
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 5, NO. 1, MARCH 2018 333

A Semidistributed Approach for the Feasible
Min-Max Fair Agent-Assignment Problem With

Privacy Guarantees
Yuzhe Xu, Member, IEEE, Elisabetta Alfonsetti, Pradeep Chathuranga Weeraddana, Member, IEEE,

and Carlo Fischione , Member, IEEE

Abstract—In cyberphysical systems, a relevant problem is as-
signing agents to slots by distributed decisions capable of preserv-
ing an agent’s privacy. For example, in future intelligent trans-
portation systems, city-level coordinators may optimally assign
cars (the agents) to parking slots depending on the cars’ distance
to final destinations in order to ensure social fairness and without
disclosing or even using the car’s destination information. Unfor-
tunately, these assignment problems are combinatorial, whereas
traditional solvers are exponentially complex, are not scalable, and
do not ensure privacy of the agents’ intended destinations. More-
over, no emphasis is placed to optimize the agents’ social benefit. In
this paper, the aggregate social benefit of the agents is considered
by an agent-slot assignment optimization problem whose objective
function is the fairness among the agents. Due to the problem’s com-
plexity, the problem is solved by an approximate approach based
on Lagrange duality theory that enables the development of an
iterative semidistributed algorithm. It is shown that the proposed
algorithm is gracefully scalable compared to centralized methods,
and that it preserves privacy in the sense that an eavesdropper will
not be able to discover the destination of any agent during the algo-
rithm iterations. Numerical results illustrate the performance and
tradeoff of the proposed algorithm compared to the ideal optimal
assignment and a greedy method.

Index Terms—Algorithms, intelligent transportation systems,
optimization methods, privacy.

I. INTRODUCTION

THE Problem of assigning agents to slots based on the in-
tended destination of the agents appears in many domains.

In logistics, agents could move goods to slots that facilitate
the productions. Arguably, one of the most prominent cases of
agents assignment is car parking (agents) to slots close to the
intended destination of the drivers. In large cities, these prob-
lems are pronounced by hundreds or even thousands of drivers
who are looking for slots during their daily activities. In [2] it is

Manuscript received May 4, 2016; revised August 9, 2016; accepted August
25, 2016. Date of publication September 13, 2016; date of current version March
16, 2018. This work was supported by EU projects Hycon2 and VR project PRE-
SIDIUM. A preliminary version of this work appeared in [1]. Recommended
by Associate Editor Shun-Ichi Azuma.

Y. Xu and C. Fischione are with Electrical Engineering, KTH Royal Institute
of Technology, Stockholm, Sweden (e-mail: yuzhe@kth.se; agentlofi@kth.se).

E. Alfonsetti was with TerraSwarm Lab, Electrical Engineering Department,
UC Berkeley, California, USA (e-mail: e.alfonsetti@berkeley.edu).

P. C. Weeraddana is with the Sri Lanka Institute of Information Technology,
Malabe, Sri lanka (e-mail: chathuranga.we@sliit.lk).

Digital Object Identifier 10.1109/TCNS.2016.2609151

claimed that seeking for assignment slots (cruising) can account
for more than 10% of the local circulations in central areas of
large cities. In [3], it is reported that cruising for open assign-
ment spaces accounts for 30% of the traffic, causing undesired
congestion in big cities. In addition, cruising creates additional
delays and drivers can even spend up to 10–20 minutes before
they could find a proper slot. According to a recent British study,
it is estimated that a person who owns an agent in big cities can
take an average of 6 to 20 minutes to search for an empty slot,
which accounts for monetary losses (e.g., deterioration, unnec-
essary fuel wastage), as well as for nonmonetary expenses (e.g.,
frustration, psychophysical stresses). In [3], it was noted that
designing efficient parking car assignment mechanisms is in-
strumental in directly reducing the cruising traffic, and is just as
important as other related methodologies to minimize undesired
traffic conditions, especially in big cities.

Several research attempts have been made in the field of
ITS, which support drivers to locate a free slot, see [4]–[12].
In general, these existing methods employ a central authority
(CA), who is responsible for providing the underlying infras-
tructure. For example, thousands of sensors have to be deployed
to detect the availability of free slots [4]–[9], [12]. The authors
in [10] and [11] have considered vehicular ad-hoc networks,
where advanced roadside units are assumed to be widely de-
ployed and every vehicle is equipped with sophisticated on-
board units. Real-time agent assignment mechanisms have been
implemented by smart phones in central areas of large cities,
see Steeteline Parker [13], VehicleSense Street assignment In-
formation Network (SPIN) [14], VehicleSense SmartLot [14],
and SFMTA SFpark [15]. Like another research work proposed
in [4]–[12], these methods rely on a central authority for pro-
viding the underlying infrastructure, such as wireless sensors,
database-management systems, etc.

However, in almost all existing methods mentioned before,
no emphasis has been placed on optimizing an aggregate social
benefit of the users during the slot assignment. For example, in
[16], an assignment problem has been investigated, with particu-
lar emphasis on distributed solution methods. However, the cost
function of the problem did not consider fairness. The presence
of a fairness cost function demands a solution approach com-
pletely different from [16]. Arguably, the existing mechanisms
can be interpreted as greedy methods, where each user selects
the closest free slot to its destination. Such greedy methods can

2325-5870 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9810-3478

334 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 5, NO. 1, MARCH 2018

Fig. 1. An illustration of agent-slot assignment: (a) Physical locations of free
slots (squares) and agents’ destinations (circles). (b) Graph, where the weights
denote the costs for assigning the slots to the agents.

easily account for substantial imbalances among the distances
between users’ slots and their destinations, which are not fair.
In other words, some users can be assigned to slots that are
very close to their destinations while others can be assigned to
slots that are far from their destinations. Fig. 1 shows a case
where two agents are to be assigned to two slots. A greedy ap-
proach yields the agent-slot assignments (1, 1) and (2, 2), which
accounts for a total cost of 8 and a cost imbalance of 2. However,
a fair approach yields the assignments (1, 2) and (2, 1), which
accounts for a cost imbalance of 0. Although greedy methods
are the most intuitive for agents such as drivers, more fair al-
gorithms can be enforced by parking pricing mechanisms that
discourage greedy parking.

Therefore, it is worth seeking efficient as well as advanced
algorithms that are capable of optimizing some aggregate so-
cial benefit for the users of the system. Since the involvement
of a central authority is instrumental in coordinating the agent
assignment mechanisms, optimization criteria can be integrated
into the assignment methods, where some aggregate social met-
ric (utility) is considered during the assignment process. One
such simple appealing utility is users’ fairness [17]. In addition
to fairness, ensuring privacy of the agent assignment is also
important, see [11], [18], and [19]. Naturally, users would not
like to publish information, such as their destinations to pre-
vent a third party from predicting private traveling patterns. For
example, government agencies could probe such information
during investigations, and business entities might be interested
in exploiting such information to promote their products and ser-
vices. Therefore, exposure of private information raises serious
concerns of personal privacy.

The main contributions of this paper are as follows.
1) We consider the min-max fairness as a metric for mod-

eling the aggregate social benefit of the users [17]. In
particular, we consider the distance between slot and the
destination that corresponds to every user. We refer to
this distance, associated with any user, as the assignment
distance. Then, we design an algorithm to minimize the
maximum assignment distance among all users. The pro-
posed algorithm is based on duality theory [20, Sec 5].
Our formulation and the corresponding algorithm can be
applied directly or with minor modifications in fair agent-
target assignment problems in other application domains
as well and, therefore, is not restricted to the car parking
problem.

2) We capitalize on dual decomposition techniques and the
subgradient methods [20]–[22] to accomplish distributed
implementation (among users) of the proposed algorithm
with a little coordination of the central authority. There-
fore, the proposed algorithm holds scalable properties,
which is indeed favorable in practice.

3) The proposed agent assignment mechanism is privacy pre-
serving in the sense that any agent involved in the algo-
rithm will not be able to find out the destination of any
other agent during the algorithm’s iterations. This privacy
is accomplished as a result of the inherent decomposition
structure of the problem together with randomization of
the step size of the subgradient method.

