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Weeraddana, Pradeep Chathuranga, Optimization techniques for radio resource
management in wireless communication networks. 
University of Oulu, Faculty of Technology,  Department of Communications Engineering; Centre for
Wireless Communications; Infotech Oulu, P.O. Box 4500, FI-90014 University of Oulu, Finland
Acta Univ. Oul. C 402, 2011

Abstract
The application of optimization techniques for resource management in wireless communication networks
is considered in this thesis. It is understood that a wide variety of resource management problems of recent
interest, including power/rate control, link scheduling, cross-layer control, network utility maximization,
beamformer design of multiple-input multiple-output networks, and many others are directly or indirectly
reliant on the general weighted sum-rate maximization (WSRMax) problem. Thus, in this dissertation a
greater emphasis is placed on the WSRMax problem, which is known to be NP-hard. 

A general method, based on the branch and bound technique, is developed, which solves globally the
nonconvex WSRMax problem with an optimality certificate. Efficient analytic bounding techniques are
derived as well. More broadly, the proposed method is not restricted to WSRMax. It can also be used to
maximize any system performance metric, which is Lipschitz continuous and increasing on signal-to-
interference-plus-noise ratio. The method can be used to find the optimum performance of any network
design method, which relies on WSRMax, and therefore it is also useful for evaluating the performance loss
encountered by any heuristic algorithm. The considered link-interference model is general enough to
accommodate a wide range of network topologies with various node capabilities, such as singlepacket
transmission, multipacket transmission, simultaneous transmission and reception, and many others. 

Since global methods become slow in large-scale problems, fast local optimization methods for the
WSRMax problem are also developed. First, a general multicommodity, multichannel wireless multihop
network where all receivers perform singleuser detection is considered. Algorithms based on homotopy
methods and complementary geometric programming are developed for WSRMax. They are able to exploit
efficiently the available multichannel diversity. The proposed algorithm, based on homotopy methods,
handles efficiently the self interference problem that arises when a node transmits and receives
simultaneously in the same frequency band. This is very important, since the use of supplementary
combinatorial constraints to prevent simultaneous transmissions and receptions of any node is
circumvented. In addition, the algorithm together with the considered interference model, provide a
mechanism for evaluating the gains when the network nodes employ self interference cancelation
techniques with different degrees of accuracy. Next, a similar multicommodity wireless multihop network
is considered, but all receivers perform multiuser detection. Solutions for the WSRMax problem are
obtained by imposing additional constraints, such as that only one node can transmit to others at a time or
that only one node can receive from others at a time. The WSRMax problem of downlink OFDMA systems
is also considered. A fast algorithm based on primal decomposition techniques is developed to jointly
optimize the multiuser subcarrier assignment and power allocation to maximize the weighted sum-rate
(WSR). Numerical results show that the proposed algorithm converges faster than Lagrange relaxation
based methods. 

Finally, a distributed algorithm for WSRMax is derived in multiple-input single-output multicell
downlink systems. The proposed method is based on classical primal decomposition methods and
subgradient methods. It does not rely on zero forcing beamforming or high signal-to-interference-plus-noise
ratio approximation like many other distributed variants. The algorithm essentially involves coordinating
many local subproblems (one for each base station) to resolve the inter-cell interference such that the WSR
is maximized. The numerical results show that significant gains can be achieved by only a small amount of
message passing between the coordinating base stations, though the global optimality of the solution cannot
be guaranteed. 

Keywords: distributed optimization methods, global (nonconvex) optimization methods, mathematical
optimization, radio resource management, weighted sum-rate maximization





Weeraddana, Pradeep Chathuranga, Optimointitekniikoita radioresurssien hallintaan
langattomissa tiedonsiirtoverkoissa. 
Oulun yliopisto, Teknillinen tiedekunta, Tietoliikennetekniikan osasto, Centre for Wireless Communications;
Infotech Oulu, PL 4500, 90014 Oulun yliopisto
Acta Univ. Oul. C 402, 2011

Tiivistelmä
Tässä työssä tutkitaan optimointimenetelmien käyttöä resurssienhallintaan langattomissa tiedonsiirtover-
koissa. Monet ajankohtaiset resurssienhallintaongelmat, kuten esimerkiksi tehonsäätö, datanopeuden säätö,
radiolinkkien ajastus, protokollakerrosten välinen optimointi, verkon hyötyfunktion maksimointi ja keilan-
muodostus moniantenniverkoissa, liittyvät joko suoraan tai epäsuorasti painotetun summadatanopeuden
maksimointiongelmaan (weighted sum-rate maximization, WSRMax). Tästä syystä tämä työ keskittyy eri-
tyisesti WSRMax-ongelmaan, joka on tunnetusti NP-kova. 

Työssä kehitetään yleinen branch and bound -tekniikkaan perustuva menetelmä, joka ratkaisee epäkon-
veksin WSRMax-ongelman globaalisti ja tuottaa todistuksen ratkaisun optimaalisuudesta. Työssä johdetaan
myös tehokkaita analyyttisiä suorituskykyrajojen laskentatekniikoita. Ehdotetun menetelmän käyttö ei
rajoitu vain WSRMax-ongelmaan, vaan sitä voidaan soveltaa minkä tahansa suorituskykymetriikan maksi-
mointiin, kunhan se on Lipschitz-jatkuva ja kasvava signaali-häiriö-plus-kohinasuhteen funktiona. Mene-
telmää voidaan käyttää minkä tahansa WSRMax-ongelmaan perustuvan verkkosuunnittelumenetelmän
optimaalisen suorituskyvyn määrittämiseen, ja siksi sitä voidaan hyödyntää myös minkä tahansa heuristi-
sen algoritmin aiheuttaman suorituskykytappion arvioimiseen. Tutkittava linkki-häiriömalli on riittävän
yleinen monien erilaisten verkkotopologioiden ja verkkosolmujen kyvykkyyksien mallintamiseen, kuten
esimerkiksi yhden tai useamman datapaketin siirtoon sekä yhtäaikaiseen lähetykseen ja vastaanottoon. 

Koska globaalit menetelmät ovat hitaita suurien ongelmien ratkaisussa, työssä kehitetään WSRMax-
ongelmalle myös nopeita paikallisia optimointimenetelmiä. Ensiksi käsitellään yleistä useaa eri yhteyspal-
velua tukevaa monikanavaista langatonta monihyppyverkkoa, jossa kaikki vastaanottimet suorittavat yhden
käyttäjän ilmaisun, ja kehitetään algoritmeja, joiden perustana ovat homotopiamenetelmät ja komplemen-
taarinen geometrinen optimointi. Ne hyödyntävät tehokkaasti saatavilla olevan monikanavadiversiteetin.
Esitetty homotopiamenetelmiin perustuva algoritmi käsittelee tehokkaasti itsehäiriöongelman, joka syntyy,
kun laite lähettää ja vastaanottaa samanaikaisesti samalla taajuuskaistalla. Tämä on tärkeää, koska näin voi-
daan välttää lisäehtojen käyttö yhtäaikaisen lähetyksen ja vastaanoton estämiseksi. Lisäksi algoritmi yhdes-
sä tutkittavan häiriömallin kanssa auttaa arvioimaan, paljonko etua saadaan, kun laitteet käyttävät itsehäiri-
ön poistomenetelmiä erilaisilla tarkkuuksilla. Seuraavaksi tutkitaan vastaavaa langatonta monihyppyverk-
koa, jossa kaikki vastaanottimet suorittavat monen käyttäjän ilmaisun. Ratkaisuja WSRMax-ongelmalle
saadaan asettamalla lisäehtoja, kuten että vain yksi lähetin kerrallaan voi lähettää tai että vain yksi vastaan-
otin kerrallaan voi vastaanottaa. Edelleen tutkitaan WSRMax-ongelmaa laskevalla siirtotiellä OFDMA-jär-
jestelmässä, ja johdetaan primaalihajotelmaan perustuva nopea algoritmi, joka yhteisoptimoi monen käyt-
täjän alikantoaalto- ja tehoallokaation maksimoiden painotetun summadatanopeuden. Numeeriset tulokset
osoittavat, että esitetty algoritmi suppenee nopeammin kuin Lagrangen relaksaatioon perustuvat menetel-
mät. 

Lopuksi johdetaan hajautettu algoritmi WSRMax-ongelmalle monisoluisissa moniantennilähetystä
käyttävissä järjestelmissä laskevaa siirtotietä varten. Esitetty menetelmä perustuu klassisiin primaalihajo-
telma- ja aligradienttimenetelmiin. Se ei turvaudu nollaanpakotus-keilanmuodostukseen tai korkean signaa-
li-häiriö-plus-kohinasuhteen approksimaatioon, kuten monet muut hajautetut muunnelmat. Algoritmi koor-
dinoi monta paikallista aliongelmaa (yhden kutakin tukiasemaa kohti) ratkaistakseen solujen välisen häiri-
ön siten, että WSR maksimoituu. Numeeriset tulokset osoittavat, että merkittävää etua saadaan jo vähäisel-
lä yhdessä toimivien tukiasemien välisellä viestinvaihdolla, vaikka globaalisti optimaalista ratkaisua ei voi-
dakaan taata.
Asiasanat:globaalit (epäkonveksit) optimointimenetelmät, hajautetut optimointimenetelmät, matemaattinen
optimointi, painotetun summadatanopeuden maksimointi, radioresurssien hallinta
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Abbreviations

Roman-letter notations

ajc Channel gain from the BS to the jth user in subcarrier c in a
single cell OFDMA downlink system

ai Closest vertex to γmin (in the ith dimension) of the axis aligned
rectangle Q

āi Closest vertex to γmin (in the ith dimension) of the axis aligned
rectangle Q̄?

