo-11]

centralized alg. [Codreanu-07]

— g Pproposed Alg. 2, J =1

subgrad —

subgrad —

— o proposed Alg. 2, J =50

subgrad
distributed alg. [Emil-10]

=10

20

40

60

80 100 120

(Algorithm 1 iterations + subgradient iterations )
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YES

not surprising since both algorithms are suboptimal algorithms
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Numerical Examples

30
28
N
I 26
N
13}
O
L
g 24
5
o
3 22
S
o
» 20L.4 — WMMSE [Luo-11]
= L Y [—— centralized alg. [Codreanu-07]
184 o proposed Alg. 2, Jsubgrad =1
_ o proposed Alg. 2, Jsubgrad =50
------------- distributed alg. [Emil-10] VES

16 20 40 60

80 100 120

(Algorithm 1 iterations + subgradient iterations)

algorithm performs better than the centralized algorithm

not surprising since both algorithms are suboptimal algorithms
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Numerical Examples

12.5

12

11.5

—
—

© . ©
o o

=

—%— WMMSE [Luo-11]
' — 5 proposed Alg. 2
& WMMSE [Luo]: 1.0% error in cov. estimation (i.e., e, :1)

Average WSR value [bits/sec/Hz]

) T WMMSE [Luo]: 1.5% error in cov. estimation (i.e., e, _1 9) ] Subgrad
ceeetee. WMMSE [Luo]: 2.0% error in cov. estimation (i.e,, eCOV—Z)
e centralized alg. [Codreanu-07] i -
gl L distributed alg. [Emil-10] F2
0 2 4 6 8 10

subgradient iterations (for Alg. 2) / iterations (for WMMSE alg.)

Jsuberad = 1; one subgradient iteration during BS coordination window
12% improvement within 5 BS coordination

999, of the centralized value within 5 BS coordination

WMMSE performs better with no errors in user estimates

WMMSE with even 1% error in signal covariance estimations at user perform
poorly
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Numerical Examples

30 e * ¢

\

N
o

Average WSR value [bits/sec/Hz]
N
S

22 S WMMVISE [Luo11] - i
—g— proposed Alg. 2 T
s WMMSE [Luo]: 1.0% error in cov. estimation (i.e., ewv:1) Fs

20] 4‘ oD WMMSE [Luo]: 1.5% error in cov. estimation (i.e., ewv:1.5) 1 Subgrad
weredeme WMMSE [Luc]: 2.0% error in cov. estimation (i.e., ewv:2)

18] centralized alg. [Codreanu-07] 1 F,
-------------- distributed alg. [Emil-10]

0 2 4 6 8 10 G YES
subgradient iterations (for Alg. 2) / iterations (for WMMSE alg.) Ly

Jsubgrad = 1; one subgradient iteration during BS coordination window

249%0 improvement within 5 BS coordination

94906 of the centralized value within 5 BS coordination

WMMSE performs better with no errors in user estimates

WMMSE with even 1% error in signal covariance estimations at user perform poorly
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Conclusions

Problem: WSRMax for MISO interfering BC channel (NP-hard)
Techniques: Primal decomposition

Result: many subproblems (one for each BS) coordinating to
find a suboptimal solution of the original problem
Subproblem: alternating convex approximation techniques,
GP, and SOCP
Master problem: sequential convex approximation
techniques and subgradient
method

Coordination: BS-BS (backhaul) signaling; favorable for
practical implementation

Substantial improvements with a small humber of BS coordination

-> favorable for practical implementation

Numerical examples -> algorithm performance is
significantly close to

(suboptimal)
centralized solution methods