4) Numerical examples are provided to evaluate the perfor-
mance of the algorithm. In addition, the proposed algo-
rithm is compared with the optimal assignment method
and with a greedy assignment method.

Thus, our solution approach for the agent assignment problem
is fair, distributed, and is easy to deploy with the coordination of
a central entity. In addition, it has appealing privacy properties.

The rest of this paper is organized as follows. A description
of the system model and the assignment problem formulation
is presented in Section II. In Section III, we provide the solu-
tion method to the agent assignment problem by using duality
theory and subgradient method. Section IV presents our pro-
posed algorithm for the distributed agent assignment problem.
The convergence and optimality properties of the proposed al-
gorithm are given in Sections V. In Section VI, we describe
privacy properties of the algorithm. In Section VII, numerical
results are provided. Finally, Section VIII concludes this paper.

I. Notations

Boldface lowercase and uppercase letters represent vectors
and matrices, respectively, and calligraphy letters represent sets.
The set of real n-vectors is denoted by IRn and the set of real
m× n matrices is denoted as IRm×n . We use parentheses to con-
struct matrices from comma-separated submatrices of agreed
dimensions, e.g., (A,B,C) = [AT BT CT]T . We denote by
(Ai)i=1,2,...,N the matrix A = (A1 ,A2 , . . . ,AN). The cardi-
nality of a set A is denoted by agentdA.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a system consisting of M slots and a number of
destinations. We denote by M = {1, . . . , M} the set of slots.
Destinations can include any geographical locations, such as
shops, bars, banks, cinemas, houses, parks, and hotels, among
others. The slots and the destinations can be geographically
dispersed and need not necessarily be concentrated. Few free
slots could be relatively close to some agents’ destinations, and
these could be preferred by many agents. Once these slots are
occupied, some agents have to continue cruising for other free
slots leading to unexpected time and fuel costs. Therefore, it is
not trivial for agents to find free parking slots. Knowledge of
geographical location of each slot is assumed to be available
to anyone in the system. A trustworthy central controller (CC)
is responsible for coordinating the slot assignment mechanism,

XU et al.: SEMIDISTRIBUTED APPROACH FOR THE FEASIBLE MIN-MAX FAIR AGENT-ASSIGNMENT PROBLEM WITH PRIVACY GUARANTEES 335

namely, it is the central authority. The coordinations are carried
out through secure channels.

The slot assignment mechanism is assumed to operate over
time frames, with the discrete time being given by integer values
t = 1, 2, 3, At the beginning of every time frame t, the set
Mt ⊆M of free slots is known, and denote by Mt the number
of free slots at time frame t.1 In addition, at the beginning
of every time frame t, a set Nt = {1, . . . , Nt} of agents is
scheduled for slot assignment. Assume Nt ≤Mt , and the agent
comes last is excluded if the number of agents is larger than
that of the slots.2 We denote by des(i) the destination locations
of agent i ∈ Nt . Denote by ui(dij) the cost for agent i to park
at free slot j ∈Mt , where dij is the distance from des(i) to
free slot j, and ui : R→ R is monotonically increasing and
strictly concave in dij . We assume that each agent i can compute
{ui(dij)}j∈Mt

simply by knowing the geographical location of
des(i). Such computations can be easily performed by using the
state-of-the-art global positioning system (GPS).

To formally express the problem, first consider binary deci-
sion variables x = (xij)i∈Nt , j∈Mt

, and let xij = 1, if agent i is
assigned to slot j, xij = 0, otherwise. A feasible assignment is
such that an agent is assigned to a free slot and no more than an
agent is assigned to a free slot. Now, we can formally express
the cost from agent i’s assigned slot to its destination des(i) as∑

j∈Mt
ui(dij)xij , that is, the assignment cost of agent i.

Min-max fairness is appealing in many application domains
in the sense that it ensures equalization of the costs incurred
by the users, see [17]. To ensure min-max fairness among the
agents, the objective is to minimize the maximum assignment
cost. The problem is formally expressed as

minimize
x

f(x) := max
i∈Nt

∑

j∈Mt

ui(dij) xij (1a)

subject to
∑

i∈Nt

xij ≤ 1, j ∈Mt (1b)

∑

j∈Mt

xij = 1, i ∈ Nt (1c)

xij ∈ {0, 1}, i ∈ Nt , j ∈Mt , (1d)

where constraint (1b) ensures that no more than an agent is
assigned to a free slot. Constraint (1c) imposes that each agent
is assigned to only one free slot. Finally, constraint (1d) ensures
that the values of xij are either 0 or 1. We remark here that
optimization problem (1) is a special case of linear bottleneck
assignment problem; thus, the optimal assignment depends only
on the relative order of ui(dij) and not on their numerical value
[24]. Therefore, without loss of generality, in the following text,
we use dij instead of ui(dij) in (1a) to simplify the problem
formulation. An illustration is shown in Fig. 1.

Optimization problem (1) is combinatorial. We have to rely
on global optimal methods [21], such as exhaustive search, or
branch-and-bound methods to solve it. The main disadvantage
of global methods is the prohibitive computational complexity,

1Such information is retrieved by installing sensors at every slot.
2The first-in first-out mechanism is applied to ensure Nt ≤Mt , which is one

of the most popular methods for queuing management [23].

even in the case of small problems. Such methods are not scal-
able with the numbers of agents and slots and, therefore, can be
impractical. Compared to the assignment problem in [16], the
cost function is different, which prevents applying the method
therein proposed. In the sequel, we provide a solution method
based on duality theory. We show that the method provides a
solution of bounded suboptimality, and it is efficient, fast, and al-
lows distributed implementation with a little coordination from
the CC.

III. PRELIMINARIES

In this section, we first equivalently formulate problem (1)
in its epigraph form [20]. Then, we apply the duality theory
to obtain the related dual problem, and show that the problem
is split into subproblems and a master problem which can be
solved efficiently. The equivalent problem is given by3

minimize
x, s

s (2a)

subject to
∑

j∈M
dij xij ≤ s, i ∈ N (2b)

∑

i∈N
xij ≤ 1, j ∈M (2c)

∑

j∈M
xij = 1, i ∈ N (2d)

xij ∈ {0, 1}, i ∈ N , j ∈M , (2e)

Note that (2) is still combinatorial. Now we seek to decouple
the problem among the agents for the scalability of the agent
assignment mechanism. In this context, we can clearly see that
constraints (2d), (2e) are already decoupled, yet constraints (2b),
(2c) are coupled among the agents, which is an obstacle to
distributed solution methods.

Lemma 1: Consider optimization problem (2). Let λ =
(λi)i∈N be the Lagrangian multiplier for constraint (2b), and
let μ = (μj)j∈M be the Lagrangian multiplier for constraint
(2c). Then, the dual function is

g
(
λ,μ

)
=

{∑
i∈N gi(λ,μ)−∑j∈Mμj

∑
i∈Nλi = 1

−∞ otherwise
,

(3)
where gi(λ,μ) =

∑

j∈M
(λidij + μj)x�

ij , with

x�
ij =

{
1 if j = arg minl∈M(λidil + μl)

0 otherwise
. (4)

Proof: The Lagrangian associated with problem (2) is

L(s,x,λ,μ) = s

(

1−
∑

i∈N
λi

)

+
∑

i∈N

∑

j∈M
(λidij + μj)xij

−
∑

j∈M
μj . (5)

3Without loss of generality, we drop the subindex t for notational simplicity.