A(·) Square matrix obtained by using B(γ) and G, i.e., A(γ) =

I−B(γ)G

A Set of link pairs (i, j) for which the transmitter of the ith link and
the receiver of the jth link coincide

bjc Normalized power gain from the BS to the jth user in subcarrier c
in a single cell OFDMA downlink system

b(·) Vector obtained by using B(γ) and σ2, i.e., b(γ) = σ2B(γ)1

B Dynamic cross-layer control algorithm parameter used to charac-
terize the performance of the algorithm

B(·) Diagonal matric containing the normalized SINR values
B̄i(·) Square matrix obtained from B(γ) by eliminating the ith row and

the ith column
Bk Set of axis-aligned rectangles at the kth iteration of the BB

algorithm for WSRMax
cij Small-scale fading coefficient between the transmitter of link i to

the receiver of link j; an argument t can be used to indicate the
time slot or the fading realization index

cjl Vector of small-scale fading coefficients between the transmitter
of data stream j and the receiver of data stream l in a multicell
MIMO Downlink system

C Number of orthogonal channels or subcarriers
C1 Condition 1 requited to ensure the convergence of the BB algorithm

for WSRMax
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C2 Condition 2 requited to ensure the convergence of the BB algorithm
for WSRMax

C Set of orthogonal channels or subcarriers
Cj Set of subcarriers allocated to the jth user
Ć Single fading realization, which is a set of arbitrarily generated

fading coefficients; an argument t can be used to indicate the time
slot or the fading realization index

d0 Far field reference distance used in modeling the power gain
between distinct nodes in general wireless networks

dij Distance from the transmitter of the ith link (data stream) to the
receiver of the jth link (data stream)

ds Destination node of commodity s
D Lipschitz constant of function f0

D0 A common distance used in modeling the SNR operating point in
a wireless network

D Node distance matrix
D Any subset of L−dimensional nonnegative orthant
D(n) Set of links which are decoded at node n
f0(·) Function used to represent the (−) WSR in the case of singlecast

networks
fn(·) Function used to represent the solution of the nth subproblem

(or BS optimization problem) in the algorithm for WSRMax in a
multicell downlink system

f?c (·) Function used to represent the solution of cth subproblem in the
algorithm for WSRMax in the OFDMA downlink

f̌n(·) Function used to establish an upper bound on fn(·)
f̃(·) Extended value extension of function f0(·)
f̃0(·) Function used to represent the (−) WSR in the case of multicast

networks
g Residual self-interference gain after a certain self interference

cancelation technique was employed at the network’s nodes
gijc(t) Interference coefficient from the transmitter of ith link (data

stream) to the receiver of jth link (data stream) in channel c
during time slot t if i 6= j; the power gain of ith link (data stream)
in channel c during time slot t if i = j; the time slot index t is

12



dropped sometimes for simplicity; in the single-channel case the
channel index c is dropped

gl(·) Objective function of the optimization problem, which is used to
compute the improved lower bound function of the BB algorithm
for WSRMax in singlecast networks

ḡl(·) Objective function of the auxiliary optimization problem, which is
used to compute the improved lower bound function of the BB
algorithm for WSRMax in singlecast networks

G Cross-coupling matrix
G(t) Interference coefficient and power gain matrix; in a single-channel

case [G(t)]i,j = gij(t)

Ḡi Square matrix obtained from G by eliminating the ith row and
the ith column

G Set of achievable SINR vectors in a singlecast network
Ğ Set obtained from G by eliminating certain dimensions of G
G̃ Set of achievable SINR vectors in a multicast network
h(·) Function used to illustrate the behavior of the algorithm for

WSRMax in the OFDMA downlink
hijc(t) Channel gain from the transmitter of link i to the receiver of link

j in channel c during time slot t; the time slot index t is dropped
sometimes for simplicity; in a single-channel case the channel index
c is dropped

hjl Channel matrix between transmitter of data stream j and the
receiver of data stream l in a multicell MIMO downlink system

H Set used in the derivation of an upper bound on fn(·)
Ȟ Set used in the derivation of an upper bound on fn(·)
(i, j) Ordered pair of distinct nodes i and j
I(n) Set of links incoming to the nth node
J Number of users
L Number of links or data streams
Lk Lower bound for (−) WSR at the kth iteration of the BB algorithm

for WSRMax
L Set of links or data streams
L(n) Set of data streams transmitted by nth BS
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Lint Set of data streams that are subject to out-of-cell interference in a
multicell MIMO downlink system

Lint(n) Set of data streams for which base station n acts as an out-of-cell
interferer in a multicell MIMO downlink system

Llocal(n) Subset of data streams transmitted by nth BS, which are not
interfered by any out-of-cell interference in a multicell MIMO
downlink system

Mn Number of multicast transmissions from the nth node
nrand Number of arbitrarily chosen initialization points in the parallel

version of the algorithm for WSRMax in the OFDMA downlink
N Number of nodes (in the case of general networks) or base stations

(in the case of cellular networks)
Nl Power spectral density of the noise at the receiver of link l
N Set of nodes (in the case of general networks) or base stations (in

the case of cellular networks)
Nint(l) Set of out-of-cell interfering BSs of the receiver node of the lth

data stream in a multicell MIMO downlink system; the set is
determined by the distance between BSs and the receiver node l

O(·) Big O notation
O(n) Set of links outgoing from the nth node
Om(n) Set of links associated with the mth multicast transmission of the

nth node
plc(t) Power allocated to the lth link (data stream) in channel c during

time slot t in the case of multichannel singlecast networks; the time
slot index t is dropped sometimes for simplicity; in a single-channel
case the channel index c is dropped

pmax
0 Transmit sum power constraint common to all nodes
pmn Power allocated to the mth multicast transmission of the nth node

in the case of multicast networks
pmax
n Transmit sum power constraint of the nth node

p Vector of pl or pmn , i.e., p = (p1, . . . , pL) for singlecast networks
and p = (pmn )n∈T ,m=1,...,Mn

for multicast networks; an argument
t is used sometimes to indicate the time index

p̄i Vector obtained from p by eliminating the ith component
Pξ Probability of missing the global optimum; a performance metric

14



used to compare different algorithms for WSRMax in the OFDMA
downlink

P(t) Overall power allocation matrix during time slot t in the case of
multichannel singlecast networks; [P(t)]l,c = plc(t)

P Feasible set of the subproblems of the general WSRMax in the
OFDMA downlink

P̄ Feasible set of the master problem of the general WSRMax in the
OFDMA downlink

qjc Power allocated at the BS to the jth user in subcarrier c
qsn(t) Backlog of commodity s data stored at the nth node during time

slot t
q̄c Power allocated at the BS for subcarrier c
Q L−dimensional axis-aligned rectangle inside Qinit

Q̃ Axis-aligned rectangle inside Q̃init

Qinit L−dimensional axis-aligned rectangle, which is used in the initial-
ization of the BB algorithm for WSRMax in singlecast networks

Q̃init Axis-aligned rectangle, which is used in the initialization of the
BB algorithm for WSRMax in multicast networks

Q̄? Smallest L−dimensional axis-aligned rectangle, which is used to
compute the improved lower bound function of the BB algorithm
for WSRMax in singlecast networks

rl(t) Achievable rate of the lth link (data stream) during time slot t;
the time index t is dropped sometimes for simplicity

rmn Maximum achievable rate of all links in the mth multicast trans-
mission of the nth node

r Vector of rl or rmn used in the generic formulation of WSRMax
problem; in the case of singlecast networks, r = (r1, . . . , rL) and
in the case of multicast networks, r = (rmn )n∈T ,m=1,...,Mn

Rmax
n Dynamic cross-layer control algorithm parameter used to control

the burstiness of data delivered to the network layer at node n
R Set of receiver nodes
RAVE−MC(·) Average rate region in the case of multicast networks
RAVE−SC(·) Average rate region in the case of singlecast networks
RINS−MC(·) Instantaneous rate region in the case of multicast networks
RINS−SC(·) Instantaneous rate region in the case of singlecast networks
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RDIR−MC(·) Directly achievable rate region in the case of multicast networks
RDIR−SC(·) Directly achievable rate region in the case of singlecast networks
RSIC(·) Achievable rate region in a network with multiuser detectors at

nodes
R̄ Set used to represent a set of achievable link rates in the generic

formulation of the WSRMax problem
sl Information symbol associated with the lth data stream
S Number of commodities
Sn Set of commodities which arrives exogenously at the nth node
T́ Number of fading realizations or time slots considered in averaging
T Set of transmitter nodes
ui(·) Constraint function used in the convex reformulation of the

WSRMax problem over the capacity region of scalar broadcast
channel

usn(·) Nondecreasing utility function representing the “reward" received
by sending data commodity s from node n to the destination node
of commodity s at a given long term average rate

Uk Upper bound for (−) WSR at the kth iteration of BB algorithm
for WSRMax

U Upper triangular matrix used in the convex reformulation of the
WSRMax problem over the capacity region of scalar broadcast
channel

vlc Auxiliary variable used to reformulate the WSRMax problem as a
CGP

vl Transmit beamformer associated to the lth data stream
v́i ith component of V́
V Dynamic cross-layer control algorithm parameter used to charac-

terize the performance of the algorithm
V́ Set of vertices of the outer polyblock approximation that can be

used to further improve φImp
lb (·)

wnl Out-of-cell interference power from nth BS to the receiver of data
stream l in a multicell MIMO downlink system

w Vector of wnl in a multicell MIMO downlink system, i.e., w =

(wnl)n∈N ,l∈Lint(n)

Wc Bandwidth of channel c
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xjc Transmitted signal from the BS to the jth user in subcarrier c in
a single cell OFDMA downlink system

xn Transmitted signal vector from nth BS in a multicell MIMO
downlink system

xsn(t) Amount of data commodity s admitted in the network at the nth
node during time slot t

x̄sn long term average rate of data commodity s admitted in the
network at the nth node

yjc Received signal by the jth user in subcarrier c in a single cell
OFDMA downlink system

yl Received signal by the receiver node of data stream l in a multicell
MIMO downlink system

zjc Received noise by the jth user in subcarrier c in a single cell
OFDMA downlink system

zl Received noise by the receiver node of data stream l in a multicell
MIMO downlink system

Greek-letter notations

βl(t) Positive weight associated with the lth link (data stream, user)
during time slot t in the case of singlecast networks; the time slot
index t is dropped sometimes for simplicity

βmn Positive weight associated with the mth multicast transmission of
the nth node in the case of multicast networks

β Vector of βl or βmn used in the generic formulation of the WSRMax
problem; in the case of singlecast networks, β = (β1, . . . , βL) and
in the case of multicast networks, β = (βmn )n∈T ,m=1,...,Mn

γlc (Auxiliary) variable associated to the SINR of the lth link (data
stream) in channel c in the case of multichannel singlecast networks;
in single-channel case the channel index c is dropped

γl,max lth component of γmax

γl,min lth component of γmin

γmn Auxiliary variable associated to the SINRs of links belonging to
the mth multicast transmission of the nth node in a multicast
network
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γ̂lc Component at the lth row the cth column of γ̂, i.e., [γ̂]l,c; in a
single-channel case the channel index c is dropped; a superscript
is used sometimes to indicate the algorithm iteration index

γ̄?l lth component of γ̄?

γ Vector of γl or γmn , i.e., γ = (γ1, . . . , γL) for singlecast networks
and γ = (γmn )n∈T ,m=1,...,Mn

for multicast networks
γmax Maximum element of the axis-aligned rectangle Q w.r.t the gener-

alized inequality �IRn+

γmin Minimum element of the axis-aligned rectangle Q (as well as Q̄?)
w.r.t the generalized inequality �IRn+

γ̆min Vector obtained from γmin by eliminating certain components of
γmin

γ̄min,i Vector obtained from γmin by eliminating the ith component
γ̄? Maximum element of the axis-aligned rectangle Q̄? w.r.t the

generalized inequality �IRn+

γ̂ Initial SINR guess for GP, CGP, or SP based algorithms; a
superscript is used sometimes to indicate the algorithm iteration
index

∆DWSR Average normalized weighted-sum-rate deviation; a performance
metric used to compare different algorithms for WSRMax in the
OFDMA downlink

ε Accuracy required for the BB method for WSRMax
ε Accuracy required for CGP based algorithms
η Path loss exponent used in modeling the power gain between

distinct nodes in general wireless networks
λmax Scalar used in the dual decomposition based algorithm for WSR-

Max in the OFDMA downlink
λmin Scalar used in the dual decomposition based algorithm for WSR-

Max in the OFDMA downlink
Λ Network layer capacity region
µ Interference coupling index used in modeling the power gain

between distinct nodes in simple bipartite networks
ξ Accuracy used in the definition of Pξ
πn Arbitrary permutation of links in D(n), which determines the

decoding and the cancellation order of signals received at node n
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ρ(·) Spectral radius of a given square matrix
ρn Specific permutation of links in O(n)

%n Specific permutation of links in I(n)

σ2 Power of thermal noise at a receiver
σ2
l Power of thermal noise at the receiver of the lth link (data stream)
φlb(·) Lower bound function of the BB algorithm for WSRMax
φBasic

lb (·) Basic lower bound function of the BB algorithm for WSRMax
φImp

lb (·) Improved lower bound function of the BB algorithm for WSRMax
φub(·) Upper bound function of the BB algorithm for WSRMax
φBasic

ub (·) Basic upper bound function of the BB algorithm for WSRMax
φImp

ub (·) Improved upper bound function of the BB algorithm for WSRMax
φImpCGP

ub (·) Improved upper bound function of the BB algorithm for WSRMax
obtained by using CGP

φmin(·) Function that returns the optimum (−) WSR over a given axis-
aligned rectangle Q

Mathematical Operator notations and symbols

cond(Q) Condition number of the axis-aligned rectangle Q
deg(n) Degree of the nth node, i.e., the sum of incoming and outgoing

links at the nth node
rec(l) Receiver node of the lth link (data stream)
size(Q) Maximum half length of the sides of the axis-aligned rectangle Q
SINRml

n (·) SINR of the lth link belongs to the mth multicast transmission of
the nth node in a multicast network

tran(l) Transmitter node of the lth link (data stream)
vol(Q) Volume of the axis-aligned rectangle Q
conv(X ) Convex hull of the set X
diag(x) Diagonal matrix with the elements of vector x on the main diagonal
E{·} Expectation
inf(·) Largest lower bound (infimum)
log(·) Logarithm in base 2

ln(·) Natural logarithm
max(·) Maximum
min(·) Minimum
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Prob{·} Probability of the event
rank(X) Rank of matrix X

vec(·) Vec-operator; if X = [x1, . . . ,xn], then vec(X) = [xT
1 , . . . ,x

T
n ]T

ei ith standard unit vector
I Identity matrix; size of the matrix is implicit
1 Vector of 1s, i.e., (1, . . . , 1); size of the vector is implicit
|x| Absolute value of the complex number x
(x)+ Positive part of scalar x, i.e., max(0, x)

||x||2 `2-norm of complex vector x

[x]n nth component of vector x

XH Conjugate transpose (Hermtian) of matrix X

XT Transpose of matrix X

X−1 Inverse of matrix X

[X]i,j Element at the ith row and the jth column of matrix X

|X | Cardinality of set X
∇f(x) Gradient of function f at x

∇2f(x) Hessian matrix of function f at x

C Set of complex numbers
Cn Set of complex n-vectors
Cm×n Set of complex m× n matrices
IR,IR+,IR++ Set of real, nonnegative real, and positive real numbers
IRn

+ Cone of nonnegative, real n-vectors (the set of nonnegative and
real n-vectors)

IRm×n
+ Set of nonnegative, real m× n matrices

IRn
++ Set of positive, real n-vectors

IRm×n
++ Set of positive, real m× n matrices

IRn Set of real n-vectors
IRm×n Set of real m× n matrices
CN (m,K) Circularly symmetric complex Gaussian distribution with mean m

and variance K/2 per dimension
CN (m,K) Circularly symmetric complex Gaussian vector distribution with

mean m and covariance matrix K

U(a, b) Uniform distribution with mean (a+ b)/2

(·)? Solution of an optimization problem
∼ Distributed according to
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≥ Greater than or equal operator; between real matrices, it repre-
sents componentwise inequality

Acronyms
BB Branch and Bound
BLSLA Base Line Single Link Activation
BS Base Station
CDF Cumulative Distribution Function
CDMA Code Division Multiple Access
CGP Complementary Geometric Programming
CPU Central Processing Unit
DC Difference of Convex
DSL Digital Subscriber Lines
FDMA Frequency Division Multiple Access
GP Geometric Programming
IC Interference Channel
LBBasic Lower Bound (Basic)
LBImp Lower Bound (Improved)
LHS Left-Hand Side
LP Linear Programming
MC MultiCast
MIMO Multiple-Input Multiple-Output
MISO Multiple-Input Single-Output
MWM MaxWeight Matching
NUM Network Utility Maximization
OFDMA Orthogonal Frequency Division Multiple Access
RA Resource Allocation
RHS Right-Hand Side
SC SingleCast
SIC Successive Interference Cancellation
SDMA Space Division Multiple Access
SINR Signal-To-Interference-Plus-Noise Ratio
SNR Signal-To-Noise Ratio
SOCP Second-Order Cone Programming
SP Signomial Programming
s.t. Such That
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TDMA Time Division Multiple Access
UBBasic Upper Bound (Basic)
UBImp Upper Bound (Improved)
UBImpCGP Upper Bound (Improved by using CGP)
w.r.t With Respect To
WSR Weighted Sum-Rate
WSRMax Weighted Sum-Rate Maximization
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1 Introduction

During the past few years, there has been an explosive growth of the wireless
mobile community and its accelerated demand for additional functionalities
and services, including multimedia applications, real-time-gaming applications,
wireless internet access for realtime video and music, mobile social networks, and
many others [1, 2]. Unfortunately, realizing such a growth in demand is indeed
challenging in the presence of scarce/expensive radio resources, such as spectrum,
and inescapable constraints, such as channel capacity, delay requirements, quality
of service requirements, interference requirements, and many others. Therefore,
sophisticated radio resource management strategies for wireless communication
networks are of paramount importance and are to be designed carefully. To
handle such problems, mathematical optimization is an increasingly important
tool, which provides general frameworks and systematic guidelines.

Many resource management problems of recent interest in wireless commu-
nication can be posed in the framework of mathematical optimization [3–8].
The focus of this dissertation is to apply optimization techniques for resource
management in wireless communication networks. In particular, a greater
emphasis is placed on the general weighted sum-rate maximization (WSRMax)
problem for a set of interfering links. The generic WSRMax problem is

maximize βTr

subject to r ∈ R̄ ,

with the variable r, i.e., the vector of achievable rates, where β is the vector of
positive weights and R̄ is a set of achievable link rates, which depends on factors
such as transmission strategy, reception strategy, available radio resources, noise,
and many others. In general, the WSRMax problem above is NP-hard.

1.1 Motivation

Among various resource management policies, the WSRMax for an arbitrary
set of interfering links plays a central role in many network control and op-
timization methods. For example, the problem is encountered in power/rate
allocation in wireless, as well as in wireline networks [9–11], MaxWeight link
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scheduling in multihop wireless networks [12], finding achievable rate regions of
singlecast/multicast wireless networks [13, 14], joint optimization of transmit
beamforming patterns, transmit powers, and link activations in multiple-input
multiple-output (MIMO) networks [15], the resource allocation (RA) subproblem
in various cross-layer control policies [16–18] and network utility maximization
(NUM) [19], and dynamic power and subcarrier assignment in orthogonal fre-
quency division multiple access (OFDMA) networks [20, 21], among others.
Thus, WSRMax appears to be a central component in many network design
problems.

Unfortunately, the general WSRMax problem is not yet amendable to a
convex formulation [22]. In fact, it is NP-hard [23]. Therefore, we must rely on
global optimization approaches [24, 25] for computing an exact solution of the
WSRMax problem. Such global solution methods are increasingly important
since they can be used to provide performance benchmarks by back-substituting
them into any network design method, which relies on WSRMax. They are also
very useful for evaluating the performance loss encountered by any heuristic
algorithm for the WSRMax problem.

Though global methods find the solution of the WSRMax problem, they are
typically slow. Even small problems, with a few tens of variables, can take a
very long time to solve WSRMax. Therefore, it is natural to seek suboptimal
algorithms for WSRMax that are efficient enough, and still close to optimal; the
compromise is optimality [3]. Such algorithms for the WSRMax problem are of
central importance since they can be fast and widely applicable in large-scale
network control and optimization methods.

Due to the explosion of problem size and the signal overhead required in
centralized network control and optimization methods, it is highly desirable to
develop decentralized variants of those algorithms. Therefore, finding distributed
methods for the WSRMax problem is of crucial importance from a theoretical,
as well as from a practical perspective for decentralized implementation of many
network control and optimization methods, such as [12, 18].