336 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 5, NO. 1, MARCH 2018

The dual function is therefore given by

g (λ,μ) = inf
s ∈IR ,∑

j ∈M x i j = 1 , i∈N ,

x i j ∈{0 , 1 }, i∈N , j ∈M

L (s,x,λ,μ) (6a)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑

i∈N

⎛

⎜
⎜
⎝ inf∑

j ∈M x i j = 1 ,

x i j ∈{0 , 1 }, j ∈M

∑

j∈M
(λidij + μj)xij

⎞

⎟
⎟
⎠−

∑

j∈M
μj

if
∑

i∈N
λi = 1

−∞ otherwise,
(6b)

where equality (6b) follows from constraints (2d), (2e) being
separable, and gi(λ,μ) is the optimal value of the problem

minimize
x i

∑

j∈M
(λidij + μj)xij

subject to
∑

j∈M
xij = 1

xij ∈ {0, 1} , j ∈M ,

(7)

with the binary decision variable xi(xij)j∈M. Note that problem
(7) is a combinatorial problem. Nevertheless, simple algebra
shows that it has a closed-form solution given by (4), which
concludes the proof. �

From the previous lemma, we obtain the dual master problem
of (2) as

maximize
λ,µ

g(λ,μ) =
∑

i∈N
gi(λ,μ)−

∑

j∈M
μj (8a)

subject to
∑

i∈N
λi = 1 (8b)

λi ≥ 0, i ∈ N (8c)

μj ≥ 0, j ∈M . (8d)

Then, we have the following simple result:
Proposition 1: The solution to (8) is given by the limit of the

following iterations:

λ(k+1) = Ps(λ(k) − αku(k)) (9)

μ(k+1) = [μ(k) − αkv(k)]+ , (10)

where Ps(·) is the Euclidean projection onto the probability
simplex [22],

Π =
{

λ

∣
∣
∣
∑N

i=1 λi = 1, λi ≥ 0
}

(11)

the term [·]+ is the Euclidean projection onto the non-negative
orthant αk = α/k, where α is a positive scalar, and

u(k) =
(
u

(k)
i

)

i∈N
=

⎛

⎝−
∑

j∈M
dijx

�
ij

⎞

⎠

i∈N

(12)

v(k) =
(
v

(k)
j

)

j∈M
=

(

1−
∑

i∈N
x�

ij

)

j∈M
, (13)

where x�
ij is given in (4).

Proof: We solve problem (8) based on the projected sub-
gradient method [25]. Note that g(λ,μ) is a concave function;
therefore, we need to find the subgradient s ∈ IRN +M of −g at
a feasible (λ,μ). For clarity, we separate s into two vectors as
s = (u,v). The negative of dual function is given by

−g(λ,μ) =
∑

j∈M
μj −

∑

j∈M
μj

∑

i∈N
x�

ij −
∑

i∈N
λi

∑

j∈M
dijx

�
ij ,

and particular choices for ui, i ∈ N and vj , j ∈M are given
by (12) and (13). Thus, the projected subgradient method is

(λ(k+1) ,μ(k+1)) = P ((λ(k) ,μ(k))− αk (u(k) ,v(k))) , (14)

where k is the current iteration index of the subgradient method,
P (z) is the Euclidean projection of z ∈ IRN +M onto the feasible
set of the dual problem (8), and αk > 0 is the kth step size, cho-
sen to guarantee the asymptotic convergence of the subgradient
method, e.g., αk = α/k. Since the feasible set of dual problem
is separable in λ and μ, the projection P (·) can be performed
independently. Therefore, the iteration (14) is equivalently per-
formed as (12) and (13). Note that the Euclidean projection
onto the probability simplex is posed as a convex optimiza-
tion problem that can be solved efficiently, which concludes the
proof. �

Denote by λ� and μ� the optimal solutions for the dual master
problem (8). Note that x�

ij(λ
� ,μ�) given in (4) is not necessary

to satisfy constraint (2c). Therefore x�
ij(λ

� ,μ�) may be infeasi-
ble for primary problem (1). In the next section, we develop a
distributed solution algorithm together with a simple subroutine
to optimization problem (1), which could produce a near-to-
optimal and feasible assignment.

IV. ALGORITHM DEVELOPMENT

In this section, we first present our distributed algorithm to
address problem (1) via the dual problem (8). The resulting
algorithm is a distributed agent assignment mechanism that can
be coordinated by the CC or the central controller. We first
give the algorithm and then we present the convergence and
optimality properties in the following section.

A. Distributed Algorithm Development

The algorithm capitalizes on the ability of the CC to construct
the subgradient (u,v) in a distributed fashion via the coordi-
nation of scheduled agents. The involvement of a CC (e.g., an
authority who handles the slots) is essential for realizing the
overall algorithm in practice. This involvement is mainly for
coordinating parameters among the agents, and for constricting
a feasible assignment in case the assignment from the dual prob-
lem is infeasible. We let the initial dual variable λ

(1)
i = 1/N ,

whereas let μ(1) = (μ(1)
j)j∈M = 0 for each agent i ∈ N . The

algorithm is given below.

B. DAA Algorithm Description

In step 1, the algorithm starts by choosing initial feasible val-
ues for λ

(k)
i , i ∈ N and μ

(k)
j , j ∈M. Step 2 corresponds to the

local computations of x(k)
i at each agent i. These computations

XU et al.: SEMIDISTRIBUTED APPROACH FOR THE FEASIBLE MIN-MAX FAIR AGENT-ASSIGNMENT PROBLEM WITH PRIVACY GUARANTEES 337

Algorithm: Distributed agent-assignment (DAA)

1) Given the distances (dij)j∈M for each agent i ∈ N .
The CC sets k = 1, sets current objective value pcur

(0) =∞, sets number of conflicting users N conflict =
N , and broadcasts the initial(feasible) λ

(1)
i = 1/N

and μ(1) = (μ(1)
j)j∈M = 0 to each agent i ∈ N .

2) Every agent i sets λi = λ
(k)
i and μ = μ(k) and locally

computes x(k)
i = (x�

ij)j∈M from (4). Let jk
i denote

the index of the nonzero component of x(k)
i .

3) Local subgradients: Each agent i

a. sets u
(k)
i = −∑j∈M dijx

(k)
ij = −dijki

, [(12) and
(13)].

b. transmits (u(k)
i , jk

i) to CC.
4) Current assignment and Subgradient iteration at CC

a. find set J (k)
j of users assigned to slot j, i.e., J (k)

j

= {i|jk
i = j}. Set N conflict

k =
∑

j |agentd(J (k)
j)≥2

agentd(J (k)
j).

b. if no conflicting assignments (i.e., N conflict
k = 0),

set N conflict = N conflict
k and go to step 4-c.

Otherwise, go to step 4-d.
c. if pcur(k − 1) > maxi∈N dijki

, set pcur(k) =
maxi∈N dijki

and set Xcur(k) =
(
eT

j k
i

)
i∈N

∈ IRN×M . Go to step 4-e.
d. if N conflict

k <N conflict , set N conflict = N conflict
k ,

pcur(k) =∞, Xcur(k) =
(
eT

j k
i

)
i∈N ∈ IRN×M ,

and J cur
j = J (k)

j , j ∈M. Go to step 4-e.

e. form u(k) = (u(k)
i)i∈N and perform (9) to find

λ(k+1) .
f. set vj = 1− agentd(Jj), v(k) = (vj)j∈M, [(12)

and (13)].
g. perform (10) to find μ(k+1) .

5) Stopping criterion: If k > K, go to step 6.4

Otherwise,
b. CC broadcasts the new λ

(k+1)
i and μ(k+1) to

each agent i ∈ N .
c. increment k, i.e., set k = k + 1, and go to step 2.

6) Output: If N conflict = 0 (i.e., a feasible assignment is
achieved), CC returns Xfinal =Xcur(k) and terminates
the algorithm. Otherwise, CC sets Xinfeasible = Xcur

(k), performs a simple subroutine to construct a
feasible assignment Xfinal from Xinfeasible , returns
Xfinal , and terminates the algorithm.

involve simple comparisons [see (4)] and can be performed in
parallel by the agents. Step 3 involves coordination of scheduled
agents and CC. First, each agent i constructs scalar parameter
u

(k)
i . Then, it transmits u

(k)
i together with the potential agent

slot index jk
i to CC.

In step 4, CC keeps records of the best assignment so far.
The assignment is best, in the following sense. First, sup-
pose the algorithm yields at least one feasible assignment, i.e.,

4K is the number of the subgradient iterations executed in DAA.