1.2 Review of earlier and parallel work

Interference is inherent in wireless networks when multiple transmitters and
receivers operate over a shared medium, e.g., in spatial-TDMA networks [26]
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or code division multiple access networks [9]. A similar kind of interference
also arises in wireline networks due to electromagnetic coupling between the
transmitted signals over wires which are closely bundled, e.g., in digital subscriber
lines (DSL) [11]. Due to interference, the achievable rates on different links
are interdependent, i.e., the achievable rate of a particular link depends on the
powers allocated to all other links. In general, this coupling makes many network
control and optimization problems extremely difficult to solve [22, 23]. In many
such problems, we see that the WSRMax problem holds an essential role. In the
sequel, we first discuss diverse application domains where the WSRMax problem
arises directly or indirectly.

1.2.1 Diverse application domains of WSRMax

Network utility maximization (NUM)

In the late nineties, Kelly et. al. [27, 28] introduced the concept of NUM for
fairness control in wireline networks. It was shown therein that maximizing
the sum-rate under the fairness constraint is equivalent to maximizing certain
network utility functions and different network utility functions can be mapped
to different fairness criteria. Many aspects of the NUM concept in the case
of wireless networks have been substantially discussed in [19, 29–32]. In this
context, the WSRMax problem appears as a part of the Lagrange dual problem
of the overall NUM problem [33–37].

Cross-layer control policies for wireless networks

A number of papers discuss variants of cross-layer control policies, such as [16–
18, 38–48]. Many of these policies are essentially identical. It has been shown
that an optimal cross-layer control policy, which achieves data rates arbitrarily
close to the optimal operating point, can be decomposed into three subproblems
that are normally associated with different network layers. Specifically, flow
control resides at the transport layer, routing and in-node scheduling 1 resides at
the network layer, and resource allocation (or RA) is usually associated with the

1in-node scheduling refers to selecting the appropriate commodity and it is not to be confused
with the links scheduling mechanism which is handled by the resource allocation subproblem [17].
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medium access control and physical layers [44]. The first two subproblems are
convex optimization problems and can be solved relatively easily. It turns out
that under reasonably mild assumptions, the RA subproblem can be cast as a
general WSRMax problem over the instantaneous achievable rate region [16, 17].
The weights of the links are given by the differential backlogs and the policy
resembles the well known backpressure algorithm introduced by Tassiulas and
Ephremides in [12, 49] and further extended in [16] to dynamic networks with
power control.

MaxWeight link scheduling for wireless networks

Maximum weighted link scheduling for wireless networks [12, 38–41, 49–53] is
a place, in which the problem of WSRMax is directly used. Note that, for
networks with fixed link capacities, the maximum weighted link scheduling
problem reduces to the classical maximum weighted matching problem and can
be solved in polynomial time [38, 53, 54]. However, no solution is known for the
general case when the link rates depend on the power allocation of all other links.

Power/rate control policies for wireless networks

We see sometimes that the WSRMax problem is directly used as the basis for the
power/rate control policy in wireless, as well as in wireline networks [9–11]. For
example, in DSL networks, there is considerable research on resource management
policies, which rely directly on the WSRMax problem for multiuser spectrum
balancing [55–66]. Direct application of WSRMax as an optimization criterion
can also been seen extensively in joint power control and subcarrier assignment
algorithms for OFDMA networks [20, 21, 67–71].

Resource management in MIMO networks

There are also a number of resource management algorithms in multiuser MIMO
networks, which rely on the problem of WSRMax. For example, the methods
proposed in [15, 72–74] rely on WSRMax for joint design of linear transmit and
receive beamformers. In addition, many other references have applied WSRMax
directly as an optimization criterion for beamformer design in MIMO networks,
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including [74–80].

Finding achievable rate regions in wireless networks

In multiuser systems many users share the same network resources, e.g., time,
frequency, codes, space, etc. Thus, there is naturally a tradeoff between the
achievable rates of the users. In other words, one may require to reduce its rate if
another user wants a higher rate. In such multiuser systems, the achievable rate
regions are, of course, important since they characterize the tradeoff achievable
by any resource management policy [9, 10]. As noted in [81], the rate regions are
convex; by invoking a time sharing argument, one can always assume that the
rate region is convex [9]. Therefore, any boundary point of the rate region can
be obtained by using the solution of an WSRMax problem for some weights.

1.2.2 Global methods for WSRMax in wireless networks

Since the general WSRMax problem is NP-hard [23], it is natural to rely
on global optimization approaches [24, 25] for computing an exact solution.
One straightforward approach is based on exhaustive search in the variable
space [55]. The main disadvantage of this approach is the prohibitively expensive
computational complexity, even in the case of very small problems. A better
approach is to apply branch and bound techniques [24, 25, 82], which essentially
implement the exhaustive search in an intelligent manner; see [57–60, 62] and the
author’s contributions [83–88]. Branch and bound methods based on difference
of convex functions (DC) programming [24] have been proposed in [57–59] to
solve (a subclass of) WSRMax. Although DC programming is the core of their
algorithms, it also limits the generality of their method to the problems, in which
the objective function cannot easily be expressed as a DC [24]. For example,
in the case of multicast wireless networks, expressing the objective function
as a DC cannot be easily accomplished, even when Shannon’s formula is used
to express the achievable link rates. Another branch and bound method has
been used in [60] in the context of DSL bit loading, where the search space is
discretized in advance. As a result of discretization, this method does not allow a
complete control of the accuracy of the solution. An alternative optimal method
was proposed in [62], where the WSRMax problem is cast as a generalized linear
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fractional program [89] and solved via a polyblock algorithm [48]. The method
works well for small scale problems, but as pointed out in [25, Ch. 2, pp. 40-41]
and [89, Sec. 6.3], it may show much slower convergence than branch and bound
methods as the problem size increases. A special form of the WSRMax problem
is presented in [8, p. 78][61], where the problem data and the constraints must
obey certain properties and, consequently, the problem can be reduced to a
convex formulation. However, these required properties correspond to very
unlikely events in wireless/wireline networks, and therefore the method has a
very limited applicability.

1.2.3 Local methods for WSRMax in wireless networks

Indeed, the worst case computational complexity for solving the general WSRMax
problem by applying global optimization approaches [24, 25, 82] can increase
more than polynomially with the number of variables. As a result, these methods
are prohibitively expensive, even for off line optimization of moderate size
networks. Therefore, certainly, the problem of WSRMax deserves efficient
algorithms, which even though suboptimal, perform well in practice.

Several approximations have been proposed for the case when all links in
the network operate in certain signal-to-interference-plus-noise ratio (SINR)
regions. For example, the assumption that the achievable rate is a linear function
of the SINR (i.e., low SINR region) is widely used in the ultra-wide-band
systems [90–92]. Other references, which provide solutions for the power and
rate control in low SINR regions include [39, 93, 94]. The high SINR region is
treated in [34, 95, 96]. However, at the optimal operating point different links
correspond to different SINR regions, which is usually the case with multihop
networks. Therefore, all methods mentioned above that are based on either the
low or the high SINR assumption can fail to solve the general problem.

One promising method is to cast the WSRMax problem into a signomial
program (SP) formulation [5, Sec. 9] or into a complementary geometric program
(CGP) [97, 98], where a suboptimal solution can be obtained quite efficiently; we
can readily convert an SP to a CGP and vice versa [98, Sec. 2.2.5]. Applications
of SP and CGP, or closely related solution methods, have been demonstrated in
various signal processing and digital communications problems, e.g., [15, 64, 66,
72, 73, 98–100] and the author’s contributions [101, 102]. There are a number of
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other important papers proposing suboptimal solution methods for the WSRMax
problem, such as [103] proposed by the author and [38, 40, 53, 63, 65, 74–80],
among others.

Though the suboptimal methods mentioned above, including SP/CGP based
algorithms, can perform reasonably well in many cases 2, it is worth pointing out
that not all of them can handle the general WSRMax problem. The reason is
the self-interference problem, which arises when a node transmits and receives
simultaneously in the same frequency band. Since there is a huge imbalance
between the transmitted signal power and the received signal power of nodes,
the transmitted signal strength is typically few orders of magnitude larger
than the received signal strength. Thus, when a node transmits and receives
simultaneously in the same channel, the useful signal at the receiver of the
incoming link is overwhelmed by the transmitted signal of the node itself. As
a result, the SINR values at the incoming link of a node that simultaneously
transmits in the same channel is very small. Therefore, the self-interference
problem plays a central role in WSRMax in general wireless networks; see, e.g.,
the author’s papers [104, 105].

Thus, in the case of general multihop wireless networks, the WSRMax problem
must also cope with the self-interference problem. Under such circumstances
SP/CGP cannot be directly applicable even to obtain a better suboptimal
solution, since initialization of the algorithms is critical. One approach to dealing
with self interference consists of adding supplementary combinatorial constraints,
which prevent any node in the network from transmitting and receiving si-
multaneously [43, 51, 106–111]. This is sometimes called the node-exclusive
interference model; only subsets of mutually exclusive links can simultaneously
be activated in order to avoid the large self interference encountered if a node
transmits and receives in the same frequency band. Of course, such approaches
based on the node-exclusive interference model induce a combinatorial nature for
the WSRMax problem in general. The combinatorial nature is circumvented in
the authors contributions [112, 113], where homotopy methods (or continuation
methods) [114] together with complementary geometric programming [97] are
adopted to derive efficient algorithms for the general WSRMax problem. Here,
the term “efficient" can mean faster convergence, or convergence to a point with

2e.g., when a node does not transmits and receives simultaneously in the same frequency band
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better objective value.
Along with the emergence of future wireless technologies (e.g., 3G-LTE,

WIMAX, IMT-A) [115–118], which rely heavily on OFDMA based physical
layer specifications, there has also been a lot of research on designing resource
management algorithms for OFDMA networks; see, e.g., [20, 21, 67–71, 119–
121, 121–132]. In general, this process requires solving combinatorial optimization
problems and the complexity of the problem increases exponentially with the
number of subcarriers. Nevertheless, specific algorithms designed to power
control and dynamic subcarriers assignment to the users, based on WSRMax,
include the author’s contributions [129–133] and [20, 21, 67–71], among others.

The general WSRMax problem has been addressed in [20] to characterize
the frequency division multiple access (FDMA) capacity region for a broadcast
channel. Due to the nontractability of the original problem, a modified convex
problem formulation, FDMA-TDMA (time division multiple access), was pro-
posed. The authors of [20] also considered algorithms to obtain optimal and
suboptimal solutions to a particular variation of the original problem, where the
total power is evenly divided among the used set of subcarriers. A Lagrangian
relaxation based method has been proposed in [21]. Here, a bisection search
method was used to update the dual variable until the algorithm converges.
Due to the nonconvexity of the optimization problem the optimality of the
algorithm is, of course, not guaranteed. Computationally efficient algorithms
for maximizing the sum-rate have been developed in [67, 68]. Although these
algorithms are optimal for sum-rate maximization, they are not applicable to
solving the WSRMax problem. The reason is that the properties exploited
for solving the sum-rate maximization problem are destroyed when there are
arbitrary weights. A suboptimal method for characterizing the achievable rate
region of the two-user FDMA channel have been presented in [69]. A number of
papers also proposed suboptimal methods for variants on the WSRMax problem,
such as [70, 71].

1.2.4 Distributed WSRMax in wireless networks

The emergence of large scale communication networks, as well as accompanying
network control and optimization methods with huge signalling overheads
triggered a considerable body of recent research on developing distributed

34



algorithms for resource management, see [4, 134, 135] and the references therein.
Such distributed algorithms rely only on local observations and are carried
out with limited access to global information. These algorithms essentially
involve coordinating many local subproblems to find a solution to a large global
problem. It is worth emphasizing that the convexity of the problems is crucial in
determining the behavior of the distributed algorithms [4, Ch. 9]. For example,
in the case of nonconvex problems such algorithms need not converge, and
if it does converge, it need not converge to an optimal point, which is the
case with the WSRMax problem. Nevertheless, finding even a suboptimal but
distributed method for WSRMax is crucial for deploying distributively many
network control and optimization methods, e.g., [12, 18, 32, 38, 41, 50–53], which
rely on WSRMax.

Distributed implementation of the WSRMax problem has been investigated
in [63, 64, 66, 136] in the context of DSL networks. However, in the case of
cellular systems with multiple transmit antennas, the decision variables space
is, of course, larger, e.g., joint optimization of transmit beamforming patterns,
transmit powers, and link activations is required. Therefore, designing efficient
distributed methods for WSRMax is a more challenging task, due to the extensive
amount of message passing required to resolve the coupling between decision
variables. In the sequel, we limit ourselves to basic, but still very important,
results that develop distributed coordinated algorithms for resource management
in networks with multiple antennas.

Several distributed methods for WSRMax in multiple-input and single-output
(MISO) cellular networks have been proposed in [137–141] and in the author’s
contributions [142, 143]. Specifically, in [137] a two-user MISO interference
channel (IC) is considered and a distributed algorithm is derived by using the
commonly used high SINR approximation [34]. Moreover, another approximation,
which relies on zero forcing (ZF) beamforming is introduced in [137] to handle
networks with many MISO ICs. The methods proposed in [138–140] derived the
necessary (but not sufficient) solution structure of the WSRMax problem and
used it as the basis for their distributed solution. However, many parameters must
be selected heuristically to construct a potential distributed solution and there
is, in general no systematic method for finding those parameters. In particular,
the algorithms in [138, 139] are designed for systems with limited backhaul
signaling resources. Thus, [138, 139] do not consider any iterative base station
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(BS) coordination mechanism to resolve the out-of-cell interference coupling.
Even though the method proposed in [140] relies on stringent requirements on
the message passing between BSs during each iteration of the algorithm, their
results show that BS coordination can provide considerable gains compared to
uncoordinated methods. An inexact cooperate descent algorithm for the case
where each BS is serving only one cell edge user has been proposed in [141]. The
method proposed in [144] is designed for sum-rate maximization and uses high
SINR approximation. The method is very similar to the one proposed in [137] for
WSRMax problem. A cooperative beamforming algorithm is proposed in [145]
for MISO IC, where each BS can transmit only to a single user. Their proposed
method employs an iterative BS coordination mechanism to resolve the out-of-cell
interference coupling. However, the convexity properties exploited for distribution
of the problem are destroyed when more than one user is served by any BS.
Thus, their proposed method is not directly applicable to the WSRMax problem.

Algorithms based on game theory are found in [146–151]. Their proposed
methods are restricted to interference channels, e.g., MISO IC, MIMO IC. In
addition, the methods often require the coordination between receiver nodes
and the transmitter nodes during algorithm’s iterations. Therefore, even in a
infrastructure based network (e.g., cellular network), communication overhead
may be significantly noticeable.

Many optimization criteria other than the weighted sum-rate have been
considered in the references [144, 145, 152–158] to distributively optimize the
system resources (e.g., beamforming patterns, transmit powers, etc.) in mul-
tiantenna cellular networks. In particular, the references [152–155] used the
characterization of the Pareto boundary of the MISO interference channel [159]
as the basis for their distributed methods. The proposed methods do not employ
any BS coordination mechanism to resolve the out-of-cell interference coupling.
The simple power control methods considered can be unreliable, especially
when the degree of freedom at the transmitters is not sufficient to perform
ZF. In [156–158] distributed algorithms have been derived to minimize a total
(weighted) transmitted power, or the maximum per antenna power across the
BSs, subject to SINR constraints at the user terminals. Many related solution
methodologies, though not distributed, can be found in [160–162] and references
therein.
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1.3 Aims and the outline of the thesis

The aim of this thesis is to apply optimization theory and techniques for
developing global, fast local, as well as distributed solution methods to important
and challenging problems that arise in radio resource management in wireless
communication networks. Specifically, a greater emphasis is placed on the general
WSRMax problem, which plays a central role in diverse application domains,
such as NUM, cross-layer design, link scheduling, power/rate control, MIMO
beamformer design, and finding achievable rate regions, among others.

Chapter 2, the results of which have been documented in [83, 85–87], proposes
a solution method, based on the branch and bound technique, which solves
globally the nonconvex WSRMax problem with an optimality certificate. Efficient
analytic bounding techniques are introduced and their impact on convergence is
numerically evaluated. The considered link-interference model is general enough
to model a wide range of network topologies with various node capabilities, e.g.
single- or multipacket transmission (or reception), simultaneous transmission
and reception. Diverse application domains of WSRMax are considered in
the numerical results, including cross-layer network utility maximization and
maximum weighted link scheduling for multihop wireless networks, as well as
finding achievable rate regions for singlecast/multicast wireless networks.

Chapter 3, the results of which have been presented in [101–105, 112, 113],
proposes fast suboptimal algorithms for the WSRMax problem in multicommodity,
multichannel wireless networks. First, the case where all receivers perform
singleuser detection 3 is considered and algorithms are derived by applying
complementary geometric programming and homotopy methods. Here we analyze
the quantitative impact of gains that can be achieved at the network layer in
terms of end-to-end rates and network congestion, by incorporating the proposed
algorithms within a general cross-layer utility maximization framework. In
addition, we apply them in evaluating the gains achievable at the network layer
when the network nodes employ self interference cancelation techniques with
different degrees of accuracy. Finally, a case where all receivers perform multiuser
detection is considered and solutions are obtained by imposing additional
constraints, such as that only one node can transmit to others at a time or that

3i.e., a receiver decodes each of its intended signals by treating all other interfering signals as
noise.
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only one node can receive from others at a time.
Chapter 4 is devoted to developing algorithms for the WSRMax problem in

downlink OFDMA systems; the results are presented in [129, 130, 132, 133]. A
low-complexity suboptimal power control and subcarrier assignment algorithm is
proposed for the WSRMax problem. The algorithm is based on an a primal
decomposition based method. The original, nonconvex optimization problem
is split into a number of subproblems (one subproblem for each subcarrier)
and a master problem. The subproblems, which can be solved independently
are coordinated to compute an approximate solution for the master problem.
Numerical results are provided to compare the performance of the proposed
algorithm to Lagrange relaxation based suboptimal methods as well as to the
optimal exhaustive search based method.

Chapter 5, the results of which have been documented in [142, 143], considers
the WSRMax problem in a multicell downlink system. We derive a distributed
algorithm based on primal decomposition and subgradient methods. The key
idea is to break the original, nonconvex problem into a number of subproblems
(one for each BS) and a master problem. Each BS optimizes locally its own
decision variables (i.e., beamformers’ directions and power allocation) by using
an iterative ascent algorithm. The BS optimizations are coordinated to find
an approximate solution for the master problem, which resolves the out-of-cell
interference. Numerical results are provided to observe the the behavior of the
algorithm under different degrees of coordination between the cooperating BS.

Chapter 6 concludes the thesis. The main results are summarized and some
open problems for future research are pointed out.

1.4 The author’s contribution to the publications

The thesis is based, in part, on five journal papers [83, 104, 112, 129, 142] and
thirteen conference papers [85–87, 101–103, 105, 113, 130–133, 143]. The first
four journal papers [83, 104, 112, 129] have already been published and the last
one [142] is under revision. Nevertheless, a short conference version of [142] has
been published recently; see [143].

The author had the main responsibility for carrying out the analysis, develop-
ing the simulation software, generating the numerical results, and writing all
the journal papers [83, 104, 112, 129, 142]. Other authors provided invaluable
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comments, criticism, and support during the process. The support from Dr.
Marian Codreanu was priceless; he was involved in deep technical discussions,
helped discussing the structures of the papers and rephrasing certain parts of the
papers, which were, indeed, important in improving the clarity of the articles.

The conference papers [85–87, 101–103, 105, 113, 130–133, 143] are mainly
based on the journal articles [83, 104, 112, 129, 142]. The author had the main
responsibility for preparing all the conference papers, except [87, 102] for which
Dr. Marian Codreanu took the responsibility of manuscript preparation.

In addition to the papers above, the author contributed to one other journal
paper [84] and a conference paper [88]. The articles [84, 88] extended the BB
algorithm for WSRMax developed in [83] further to handle MISO wireless
networks. The author was actively involved in the discussions during the process.
Moreover, the author provided the main simulation software developed in [83] on
which the additional software components to handle the MISO case could be
coded.
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2 A branch and bound method for WSRMax

The main contribution of this chapter is to provide a branch and bound method
for solving globally the general WSRMax problem for a set of interfering links.
At each step, the algorithm computes upper and lower bounds for the optimal
value. The algorithm terminates when the difference between the upper and
the lower bounds is within a pre-specified accuracy level. Efficient analytic
bounding techniques are introduced and their impact on the convergence is
numerically evaluated. The considered link-interference model is general enough
to model a wide range of network topologies with various node capabilities, e.g.,
single- or multipacket transmission (or reception), simultaneous transmission
and reception. In contrast to the previously proposed branch and bound based
techniques [57–59], our method does not rely on the convertibility of the problem
into a DC problem. Therefore, our proposed method applies to a broader class
of WSRMax problems (e.g., WSRMax in multicast wireless networks). Moreover,
the method proposed here is not restricted to WSRMax; it can also be used to
maximize any system performance metric that can be expressed as a Lipschitz
continuous and increasing function of SINR values.