N conflict = 0. Then, the best assignment is the one that corre-
sponds to the smallest objective value among all feasible as-
signments, see step 4-c. On the other hand, suppose algorithm
does not yield any feasible assignment, i.e., N conflict > 0. Then,
the best assignment is the one that corresponds to the smallest
N conflict

k among all infeasible assignments, see step 4-d. Note
that N conflict is equal to the total conflicting agents and, thus,
quantifies the degrees of infeasibility, see step 4-a. Moreover, by
using the information received from the agents, CC constructs
the global subgradient components u(k) ∈ IRN and v(k) ∈ IRM

which, in turn, are used to perform the subgradient iterations
(9)–(10), see steps 4-e, 4-f, 4-g.

The new parameters λ(k+1) and μ(k+1) are broadcasted to
every agent, and the algorithm is iterated until a stopping crite-
rion is satisfied, see step 5. In this algorithm, we use a natural
and simple-stated stopping criterion, where a fixed number of
iterations are executed for the subgradient method.

Recall that the solution for primal problem (2) by considering
its dual problem (8) does not always guarantee the primal feasi-
bility, because the original problem (2) is nonconvex. Therefore,
if a feasible assignment is not achieved, a subroutine call is re-
quired to construct a feasible one after the stopping criterion is
satisfied. Step 6 is essential due to addressing this infeasibility
issue. In particular, once the stopping criterion is satisfied(step
5), CC checks whether the current assignment Xcur(k) obtained
is feasible. If it is feasible, the algorithm terminates by returning
Xfinal = Xcur(k), where CC informs each agent i, its slot. Oth-
erwise, CC performs a simple subroutine to construct a feasible
assignment Xfinal by using the current infeasible assignment
Xinfeasible , before the algorithm terminates. We outline a sub-
routine that can be implemented at CC for constructing a feasible
assignment in the Appendix.

V. DAA CONVERGENCE AND OPTIMALITY PROPERTIES

In this section, we present the convergence and optimality
properties of the proposed DAA algorithm for agent assignment.
In particular, in Section V-A, we show that for a sufficiently large
number of subgradient iterations, the DAA algorithm converges
to the dual optimal value of problem (8). In Section V-B, we
analyze the optimality of the DAA algorithm with respect to
primary problem (1).

A. Convergence Properties

The convergence is established by the following proposition:
Proposition 2: Denote by (λ∗,μ∗) the opti-

mal solution of dual problem (8), and let g
(k)
best =

max{g(λ(1) ,μ(1)), . . . , g(λ(k) ,μ(k))} denote the dual
objective value found after k subgradient iterations. Suppose
‖(λ(1) ,μ(1))− (λ∗,μ∗)‖ is bounded from above. Then
∀ε > 0, ∃n ≥ 1 such that ∀k k ≥ n⇒ (d� − g

(k)
best) < ε,

where d∗ is the optimal value of the dual problem (8).
Proof: The proof is based on the approach of [22]. We have
∥
∥(λ(k+1) ,μ(k+1))− (λ∗,μ∗)

∥
∥2

2

=
∥
∥P
(
(λ(k) − αku(k))− λ∗, (μ(k) − αkv(k))− μ∗

)∥
∥2

2
(15)

338 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 5, NO. 1, MARCH 2018

≤ ∥
∥((λ(k) − αku(k))− λ∗, (μ(k) − αkv(k))− μ∗)

∥
∥2

2 (16)

= ‖(λ(k) ,μ(k))− (λ∗,μ∗)‖22 − 2αku(k)T (λ(k) − λ∗)

− 2αkv(k)T (μ(k) − μ∗) + α2
k‖u(k)‖22 + α2

k‖v(k)‖22 (17)

≤ ‖(λ(k) ,μ(k))− (λ∗,μ∗)‖22 − 2αk

(
g(λ∗,μ∗)

− g(λ(k) ,μ(k))
)

+ α2
k‖u(k)‖22 + α2

k‖v(k)‖22 , (18)

where (15) follows from (14), and (16) follows from that the
Euclidean projection P (z) of any z ∈ IRN +M onto the feasible
set of the dual problem (8) always decreases the distance of
P (z) to every point in the feasible set and, in particular, to the
optimal point (λ∗,μ∗), and (18) follows from the definition of
the subgradient. Recursively applying (18) and rearranging the
terms, we obtain

2
∑

l=1:k

αl(d∗− g(λ(l) ,μ(l))≤− ∥∥(λ(k+1) ,μ(k+1))− (λ∗,μ∗)
∥
∥2

2

+ ‖(λ(1) ,μ(1))− (λ∗,μ∗)‖22 +
∑

l=1:k

α2
l ‖u(l)‖22 +

∑

l=1:k

α2
l ‖v(l)‖22

≤ ‖(λ(1) ,μ(1))− (λ∗,μ∗)‖22 +
∑

l=1:k

α2
l

(‖u(l)‖22 + ‖v(l)‖22
)

≤ R2 + (G2
1 + G2

2)
∑

l=1:k

α2
l , (19)

where the second inequality follows from that: ‖(λ(k+1) ,
μ(k+1))− (λ∗,μ∗)‖22 ≥ 0, and the last inequality follows from
that: ‖(λ(1) ,μ(1))− (λ∗,μ∗)‖ is bounded from above, i.e.,
∃R <∞ such that ‖(λ(1) ,μ(1))− (λ∗,μ∗)‖ < R and the norm
of the subgradient (u,v) is bounded as

‖u‖2 ≤ G1 =
√∑

i∈N (maxj∈Mdij)2 (20)

‖v‖2 ≤ G2 =
√

(N − 1)2 + (M − 1) . (21)

The bound (20) is obtained by noting that there exists, at most,
a nonzero element in (xij)j∈M, see (4) and (12) and (13). More-
over, (21) follows when all agents are assigned to one slot, see
(12) and (13). By using the trivial relation

d∗ − g
(k)
best ≤ d∗ − g(λ(l) ,μ(l)), l = 1, . . . , k , (22)

and (19), we obtain an upper bound on d∗ − g
(k)
best as

d∗ − g
(k)
best ≤

(

R2 + (G2
1 + G2

2)
∑k

l=1
α2

l

)/(

2
∑k

l=1
αl

)

(23)
Noting that step size αl = α/l, 0 < α <∞ is square
summable, i.e.,

∑∞
l=1 α2

l = α2π/6. Moreover,
∑k

l=1 αl is
strictly monotonically increasing in k (it grows without bound as
k →∞). Therefore, for any ε > 0, we can always find an inte-
ger n ≥ 1 such that

∑k
l=1 αl > ε (R2/2 + a2(G2

1 + G2
2)π/12)

if k ≥ n, which concludes the proof. �
The bound derived in (23), together with (20)–(21), allows

us to predict some key behaviors of the convergence of the pro-
posed algorithm. For example, the larger the dij values, the larger
the G1 value and, therefore, the larger the number of iterations

to achieve a given accuracy. Nevertheless, the influence of G1
can be made negligible by arbitrarily scaling down the objective
function of problem (1). From (21), we note that the number of
scheduled agents (i.e., N) and the number of free slots (i.e., M)
directly influence the convergence.

We remark here that Proposition 2 proves that the DAA al-
gorithm converges to the dual optimal of problem (8), not the
primal optimal of problem (2). Furthermore, since problem (2)
is nonconvex; thus, the strong duality theorem does not hold. As
a consequence, there is no guarantee that the recovered primal
solution is feasible and optimal by letting k →∞ in the DAA
algorithm. In the next subsection, we develop an upper bound
on the duality gap for the proposed algorithm with respect to
primal problem (1).

B. Optimality Properties

In this section, we characterize the suboptimality of the DAA
algorithm. We start by introducing an asymmetric assignment
problem related to (1). Then, based on such an assignment prob-
lem, we derive an upper bound on the duality gap of optimization
problem (2), and, hence, to (1). Moreover, at the end of the sub-
section, we discuss how to apply the DAA algorithm to compute
the optimal solution of the asymmetric assignment problem that
eventually gives the solution to (1), but at the cost of a larger
computational complexity than the simple application of the
DAA algorithm to the dual of (1).