Our proposed branch and bound method shows some analogy to the one
proposed in [60] in terms of the initial search domain and the basic bounding
techniques. However, the two methods are fundamentally different in terms of
branching techniques, as the algorithm proposed in [60] is designed specifically
to search over a discrete space whilst our method is optimized for a continuous
search space. We also provide improved bounding techniques which substantially
improve the convergence speed of the algorithm.

Given its generality, the proposed algorithm can be adapted to address a wide
range of network control and optimization problems. Performance benchmarks
for various network topologies can be obtained by back-substituting it into
any network design method which relies on WSRMax. Several applications,
including cross-layer network utility maximization and maximum weighted link
scheduling for multihop wireless networks, as well as finding achievable rate
regions for singlecast/multicast wireless networks, are presented. As suboptimal
but low-complex algorithms are typically used in practice, our algorithm can
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also be used for evaluating their performance loss.

2.1 System model and problem formulation

The network considered consists of a collection of nodes which can send, receive,
and relay data across a set of links. The set of all nodes is denoted by N and we
label the nodes with the integer values n = 1, . . . , N . A link is represented as an
ordered pair (i, j) of distinct nodes. The set of all links is denoted by L and
we label the links with the integer values l = 1, . . . , L. We define tran(l) as the
transmitter node of link l, and rec(l) as the receiver node of link l. The existence
of a link l ∈ L implies that a direct transmission is possible from node tran(l) to
node rec(l). Note that, in the most general case, L may consist of a combination
of wireless and wireline links, e.g., in the case of hybrid networks. We define
O(n) as the set of links that are outgoing from node n, and I(n) as the set of
links that are incoming to node n. Furthermore, we denote the set of transmitter
nodes by T and the set of receiver nodes by R, i.e., T = {n ∈ N|O(n) 6= ∅} and
R = {n ∈ N|I(n) 6= ∅}.

The model above covers a wide range of network topologies from very
simple ones to more complicated ones, as shown in Figure 2.1. A particular
class of network topologies is the one for which the set of transmitters T and
the set of receivers R are disjoint and we refer to these networks as bipartite
networks. Figures 2.1(a) and 2.1(b) show two examples of bipartite networks.
In Figure 2.1(a) each transmitter node has only one outgoing link and each
receiving node has only one incoming link, i.e., |O(n)| = 1 for all n ∈ T and
|I(n)| = 1 for all n ∈ R. Borrowing terminology from graph theory, we say this
network has degree one 4. In contrast, the network shown in Figure 2.1(b) has
degree three, since all nodes n ∈ {3, 7, 9} have degree 3. A network for which
T ∩ R 6= ∅ is referred to as a nonbipartite network. Examples of nonbipartite
networks are shown in Figures 2.1(c) and 2.1(d). Note that all bipartite networks
are necessarily singlehop networks whilst the nonbipartite networks can be
either singlehop [e.g., Figure 2.1(c)] or multihop [e.g., Figure 2.1(d)] networks.

4In graph theory, the degree of a vertex is the number of edges incident on it and the degree of
a graph is the maximum degree of any vertex. By associating the network’s nodes with vertices
and the network’s links with (oriented) edges, we say that the degree of node n is given by
deg(n) = |I(n)|+ |O(n)| and the degree of the network is given by maxn∈N deg(n).
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Fig 2.1. Various network topologies: (a) Bipartite network, T = {1, 2, 3, 4}, R =

{5, 6, 7, 8}, degree 1; (b) Bipartite network, T = {1, 2, 3, 4, 5}, R = {6, 7, 8, 9}, degree
3; (c) Nonbipartite singlehop network, T = R = N = {1, 2, 3, 4, 5, 6}, degree 3;
(d) Nonbipartite multihop network, T = {1, 2, . . . , 9}, R = {2, 3, . . . , 10}, T ∩ R =

{2, 3, . . . , 9}, degree 4, [83] c© 2011, IEEE.

Furthermore, all networks with degree one are necessarily bipartite and all
nonbipartite networks have degrees larger than one.

In general, depending on the complexity limitations and the transceiver
techniques employed at different nodes of the network, some nodes may have
restricted transmit and receive capabilities. For example, certain nodes may
have only singlepacket receive and/or transmit capabilities 5 and some nodes
may not be able to transmit and receive simultaneously. These limitations create
subsets of mutually exclusive links and induce a combinatorial nature for the
power and rate optimization in the case of networks with degree larger than
one [38, 51, 163–167]. An example is the maximum weighted link scheduling for
multihop wireless networks [12].

We assume that all links share a common channel and the interference is
controlled via power allocation. We denote the channel gain from the transmitter
of link i to the receiver of link j by hij . For any pair of distinct links i 6= j, we
denote the interference coefficient from link i to link j by gij . In the case of
nonadjacent links (i.e., links i and j do not have common nodes), gij represents
the power of the interference signal at the receiver node of link j when one
unit of power is allocated to the transmitter node of link i, i.e., gij = |hij |2.
When links i and j are adjacent, the value of gij also depends on the transmit
and receive capabilities of the common node. Specifically, we set gij = ∞

5We say that a node has singlepacket receive capability if it can only receive from a single
incoming link at a time. Similarly, we say that a node has singlepacket transmit capability if it
can transmit only through a single outgoing link at a time.
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Fig 2.2. Choosing the value of interference coefficient in the case of adjacent
links: (a) i, j ∈ I(n), gij = gji = ∞ if node n has singlepacket receive capability
or gij = |hii|2, gji = |hjj |2 if node n has multipacket receive capability; (b) i, j ∈
O(n), gij = gji = ∞ if node n has singlepacket transmit capability or gij = |hjj |2,
gji = |hii|2 if node n has multipacket transmit capability; (c) i ∈ O(n), j ∈ I(n),
gij = gji =∞ if node n can not transmit and receive simultaneously or gij = |hij |2

and gji = |hji|2 if node n can transmit and receive simultaneously, [83] c© 2011,
IEEE.

if links i and j are mutually exclusive and gij = |hij |2 if links i and j can
be simultaneously activated. Thus, gij = gji = ∞ for any pair of mutually
exclusive links. Figure 2.2 illustrates three examples of choosing the value of the
interference coefficient in the case of adjacent links. Note that in the case of
nonbipartite networks, when i ∈ O(n) and j ∈ I(n), the term gij represents the
power gain within the same node from its transmitter to its receiver, and is
referred to as the self-interference coefficient [see Figure 2.2(c)]. In the case of
wireless networks, these gains can be several orders of magnitude larger than the
power gains between distinct nodes. References [168–171] discuss various self
interference cancelations techniques that provide different degrees of accuracy.
When such schemes are employed, gij models the residual self-interference
coefficient after a certain (imperfect) self interference cancelation technique was
performed.

It is worth noting that the interference model described previously can
easily be extended to accommodate different multiple access techniques by
appropriately reinterpreting the interference coefficients. For example, in the
case of wireless CDMA networks, the interference coefficient gij would model the
residual interference at the output of the despreading filter of node rec(j) [9].
Similarly, in the case of wireless SDMA networks, where nodes are equipped
with multiple antennas, gij represents the equivalent interference coefficient
measured at the output of the antenna combiner of node rec(j) [9]. Extensions
to a multichannel scenario (e.g., FDMA or FDMA-SDMA networks) are also
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possible by introducing multiple links between nodes, one link for each available
spectral channel, and by setting gij = 0 if links i and j correspond to orthogonal
channels. However, many such extensions are beyond the main scope of this
thesis.

We consider the case where all receiver nodes are using singleuser detection
(i.e., a receiver decodes each of its intended signals by treating all other interfering
signals as noise) and assume that the achievable rate of link l is given by

rl = log

(
1 +

gllpl
σ2 +

∑
j 6=l gjlpj

)
, (2.1)

where pl is the power allocated to link l, σ2 represents the power of the thermal
noise at the receiver, and gll represents the power gain of link l, i.e. , gll = |hll|2.
The use of the Shannon formula 6 for the achievable rate in (2.1) is common
practice (see, e.g., [9, 11]) but it must be noted that this is not strictly correct in
the case of finite length packets. However, as the packet length increases, it is
asymptotically correct.

Let us first consider the case of singlecast networks, where all links carry
different information. Let βl denote an arbitrary nonnegative number which
represents the weight associated with link l. Assuming that the power allocation
is subject to a maximum power constraint

∑
l∈O(n) pl ≤ pmax

n for each transmitter
node n ∈ T 7, the problem of weighted sum-rate maximization can be expressed
as

maximize
∑
l∈L βl log

(
1 +

gllpl
σ2 +

∑
j 6=l gjlpj

)
subject to

∑
l∈O(n) pl ≤ pmax

n , n ∈ T
pl ≥ 0, l ∈ L ,

(2.2)

where the variable is (pl)l∈L.
In the case of multicast networks, a transmitter can simultaneously send

common information to multiple receiver nodes. We consider the general
6The algorithm proposed in this section can be used for any other rate vs. SINR dependence.
The only restriction is that the rate must be a nondecreasing and Lipschitz continuous function
of SINR.
7For the sake of clarity we only consider the case of sum-power constraints for each transmitter
node. However, supplementary sum-power constraints can be also handled by the proposed
algorithm. For example, in the case of a cellular downlink employing the cooperation of several
multiantenna base stations, sum-power constraints per subsets of nodes (one subset of nodes
corresponds to a base station) should be also considered [73].
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Fig 2.3. Multicast network: Different colors represents different multicast trans-
missions. T = {1, 2}, M1 = 2, M2 = 1, O1(1) = {1, 2}, O2(1) = {3, 4}, and
O1(2) = {5, 6}, [83] c© 2011, IEEE.

case where each transmitter node can have several multicast transmissions.
Thus, for each n ∈ T we partition O(n) into Mn disjoint subsets of links, i.e.,
O(n) = ∪Mn

m=1Om(n), where Mn is the number of multicast transmissions from
node n and the set Om(n) contains all links associated with the mth multicast
transmission of node n (see Figure 2.3). Let pmn and βmn be the power and
the nonnegative weight allocated to the mth multicast transmission of node
n. Moreover, let p = (pmn )n∈T ,m=1,...,Mn

and denote the SINR of the lth link
belongs to the mth multicast transmission of the nth node by SINRml

n (p), where

SINRml
n (p) =

gllp
m
n

σ2 +
∑
j∈T ,j 6=n

∑Mj

k=1 p
k
j max
i∈Ok(j)

gil +
∑Mn

k=1,k 6=m p
k
n max
i∈Ok(n)

gil

for all n ∈ T , m = 1, . . . ,Mn . (2.3)

Clearly, for any link in the mth multicast transmission of node n, i.e., l ∈ Om(n),
interference at rec(l) is created by the other multicast transmissions of node n
itself and by multicast transmissions of other nodes. The max(·) operator in the
denominator of SINR expressions is used to impose mutually exclusive multicast
transmissions, e.g., if node 6 in Figure 2.3 has singlepacket reception capability,
then O2(1) and O1(2) are mutually exclusive.