Consider the following asymmetric assignment problem with
the same variable x and constraints (1b)∼(1c) of (1).

minimize f̃ η (x) :=
∑

i∈N

∑

j∈M
dη

ijxij

subject to xij ∈ [0, 1] , and (1b) ∼ (1c) , (24)

where constant parameter η ≥ 1 is given. Build on assignment
problem (24), the following lemma characterizes the duality gap
of optimization problem (2).

Lemma 2: Denote by p∗ and d∗ the optimal values of the
primal and dual problem of the mixed-integer linear problem
(2), respectively. Then, the duality gap of (2) is bounded as
follows:

p∗ − d∗ ≤ f(x̃η∗)− η

√
1
N

f̃η (x̃η∗) , (25)

where x̃η∗ is the optimal solution of (24).
Proof: We remark here that if the asymmetric assignment

problem (24) is feasible, then there exists a binary optimal so-
lution x̃η∗ [26]. Since optimization problem (24) is feasible
by assumption, thus x̃η∗ is feasible for optimization problems
(1) and (2). Moreover, recall that (2) is a mixed-integer linear
problem. Consider the relaxation of (2) where xij can be any
real value between 0 and 1. Then, strong duality holds for the
dual problem (8) and the relaxation of (2). Therefore, we have
Nd∗η ≥ f̃ η (x∗) ≥ f̃ η (x̃η∗), where x∗ is the optimal solution
for the relaxation of (2). Furthermore, we have p∗ ≤ f(x̃η∗). It
completes the proof. �

We will show in the numerical results section that the bound
(25) is tight in many relevant situations. In the following, based

XU et al.: SEMIDISTRIBUTED APPROACH FOR THE FEASIBLE MIN-MAX FAIR AGENT-ASSIGNMENT PROBLEM WITH PRIVACY GUARANTEES 339

on (24), we give an alterative solution method that can pro-
vide the optimal solution of optimization problem (1), but at the

cost of a large number of iterations. First, note that η

√
f̃ η (x)

approaches f(x), when η →∞. Therefore, by solving opti-
mization problem (24) with large η, we could obtain the opti-
mal association x∗. Interestingly, the DDA algorithm could be
used for this purpose to solve (24). Let μ = (μj)j∈M be the
Lagrangian multipliers for constraint (1b). Then, the resulting
Lagrangian function is

L(x,μ) =
∑

i∈N

∑

j∈M
(dη

ij + μj)xij −
∑

j∈M
μj .

The dual function is therefore given by

g̃(μ) =
∑

i∈N
g̃i(μ)−

∑

j∈M
μj

where g̃i(μ) =
∑

j∈M(dη
ij + μj)x̃∗ij , with

x̃∗ij =

{
1 if j = argminl∈M(dη

il + μl),

0 otherwise.

Compared to (8), it is clear that the DAA algorithm could solve
(24). We remark here that as stated in Section V-A, the larger the
dη

ij values, the larger the subgradient norm; therefore, the larger
the number of iterations to achieve a given accuracy [compared
to (23)]. In other words, the application of the DAA algorithm
to (24) with very large η is able to find the optimal solution
for (1) but at the cost of a slow convergence rate. In the next
section, we highlight appealing privacy preserving properties of
the DAA algorithm.

VI. PRIVACY PROPERTIES

We see that the proposed agent assignment mechanism DAA
is preserving privacy in the sense that any agent n �= i will not
be able to find out the destination des(i) of the ith agent while
using the DAA algorithm. We refer to an attempt of an arbitrary
agent n to discover the destination of any other agent i, as a
passive attack [27, § 5.1–5.3], where agent n keeps records of
possibly all of the information that it exchanges with CC and
by using those, it tries to discover private data des(i). In what
follows, we first present sufficient information that an arbitrary
agent n can use to discover des(i). Then, we show how the DAA
algorithm hides such sufficient information and ensures privacy.

A. Sufficient Information to Discover the Destination

Let us first fix the adversary to be agent n and assume
that agent n wants to discover des(1), that is, the destina-
tion of agent 1. Now suppose agent n knows the set C1 =
{(jk

1 , d1j k
1
)}k=1,2,...,K of data associated with agent 1, where

K is the total iterations of the DAA algorithm. Provided there
exists at least three distinct jk

1 s, agent n can simply locate
des(1) as illustrated in Fig. 2. Even if agent n knows only the
set D1 = {d1j k

1
}k=1,2,...,K of data associated with agent 1, it

turns out that agent n can locate des(1) exhaustively. In particu-
lar, in every iteration k, agent n draws M − 1 circles with radius

Fig. 2. Given (jp
1 , d1j

p
1
), (jl

1 , d1j l
1
), (jm

1 , dijm1
) pairs known to the adver-

sary (agent n), jp
1 �= jl

1 , jp
1 �= jm

1 , and jl
1 �= jm

1 , discovering the location of
des(1).

d1j k
1

centered at slotsM\ {jk
n}. Let Sk denote the aforemen-

tioned set of circles. Provided there are at least three distinct
jk
1 s, which correspond to some iteration indices l,m, and p,

one can see that there exists at least one point at which a cir-
cle in S l , a circle in Sm , and a circle in Sp intersect. If this
point is unique, then it corresponds to des(i).5 The discussion
above indicates that if the adversary (agent n) knows C1 or even
D1 , under mild conditions, it can locate des(i). In the sequel,
we show how DAA precludes such situations. In particular, we
show how {d1j k

1
}k=1,2,...,K is kept hidden from the adversary

agent n.

B. How to Preserve Privacy

Note that the only means by which agent n gets access to
some functions of {d1j k

1
}k=1,2,...,K is via {λ(k)

n }k=1,2,...,K , see
step 5 of DAA algorithm. In other words, the involvement of
agent n during the DAA algorithm is restricted so that in every
iteration k, it has access to only some interface variables λ

(k)
n and

μ(k) .6 This restriction is indeed achieved by the decomposition
structure of problem (1). Moreover, we consider the situation
that CC uses the step size αk of DAA as

αk = α/k , (26)

where α is arbitrarily chosen on [αmin , αmax], αmin and αmax

are positive numbers known only to CC such that αmin < αmax .
Note that the aforementioned choice of αk still preserves
the convergence properties established in Proposition 1 (see
Section V-A) [compared with (23)]: The arbitrary step size
(26) essentially introduces more protection to the problem data
{dijk1
}k=1,2,...,K .

Proposition 3: Consider algorithm DAA using (26). Sup-
pose n is an adversary agent of agent i. It is impossible for
agent n to record {dijk1

}k=1,2,...,K and, thus, to locate des(i).
Proof: In the following, we show that if agent n can docu-

ment the connections among the unknown parameters including
{dijk1
}k=1,2,...,K , among others, it can only come up with an un-

der determined set of nonlinear equations. Thus {dijk1
}k=1,2,...,K

cannot be computed as we will see next.

5There can be more than one intersection point, which will create uncertainties
in correctly locating des(i).

6The knowledge of µ(k) is irrelevant here because it does not agentry any
information of d1j k

1
.

340 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 5, NO. 1, MARCH 2018

Fig. 3. Evolution of λ(k) = (λ(k)
1 , λ

(k)
2) in a case of 2-agents.