Thus, by noting that the maximum rate achievable by all links in Om(n) is
given by rmn = minl∈Om(n) rl, the weighted sum-rate maximization problem can
be expressed as

maximize
∑
n∈T

∑Mn

m=1 β
m
n min
l∈Om(n)

log
(

1 + SINRml
n (p)

)
subject to

∑Mn

m=1 p
m
n ≤ pmax

n , n ∈ T
pmn ≥ 0, n ∈ T , m = 1, . . . ,Mn ,

(2.4)

where the variable is (pmn )n∈T ,m=1,...,Mn
.
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2.2 Algorithm derivation

For the sake of clarity, let us first address the case of singlecast networks.
Extension to multicast case is presented separately in Section 2.4. We start
by equivalently reformulating the original problem (2.2) as minimization of a
nonconvex function over an L-dimensional rectangle. Then, we describe our
proposed algorithm based on a branch and bound technique [82] to minimize the
nonconvex function over the L-dimensional rectangle.

By introducing auxiliary variables γl, l ∈ L we first reformulate problem (2.2)
in the following equivalent form:

minimize
∑
l∈L−βl log(1 + γl)

subject to γl ≤
gllpl

σ2 +
∑
j 6=l gjlpj

, l ∈ L∑
l∈O(n) pl ≤ pmax

n , n ∈ T
pl ≥ 0, l ∈ L ,

(2.5)

where the variables are (pl)l∈L and (γl)l∈L. The equivalence between prob-
lems (2.2) and (2.5) follows from the monotone increasing property of the
log(·) function. Clearly, any feasible γl, ∈ L in problem (2.5) represents an
achievable SINR value for link l. Let us denote the objective function of prob-
lem (2.5) by f0(γ) =

∑
l∈L−βl log(1 + γl) and the feasible set for the variables

γ = (γ1, . . . , γL) (or the achievable SINR values) by G, i.e.,

G =

γ
∣∣∣∣∣∣∣∣
γl ≤

gllpl
σ2 +

∑
j 6=l gjlpj

, l ∈ L∑
l∈O(n) pl ≤ pmax

n , n ∈ T
pl ≥ 0, l ∈ L

 . (2.6)

The optimal value of problem (2.5) can be expressed compactly as t? = inf
γ∈G

f0(γ).

For clarity, let us define a new function f̃ : IRL
+ → IR as

f̃(γ) =

{
f0(γ) γ ∈ G
0 otherwise

(2.7)

and note that for any D ⊆ IRL
+ such that G ⊆ D, we have

inf
γ∈D

f̃(γ) = inf
γ∈G

f0(γ) = t? , (2.8)
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where the first equality follows from the fact that for any γ ∈ IRL
+ we have

f0(γ) ≤ 0. It is also worth noting that the function f̃ is nonconvex over D and
f0 is a global lower bound on f̃ , i.e., f0(γ) ≤ f̃(γ) for all γ ∈ D.

Let us now define the L-dimensional rectangle

Qinit =
{
γ
∣∣0 ≤ γl ≤ σ−2gllp

max
tran(l), l ∈ L

}
,

which encloses the set of all achievable SINR values, i.e., G ⊆ Qinit. By using (2.8),
it follows that t? = inf

γ∈Qinit

f̃(γ). Thus, we have reformulated problem (2.2)

equivalently as a minimization of the nonconvex function f̃ over the rectangle
Qinit. In what follows we show how the branch and bound technique is used to
minimize f̃ over Qinit.

Let Q be a L-dimensional rectangle defined as

Q = {γ |γl,min ≤ γl ≤ γl,max, l ∈ L} ,

where γl,min and γl,max are real numbers such that γl,min ≤ γl,max for all l ∈ L.
For any L-dimensional rectangle Q ⊆ Qinit, let us now define the following
function:

φmin(Q) = inf
γ∈Q

f̃(γ) . (2.9)

It can be easily observed that

φmin(Qinit) = inf
γ∈Qinit

f̃(γ) = t? . (2.10)

The key idea of the branch and bound method is to generate a sequence of
asymptotically tight upper and lower bounds for φmin(Qinit). At each iteration
k, the lower bound Lk and the upper bound Uk are updated by partitioning
Qinit into smaller rectangles. To ensure convergence, the bounds should become
tight as the number of rectangles in the partition of Qinit grows. To do this, the
branch and bound method uses two functions φub(Q) and φlb(Q), defined for
any rectangle Q ⊆ Qinit such that the following conditions are satisfied [82].

C1 : The functions φlb(Q) and φub(Q) compute a lower bound and an upper
bound respectively on φmin(Q), i.e.,

∀Q ⊆ Qinit we have φlb(Q) ≤ φmin(Q) ≤ φub(Q) . (2.11)
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C2 : As the maximum half length of the sides of Q
(
i.e., size(Q)= 1

2 max
l∈L
{γl,max−

γl,min}
)
goes to zero, the difference between the upper and lower bounds

uniformly converges to zero, i.e.,

∀ε > 0 ∃δ > 0 s.t. ∀Q ⊆ Qinit, size(Q) ≤ δ ⇒ φub(Q)−φlb(Q) ≤ ε . (2.12)

For the sake of clarity, the definition and computation of φlb and φub are
described in Section 2.3. In the remainder of this section we will present the
proposed branch and bound method in more detail.

Let ε be an a priori specified tolerance. The algorithm starts by computing
φub(Qinit) and φlb(Qinit). If φub(Qinit)−φlb(Qinit) ≤ ε, the algorithm terminates
and C1 in (2.11) confirms that we have an upper bound φub(Qinit), which is
at most ε-away from the optimal value t?. Otherwise, we start partitioning
Qinit into smaller rectangles. At the kth partitioning step, Qinit is split into
k rectangles such that Qinit = Q1 ∪ Q2 ∪ . . . ∪ Qk and φub(Qk) and φlb(Qk)
are computed. Then the lower bound Lk and upper bound Uk are updated as
follows:

Lk = min
i∈{1,2,...,k}

φlb(Qi) ≤ φmin(Qinit) = t? ≤ min
i∈{1,2,...,k}

φub(Qi) = Uk . (2.13)

Note that the lower bound Lk and the upper bound Uk are refined at each
step and they represent the best lower and upper bounds obtained so far. If
the difference between new bounds become smaller than ε, then the algorithm
terminates. Otherwise, further partitioning of Qinit is required until the difference
between Uk and Lk is less than ε. The condition C2 in (2.12) ensures that, the
difference Uk − Lk eventually becomes smaller than ε for some finite k. The
proposed algorithm based on the branch and bound method can be summarized
as follows:

Algorithm 2.1. Branch and bound method for WSRMax

1. Initialization; given tolerance ε > 0. Set k = 1, B1 = {Qinit} , U1 = φub(Qinit),
and L1 = φlb(Qinit).

2. Stopping criterion; if Uk − Lk > ε go to step 3, otherwise STOP.
3. Branching;

(a) pick Q ∈ Bk for which φlb(Q) = Lk and set Qk = Q.
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(b) split Qk along one of its longest edge into QI and QII .
(c) form Bk+1 from Bk by removing Qk and adding QI and QII .

4. Bounding;

(a) set Uk+1 = minQ∈Bk+1
{φub(Q)}.

(b) set Lk+1 = minQ∈Bk+1
{φlb(Q)}.

5. Pruning;

(a) pick all Q ∈ Bk+1 for which φlb(Q) ≥ Uk+1.
(b) update Bk+1 by removing all Q obtained in the above step 5-(a).

6. Set k = k + 1 and go to step 2.

The first step initializes the algorithm and the upper and lower bounds are
computed over the initial rectangle Qinit. The second step checks the difference
between the best upper and lower bounds found so far [bounds Uk and Lk are
given by (2.13)]. The algorithm repeats steps 3 to 6 until Uk − Lk < ε.

Step 3 is the branching mechanism of the algorithm. Here we adopt the
following branching rule: select from the current partition of Qinit (i.e., Bk) the
rectangle with the smallest lower bound and split it in two smaller rectangles
along its longest edge. Splitting the chosen rectangle along its longest edge
ensures the convergence of the algorithm [82]. At step 4 the best upper bound
Uk and the best lower bound Lk are updated according to (2.13).

Step 5 is used to eliminate (or prune) rectangles for which the lower bound is
larger than the best upper bound found so far, since those rectangles can never
contain a minimizer of the function f̃ . Note that pruning does not affect the
speed of the main algorithm since none of the rectangles that were pruned will
be selected later in the branching step 3 for further splitting. The advantage of
pruning is the release of the memory otherwise used for storing unnecessary
rectangles.

2.2.1 Convergence of the branch and bound algorithm

In this section we show the convergence of the proposed branch and bound
method for WSRMax (i.e., Algorithm 2.1) within a finite number of iterations.

Algorithm convergence is established by the following theorem.
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Theorem 2.1. If for any Q ⊆ Qinit with Q = {γ |γl,min ≤ γl ≤ γl,max, l ∈ L},
the functions φub(Q) and φlb(Q) satisfy the conditions C1 and C2, then Algo-
rithm 2.1 converges in a finite number of iterations to a value arbitrarily close to
t?, i.e., ∀ε > 0, ∃K > 0 s.t. UK − t? ≤ ε.