TABLE I
RELATIONS OF UNKNOWN PARAMETERS AS SEEN BY THE ADVERSARY AGENT

2, WHERE k IS THE ALGORITHM’S ITERATION UK AND EK ARE THE NUMBERS

OF THE UNKNOWN VARIABLES AND AVAILABLE RELATIONS, RESPECTIVELY

k relations unknowns Uk Ek

1 λ
(1)
1 +λ

(1)
2 = 1 (1.1) λ

(1)
1 1 1

2 (1.1) λ
(1)
1 ,λ

(2)
1

λ
(2)
1 +λ

(2)
2 = 1 (2.1) β1 5 4

λ
(2)
1 +β1 = λ

(1)
1 +α1 d1 j 1

1
(2.2) α1

λ
(2)
2 +β1 = λ

(1)
2 +α1 d2 j 1

2
(2.3) d1 j 1

1

3 (1.1), (2.1), (2.2), (2.3) λ
(1)
1 ,λ

(2)
1 ,λ

(3)
1

λ
(3)
1 +λ

(3)
2 = 1 (3.1) β1 , β2 9 7

λ
(3)
1 +β2 = λ

(2)
1 +α2 d1 j 2

1
(3.2) α1 , α2

λ
(3)
2 +β2 = λ

(2)
2 +α2 d2 j 2

2
(3.3) d1 j 1

1
, d1 j 2

1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

For notational simplicity, we consider only the case with n =
2 and suppose that agent 2 is the adversary that wants to discover
the destination of agent 1, that is, des(1). The discussion can
be generalized to scenarios with n > 2, in a straightforward
manner.

First, note that CC performs the projection of λ(k) − αku(k)

onto the probability simplex to yield λ(k+1) [see step 4-c of
DAA algorithm]. In the considered 2-agent case, the probability
simplex is the line segment form (0, 1) to (1, 0), see Fig. 3. Once
agent 2 is given λ

(1)
2 , it can locate (λ(1)

1 , λ
(1)
2), because λ

(1)
1 =

1− λ
(1)
2 . Yet, agent 2 cannot locate a1 = λ(1) − α1u(1) . After

receiving λ
(2)
2 , agent 2 can locate (λ(2)

1 , λ
(2)
2). It can also locate

a1 up to the ray originating at b1 , see Fig. 3. However, agent 2
cannot exactly locate a1 . The algorithm continues in a similar
manner. For example, the evolution of λ(k) = (λ(k)

1 , λ
(k)
2) is

illustrated in Fig. 3 for k = 1, 2, and 3. With this knowledge
of λ(k) evolution, agent 2 can write a set of equations in every
iteration k as given in Table I. Note that the set of equations for
k > 1 is nonlinear, because there are products of unknowns, for
example, (2.2), (2.3), (3.2), and (3.3).

When documenting the relations of unknowns in Table I, we
assume {ak}k=1,2,3... lies only in the shaded area A1 . In con-
trast, suppose ak lies either in the hatched area A2 or A3 for
some iterations. One such point is depicted in Fig. 3, where
a1 = a, see the hatched area A2 . In this case, (λ(2)

1 , λ
(2)
2) will

be (0, 1). Consequently, agent 2 can locate a1 only up to a cone
instead of a ray which, in turn, accounts for more uncertain-
ties in determining a1 . Such situations can only increase the
difference between the number of unknowns (Uk) and the num-
ber of equations (Ek). For example, in this case, we will have
U2 − E2 > 1, instead of U2 − E2 = 1 as in Table I.

Thus, we conclude that the total unknowns are always greater
than the total equations. This results an under determined set
of nonlinear equations, see Table I. Therefore, agent 2 cannot
make records of unknowns {d1j k

1
}k=1,2,...,K and, consequently,

it cannot discover des(1) as discussed in Section VI-A. This
concludes the proof. �

Moreover, we assume that there is another layer between the
CC and the agents. We assume that the locations and the index
of the destinations are only known by this layer. Therefore,
hacking only the CC or the agent is insufficient to find the
real destinations of the agent, which informally increases the
security.

VII. NUMERICAL RESULTS

In this section, we present the numerical evaluation of our pro-
posed algorithm DAA to optimization problem (1), and compare
it to the following benchmarks:

a) Greedy assignment policy: In this case, each agent selects
the closest slot to its destination.

b) Optimal assignment policy: A solution of the optimization
problem (2) is found by using the general solver, the IBM
CPLEX optimizer.

In each time slot, the proposed algorithm is carried out for
K subgradient iterations. In addition, the greedy policy and the
optimal policy have also been performed at every time frame.
We average the results over T time frames to demonstrate the
average performances of the DAA algorithm.7 Specifically, at
the beginning of every time frame, the total number of agents
N and the total number of free slots M are considered to be
fixed, and the random locations of destinations of the agents
and the free slots are uniformly distributed over a 1000 × 1000
area in each time frame. Thus, we could compute the distance
{dij}i∈N ,j∈M for each agent i with respect to each free slot j.
Note that the assignment distances {dij}i∈N ,j∈M change from
frame to frame.

To simplify the presentation, we denote by pcur(t, k) the best
objective value achieved at time frame t after k subgradient iter-
ations [compare to pcur(k) in step 4-c,d of the DAA algorithm].
In particular

pcur(t, k) = argmin
l=1,...,k

p(t, l), (27)

7Note that each time frame can be regarded as one experiment. In this pa-
per, we investigate the performance of the proposed algorithms among 1000
numerical experiments by setting T = 1000.

XU et al.: SEMIDISTRIBUTED APPROACH FOR THE FEASIBLE MIN-MAX FAIR AGENT-ASSIGNMENT PROBLEM WITH PRIVACY GUARANTEES 341

Fig. 4. Degree of feasibility DFK versus total agents N with M = 100.

where p(t, l) is the objective value at time frame t and at subgra-
dient iteration l. Note that pcur(t, k) is similar to pcur(k) of the
DAA algorithm with an additional index t to indicate the time
frame. Moreover, we denote by Xcur(t, k) the best feasible or
infeasible solution, which is identical to Xcur(k) of the DAA
algorithm with an additional index t to indicate the time frame.

In all considered simulations, we use T = 1000. Moreover,
K is chosen to be 300 or 500. We first define a performance
metric called the degree of feasibility of Xcur(t, k). Note that
Xcur(t, k) is, in fact, the assignment at the beginning of step 6
of DAA algorithm, which can be either feasible or infeasible.
If Xcur(t, k) is feasible, we have N conflict = 0 or equivalently
pcur(t,K) <∞ (compared with step 6, 4-c, and 4-d). On the
other hand, if Xcur(t, k) is infeasible, we have N conflict > 0 or
equivalently pcur(t,K) =∞ (compared with step 6, 4-c, and
4-d). This motivates defining the degree of feasibility (DF) of
Xcur(t, k) as

DFK =
1
T

T∑

t=1

I
(
pcur(t,K) <∞)× 100% , (28)

where I(E) is the indicator function of event E, that is I(E) = 1
if E is true or I(E) = 0 otherwise.

Fig. 4 shows DFK versus N for fixed M = 100. The results
show that when N is significantly smaller than M , the degree
of feasibility is almost 100%. The results further show that as
N becomes closer to M , the degree of feasibility starts deterio-
rating. Not surprisingly, running the DAA algorithm for a larger
number of subgradient iterations (e.g., K = 500) yields better
feasibility results compared to a smaller number of subgradient
iterations (e.g., K = 300).

Fig. 5 shows DFK versus M for fixed N = 50. The results
resemble the observations of Fig. 4, where desirable feasibility
is achieved when M is significantly larger than N and the per-
formances are pronounced for smaller dimensional problems.

To see the average behavior of the DAA algorithm, now we
consider the following performance metric, which is a measure
of the average objective value at subgradient iteration k

pave(k) =
1
T

T∑

t=1

pcur(t, k) , k = 1, . . . ,K . (29)

Fig. 5. Degree of feasibility DFK versus total slots M with N = 50.

Fig. 6. Average objective pave (k) versus subgradient iterations k with N =
20 and M = 100.

Fig. 6 shows pave(k) versus subgradient iterations k. In partic-
ular, we consider the cases M = 100 and N = 20. Note that the
vertical drops of the curves associated with our proposed method
correspond to the subgradient iteration, before which a feasible
assignment is found during any time frames t = {1, . . . , T}. Not
surprisingly, the optimal CPLEX method gives the best average
objective, which is achieved at the expense of high computa-
tional complexity. However, our proposed method trades off an
increase in average objective value for a low complexity in the
algorithm, which is gracefully scalable. Still, the performance
degradation of the proposed method is not critical. For exam-
ple, the performance loss of the DAA method compared with
the optimal is 1.72% and that of the greedy method is 10.48%.
The results thus show that even in large networks, our proposed
DAA method can outperform the greedy approach substantially.
Moreover, it requires only around 50 iterations by the DAA al-
gorithm to converge to a near to optimal solution, which indi-
cates that even K = 300 is large enough for being the stopping
criterion.

Recall that if pcur(t,K) =∞, then the corresponding as-
signment Xcur(t,K) is infeasible. In such situations, our pro-
posed algorithm invokes its subroutine (see Appendix) to con-
struct a feasible assignment by using the best infeasible solution
achieved so far, see step 6 of the DAA algorithm. On the other

342 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 5, NO. 1, MARCH 2018

Fig. 7. Average objective value after the termination of DAA pave−final
K versus

total agents N with M = 100.

hand, if pcur(t,K) <∞, then the corresponding assignment
Xcur(t,K) is already feasible. In either case, the DAA algo-
rithm returns a feasible point as given in step 6. We denote
by Xfinal(t) this feasible assignment returned by our proposed
DAA algorithm at time frame t and by pfinal(t,K) the corre-
sponding objective value. Finally, we denote by pave−final

K the
average objective value achieved after the termination of the
DAA algorithm. In particular, pave−final

K is given by

pave−final
K =

1
T

T∑

t=1

pfinal(t,K) . (30)

Note that when Xcur(t,K) is feasible for all t ∈ {1, . . . , T},
then pave−final

K = pave(K) [compare with (29)].
Fig. 7 shows the average objective value pave−final

K versus N
for the cases M = 100. The results show that DAA algorithm
always outperforms the greedy method. Using subgradient itera-
tions K = 500 accounts for an increase in the performance gain
compared with K = 300, though the gains are not substantial.
When the setup is lightly loaded, the proposed DAA performs
very close to the optimal approach. For fixed M , increasing N
results increasing of the performance gap. For example, in the
case of M = 100 and N = 50 with K = 300 corresponds to a
5.40% performance deviation of DAA compared to the optimal
CPLEX and N = 95 corresponds to a 259.20% performance de-
viation. Such reductions in the performance gains are certainly
expected, because there is a tradeoff between the complexity
of the algorithms and the performance loss. The results further
show that the larger the slots M , the larger the performance
deviation, especially in heavily loaded cases.

Fig. 8 shows the average objective value pave−final
K versus M

for the cases N = 50. The observations are similar to those in
Fig. 7. The results confirm that our DAA algorithm performs
very close to the optimal CPLEX method in lightly loaded cases,
where N/M < 0.5, see Fig. 8 curves with M > 100. However,
there is a noticeable performance degradation in heavily loaded
cases, see Fig. 8 curves with M < 100. Moreover, the proposed
method substantially outperforms the greedy method in all con-
sidered scenarios.

Fig. 8. Average objective value after the termination of DAA pave−final
K versus

total slots M with N = 50.

Fig. 9. CDF of time with M = 100.

In order to provide a statistical description of the speed of
the proposed algorithm, we consider empirically the cumulative
distribution function (CDF) plots. Specifically, for each time
frame t ∈ {1, . . . , T}, we store the total CPU time required for
the DAA algorithm to find Xfinal(t,K), where we use K = 300.
Similarly, the total CPU time required to find the optimal value
by using CPLEX is recorded. Fig. 9 shows the empirical CDF
plots of the time for N = 80, 90, 100 with M = 100. In the case
of the DAA algorithm, the effects of changing the problem size
by increasing N on the CDF plots are almost indistinguishable.
However, in the case of optimal CPLEX method, there is a
prominent increase in the time required to compute the optimal
value. It should be emphasized that CPLEX finds the optimal
assignment with a high penalty to do it on time, whereas the
DAA algorithm finds the feasible assignment efficiently with a
penalty on the optimality.

Fig. 10 depicts the average time required by DAA algo-
rithm, the optimal method, and the greedy method versus N
for M = 100. The results show that the average time required
by DAA to possibly find a suboptimal solution is not sensitive
to the variation of N and is in the range 0− 1 seconds. More-
over, they are comparable to the average time of simple greedy

XU et al.: SEMIDISTRIBUTED APPROACH FOR THE FEASIBLE MIN-MAX FAIR AGENT-ASSIGNMENT PROBLEM WITH PRIVACY GUARANTEES 343

Fig. 10. Average CPU time with M = 100.

method. However, the average time required by the optimal
method to find the optimal solution grows approximately expo-
nentially with N . This is certainly expected because problem (2)
is combinatorial, and therefore the worst-case complexity of the
optimal method grows exponentially with the problem size [20,
§ 1.4.2]. Thus, there is naturally a tradeoff between the optimal-
ity and the efficiency of the algorithms. The result suggests that
our proposed DAA algorithm yields a good tradeoff between the
optimality and the efficiency, especially in lightly loaded cases.
These properties are favorable for practical implementation.

VIII. CONCLUSIONS

In this paper, we considered the problem of agent assignment.
Unlike the existing greedy approaches, our problem formulation
considered fairness among the scheduled agents in the sense
that the global objective was to minimize the maximum dis-
tance from the slots to the intended destinations of the agents.
A method based on Lagrange duality theory was proposed to
address the nonconvex and combinatorial assignment problem.
Our formulation and the corresponding algorithm generally ap-
ply to fair agent-target assignment problems in other application
domains beyond intelligent transport systems. We showed that
the proposed method is privacy preserving in the sense that any
agent involved in the algorithm will not be able to discover the
destination of any other agent during the algorithm iterations.
Unlike the optimal exponentially complex approaches, our pro-
posed method is scalable. Numerical results showed that for
all considered cases, where the number of free slots are equal
or higher than twice the scheduled agents, our proposed algo-
rithm’s performance is similar to that of the optimal method.
In all considered cases, the proposed algorithm outperformed
the simple greedy approach. Therefore, the proposed algorithm
yields a good tradeoff between the implementation-level sim-
plicity and the optimality.

APPENDIX

Here, we show how to construct a feasible assignment. The
key idea of the subroutine is summarized as follows: 1) se-
lect the set of agents that are assigned to the same slot; 2)

find the set of free slots; and 3) assign the conflicting agents
found in the first stage to the free slots found in the sec-
ond stage in an iterative manner. We start by introducing
some useful notations for clarity. We denote byMover−assigned

the set of slots, where two or more than two agents are as-
signed. Moreover, we denote by Mfree the set of free slots.
Let σ = (σl)l=1,...,agentd(Mov e r−a s s ig n e d) denote the slot indices
j ∈Mover−assigned arranged in an increasing order. Moreover,
we denote by nj the total agents assigned to the jth slot. The
subroutine can be formally expressed as follows:

Algorithm: Construct a feasible assignment from Xinfeasible .

1) Given the infeasible assignment Xinfeasible ;
Mover−assigned ;Mfree , σ, and nj ∀j ∈
Mover−assigned . Set Xfinal = Xinfeasible , k = 1, and
l = 1.

2) CC sets π = (πn)n=1,...,nσ l
to be the agent indices

i ∈ J cur
σl

arranged in an increasing order.
3) For n = 2 : nσl

a. CC sendsMfree to agent πn .
b. agent πn chooses slot j, where j = arg minj

dπn j and sends j to CC.
c. CC updatesMfree ←Mfree \ {j} and sets

[Xfinal]πn j = 1.
4) If l = agentd(Mover−assigned), return Xfinal and

STOP. Otherwise, set l = l + 1 and go to step 2.

REFERENCES

[1] E. Alfonsetti, P. C. Weeraddana, and C. Fischione, “Min-max fair car-
parking slot assignment,” in Proc. IEEE SmartVehicles Workshop, 2015.

[2] J.-P. Rodrigue, C. Comtois, and B. Slack, The Geography of Transport
Systems, New York, USA: Routledge, 2nd ed., 2013. [Online]. Available:
http://people.hofstra.edu/geotrans.

[3] D. C. Shoup, “Cruising for parking,” Transport Policy: Special Issue on
Parking, vol. 13, no. 6, pp. 479–486, 2006.

[4] M. Ergen, S. Coleri, Y. Shon, M. Ozalp, and A. Long, EzPARK. [On-
line]. Available: http://wow.eecs.berkeley.edu/ergen/EZPARK/index.htm,
2003.

[5] M. Piorkowski, M. Grossglauser, and A. Papaioannou, “Mobile user nav-
igation supported by WSAN: Full-fledge demo of the smartpark system,”
in Mobile Ad Hoc Netw. Comput., Florence, Italy, May 22–25 2006.

[6] M. Piorkowski, M. Grossglauser, and A. Papaioannou, “SmartPark: High-
mobility application supported by wireless sensor and actuator network,”
in Proc. Mobile Inf. Commun. Syst., Zurich, Switzerland, Oct. 17–19 2006.

[7] V. W. S. Tang, Y. Zheng, and J. Cao, “An intelligent car park manage-
ment system based on wireless sensor networks,” in Proc. 1st Int. Symp.
Pervasive Comput. Appl., 2006, pp. 65–70.

[8] Y.-Z. Bi, L.-M. Sun, H.-S. Zhu, T.-X. Yan, and Z.-J. Luo, “A parking man-
agement system based on wireless sensor network,” in ACTA Automatica
SINICA, 2011, vol. 32, pp. 38–45.

[9] J. Chinrungrueng, U. Sunantachaikul, and S. Triamlumlerd, “Smart park-
ing: An application of optical wireless sensor network,” in Proc. Int. Symp.
Appl. Internet Workshops, 2007, pp. 66–66.

[10] L. Rongxing, X. Lin, H. Zhu, and X. Shen, “Spark: A new vanet-based
smart parking scheme for large parking lots,” in Proc. IEEE INFOCOM,
2009, pp. 1413–1421.

[11] L. Rongxing, X. Lin, H. Zhu, and X. Shen, “An intelligent secure and
privacy-preserving parking scheme through vehicular communications,”
IEEE Trans. Veh. Technol., vol. 59, no. 6, pp. 2772–2785, 2010.

[12] R. Souissi, O. Cheikhrouhou, I. Kammoun, and M. Abid, “A parking
management system using wireless sensor networks,” in Proc. Int. Conf.
Microelectron., 2011, pp. 1–7.

344 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 5, NO. 1, MARCH 2018

[13] Streetline Networks Inc., Parker mobile. [Online]. Available:
http://www.streetline.com/find-parking/.

[14] VehicleSense Inc., Street parking information network (SPIN). [Online].
Available: http://www.vehiclesense.com/vs_solutions.html.

[15] San Francisco Municipal Transportation Agency (SFMTA), SFpark. [On-
line]. Available: http://sfpark.org/.

[16] M. Bürger, G. Notarstefano, F. Bullo, and F. Allgöwer, “A distributed
simplex algorithm for degenerate linear programs and multi-agent assign-
ments,” Automatica, vol. 48, no. 9, pp. 2298–2304, 2012.

[17] B. Radunović and J.-Y. Le Boudec, “A unified framework for max-min
and min-max fairness with applications,” IEEE/ACM Trans. Netw., vol. 15,
no. 5, pp. 1073–1083, Oct. 2007.

[18] F. Farokhi, I. Shames, M. G. Rabbat, and M. Johansson, “On recon-
structability of quadratic utility functions from the iterations in gradient
methods,” submitted to Automatica, 2015.

[19] P. C. Weeraddana, G. Athanasiou, C. Fischione, and J. S. Baras, “Per-se
privacy preserving solution methods based on optimization,” in Proc. 52nd
IEEE Conf. Dec. Control, 2013, pp. 206–211.

[20] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge Univer-
sity Press, Cambridge, U.K., 2004.

[21] R. Horst, P. Pardolos, and N. Thoai, “Introduction to global optimization,”
vol. 48, 2000.

[22] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont,
MA, USA, 2nd ed., 1999.

[23] D. Gross, J. F. Shortle, J. M. Thompson, and C. M. Harris, Fundamentals
of Queueing Theory, Wiley-Interscience, New York, USA, 4th ed., 2008.

[24] R. Burkard, M. Dell’Amico, and S. Martello, Assignment Problem, SIAM,
2012.

[25] S. Boyd, Subgradient methods. [Online]. Available: http://www.stanford.
edu/class/ee364b/lectures/subgrad_method_slides.pdf, 2007.

[26] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier
Method, Athena Scientific, Belmont, MA, USA, 2nd ed., 1998.

[27] O. Goldreich, The Foundations of Cryptography, vol. 2, Cambridge Uni-
versity Press, Cambridge, U.K., 2004.

Yuzhe Xu (S’11–M’16) received the M.Sc. degree in
system control and robotics program and the Ph.D.
degree in electrical engineering from KTH Royal In-
stitute of Technology, Stockholm, Sweden, in 2011
and 2016, respectively.

His research interests include wireless communi-
cations, distributed optimization, combinational op-
timization, and signal processing.

Elisabetta Alfonsetti received the M.Sc. degree in
computer science from the University of L’aquila,
Italy, in 2012.

She was then a Research Engineer with the Auto-
matic Control Lab, Electrical Engineering Depart-
ment, KTH Royal Institute of Technology, Stock-
holm, Sweden, focusing on optimization techniques
and the privacy-preserving issue. She is currently
with the TerraSwarm Lab, Electrical Engineering De-
partment, University of California at Berkeley, Berke-
ley, CA, USA.

Her research interests include the application of the contract-based design
paradigm for the design of complex systems.

Pradeep Chathuranga Weeraddana (S’08–M’11)
received the M.Eng. degree in telecommunication
from the School of Engineering and Technology,
Asian Institute of Technology, Thailand, in 2007 and
the Ph.D. degree from the University of Oulu, Fin-
land, in 2011.

He was a Postdoctoral Researcher in the Depart-
ment of Automatic Control, School of Electrical En-
gineering and ACCSS Linnaeus Center, KTH Royal
Institute of Technology, Stockholm, Sweden, from
2012 to 2014. He is currently a Senior Lecturer at the

Sri Lanka Institute of Information Technology, Malabe, Sri Lanka. His research
interests include the application of optimization techniques in various applica-
tion domains, such as signal processing, wireless communications, and smart
grids. He is also interested in application domains of computational topology
for data analysis.

Carlo Fischione (M’05) received the Laurea (Hons.)
degree in electronic engineering and the Ph.D. de-
gree in electrical and information engineering from
the University of L’Aquila, Italy, in 2001 and 2005,
respectively.

Currently, he is a tenured Associate Professor at
KTH Royal Institute of Technology, Electrical Engi-
neering, Stockholm, Sweden. He has held research
positions at the Massachusetts Institute of Technol-
ogy, Cambridge, MA, USA (2015, Visiting Profes-
sor); Harvard University, Cambridge (2015, Asso-

ciate); and the University of California at Berkeley, Berkeley, CA, USA (2004–
2005, Visiting Scholar, and 2007–2008, Research Associate). His research inter-
ests include optimization with applications to wireless-sensor networks and IoT,
networked control systems, wireless networks, as well as security and privacy.

Prof. Fischione received or co-received a number of awards, including the
best paper award from the IEEE Transactions on Industrial Informatics (2007),
the best paper awards at the IEEE International Conference on Mobile Ad-hoc
and Sensor System 05 and 09 (IEEE MASS 2005 and IEEE MASS 2009),
and the Best Paper Award of the IEEE Sweden VT-COM-IT Chapter (2014).
He is Associate Editor of Elsevier Automatica and, as a technical member,
has chaired program committees of several international conferences. He is
co-funder and CSO of the company MIND (ancient and modern musical instru-
ments networked). He is an Ordinary Member of DASP (the academy of history
Deputazione Abruzzese di Storia Patria).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