Proof. The proof is similar to that provided in [82, 172] and it is provided here
for the sake of completeness.

First note that there are k rectangles in the set Bk without pruning. Let the
volume of rectangle Qinit, denoted by vol(Qinit). Thus, we have

min
Q∈Bk

vol(Q) ≤ vol(Qinit)

k
. (2.14)

Therefore, as k increases at least one rectangle in the partition become small.
Then it is required to show that the smaller vol(Q) the smaller size(Q). To

do this, we first define the condition number of the rectangle

Q = {γ |γl,min ≤ γl ≤ γl,max, l ∈ L}

as
cond(Q) =

maxl(γl,max − γl,min)

minl(γl,max − γl,min)
. (2.15)

Note that the splitting rule we use, i.e., splitting the rectangle along its longest
edge, always ensures that for any k and any rectangle Q ∈ Bk [172, Lem. 1]

cond(Q) ≤ max{cond(Qinit), 2} . (2.16)

Moreover, we have,

vol(Q) =
L∏
l=1

(γl,max − γl,min) (2.17)

≥ max
l

(γl,max − γl,min)

(
min
l

(γl,max − γl,min)

)L−1

(2.18)

=

(
max
l

(γl,max − γl,min)

)Lmin
l

(γl,max − γl,min)

max
l

(γl,max − γl,min)

L−1

(2.19)

=
(2 size(Q))

L

(cond(Q))
L−1

(2.20)

≥
(

2 size(Q)

cond(Q)

)L
, (2.21)
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where (2.17)-(2.20) clearly followed by using straightforward manipulations and
(2.21) follows by noting that cond(Q) ≥ 1. Thus, from (2.21) we have

size(Q) ≤ 1

2
cond(Q)vol(Q)1/L . (2.22)

By using (2.14), (2.16), and (2.22) we obtain the following relation:

min
Q∈Bk

size(Q) ≤ 1

2
max{cond(Qinit), 2}

(
vol(Qinit)

k

)
. (2.23)

We are now ready to show that there exists a positive integer K such that for
any ε > 0, UK − t? ≤ ε. To see this, we select K as the maximum number of
iterations such that

1

2
max{cond(Qinit), 2}

(
vol(Qinit)

K

)
≤ δ . (2.24)

Thus from (2.23), for some Q denoted as Q̃ , size(Q̃) ≤ δ and from C2 [see (2.12)],
we have

φub(Q̃)− φlb(Q̃) ≤ ε . (2.25)

However, note that UK ≤ φub(Q̃) [since UK = mink∈{1,2,...,K} φub(Qk)] and
t? ≥ φlb(Q̃). Thus, UK − t? ≤ ε and the result follows.

2.3 Computation of upper and lower bounds

Note that the main challenge in designing a global optimization algorithm based
on the branch and bound method is to find cheaply computable functions φub(Q)

and φlb(Q) such that the conditions given in (2.11) and (2.12) are satisfied.
Basically, the essence of the branch and bound method is based on the fact that
for any Q ⊆ Qinit, the bounds φub(Q) and φlb(Q) are substantially easier to
compute than the true minimum φmin(Q) [82].

In this section we propose several candidates for φlb(Q) and φub(Q) in
Algorithm 2.1. First, we describe two basic lower and upper bound functions,
prove that they satisfy the conditions C1 and C2 [see (2.11) and (2.12)] and
present efficient methods for computing them. Computationally efficient better
bounds are presented later in this section.
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2.3.1 Basic lower and upper bounds

Recall that Q = {γ |γl,min ≤ γl ≤ γl,max, l ∈ L}. We now define the functions
φBasic

lb (Q) and φBasic
ub (Q) as

φBasic
lb (Q) =

{
f0(γmax) γmin ∈ G
0 otherwise ;

(2.26)

φBasic
ub (Q) = f̃(γmin) =

{
f0(γmin) γmin ∈ G
0 otherwise ,

(2.27)

where γmax = (γ1,max, . . . , γL,max), γmin = (γ1,min, . . . , γL,min), and G is defined
in (2.6). Note that the most computationally expensive part of evaluating
φBasic

lb (Q) and φBasic
ub (Q) is to check the condition γmin ∈ G. An efficient method

for checking this condition is provided soon after the following important
properties of functions φBasic

lb and φBasic
ub are established.

Lemma 2.1. The functions φBasic
lb (Q) and φBasic

ub (Q) satisfy the condition C1.

Proof. In the case of γmin 6∈ G we can easily see that φBasic
lb (Q) = φmin(Q) =

φBasic
ub (Q) = 0, and therefore the inequalities in C1 hold with equalities. In the

case of γmin ∈ G we notice that

φmin(Q) = inf
γ∈Q

f̃(γ) ≤ f̃(γmin) = f0(γmin) = φBasic
ub (Q) . (2.28)

The first equality follows from (2.9), the inequality follows since γmin ∈ Q, and
the second equality follows from (2.7). Moreover, we have

φmin(Q) = inf
γ∈Q

f̃(γ) ≥ inf
γ∈Q

f0(γ) = f0(γmax) = φBasic
lb (Q) , (2.29)

where the inequality follows from the fact that f̃(γ) ≥ f0(γ) and the second
equality is from the fact that Q is a rectangle and f0(γ) is monotonically
decreasing in each variable γl, l ∈ L. From (2.28) and (2.29) we conclude that
φBasic

lb (Q) ≤ φmin(Q) ≤ φBasic
ub (Q).

Lemma 2.2. The functions φBasic
lb (Q) and φBasic

ub (Q) satisfy the condition C2.

Proof. We first show that the function f0(γ) =
∑
l∈L−βl log(1 + γl) is Lipschitz

continuous on IRL
+ with the constant D =

√∑
l∈L β

2
l , i.e.,

|f0(µ)− f0(ν)| ≤ D ||µ− ν||2 (2.30)
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for all µ,ν ∈ IRL
+. We start by noting that f0(γ) is convex. Therefore, for all

µ,ν ∈ IRL
+ we have [3, Sec. 3.1.3]

f0(µ)− f0(ν) ≤ ∇f0(µ)T(µ− ν) . (2.31)

Without loss of generality, we can assume that f0(µ)− f0(ν) ≥ 0. Otherwise, we
can obtain exactly the same results by interchanging µ and ν in (2.31), i.e.,
f0(ν)− f0(µ) ≤ ∇f0(ν)T(ν − µ). Thus, we have that

|f0(µ)− f0(ν)| ≤
∣∣∇f0(µ)T(µ− ν)

∣∣ (2.32)

≤ ||∇f0(µ)||2 ||(µ− ν)||2 (2.33)

≤ maxγ∈IRL+
||∇f0(γ)||2 ||(µ− ν)||2 (2.34)

= max
γ∈IRL+

√√√√∑
l∈L

β2
l

(1 + γl)2
||(µ− ν)||2 (2.35)

= D ||(µ− ν)||2 , (2.36)

where (2.32) follows from (2.31), (2.33) follows from the Cauchy-Schwarz
inequality, (2.34) follows from the maximization operation, (2.35) follows by
noting that [∇f0(γ)]l = βl

(1+γl)
, l ∈ L, and (2.36) follows by setting γl = 0 for all

l ∈ L.
Now we can write the following relations:

φBasic
ub (Q)− φBasic

lb (Q) ≤ f0(γmin)− f0(γmax) (2.37)

≤ D ||γmin − γmax||2 (2.38)

= D
∣∣∣∣ ∑
l∈L

(γl,max − γl,min)el
∣∣∣∣

2
(2.39)

≤ D
∑
l∈L(γl,max − γl,min) (2.40)

≤ 2DL size(Q) . (2.41)

The first inequality (2.37) follows from (2.26) and (2.27) by noting that f0 is
nonincreasing, (2.38) follows from (2.30), (2.39) follows clearly by noting that el

is the lth standard unit vector, (2.40) follows from triangle inequality, and (2.41)
follows from the definition of size(Q) (see C2). Thus, for any given ε > 0, we
can select δ such that δ ≤ ε/2DL, which in turns implies that condition C2 is
satisfied.
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In the sequel, we present a computationally efficient method of checking
the condition γmin ∈ G which is central in computing φBasic

lb (Q) and φBasic
ub (Q)

efficiently. Without loss of generality, we can assume that γmin > 0. Note
that the method can be extended to the case, where there are links l for which
γl,min = 0 in a straightforward manner; then, checking the original condition
γmin ∈ G is equivalent to checking a modified condition γ̆min ∈ Ğ, where γ̆min

and Ğ are obtained by eliminating the dimensions (or link indexes) for which
γl,min = 0 and thus, we have γ̆min > 0.

Let us first consider the first set of inequalities in the description of G, i.e.,

γl ≤
gllpl

σ2 +
∑
j 6=l gjlpj

, l ∈ L . (2.42)

Let p = (p1, . . . , pL). By rearranging the terms, (2.42) can be equivalently
expressed as [72, 173]

(I−B(γ)G) p ≥ σ2B(γ)1 , (2.43)

where the matrices B(γ) ∈ IRL×L
+ and G ∈ IRL×L

+ are defined by

B(γ) = diag

(
γ1

g11
, . . . ,

γL
gLL

)
; [G]i,j =

{
gji i 6= j

0 otherwise .
(2.44)

For the notational simplicity, let

A(γ) = I−B(γ)G and b(γ) = σ2B(γ)1 . (2.45)

Thus, (2.42) can be compactly expressed as A(γ)p ≥ b(γ). Let us denote
the spectral radius [174, p. 5] of matrix B(γ)G by ρ (B(γ)G). The following
theorem helps us to check if γ ∈ G.

Theorem 2.2. For any γ > 0, the following implications hold:

1. ρ (B(γ)G) ≥ 1 ⇒ γ 6∈ G.
2. ρ (B(γ)G) < 1 and

∑
l∈O(n) pl ≤ pmax

n for all n ∈ T , where p = A−1(γ)b(γ)

⇒ γ ∈ G.
3. ρ (B(γ)G) < 1 and ∃n ∈ T s.t.

∑
l∈O(n) pl > pmax

n , where p = A−1(γ)b(γ) ⇒
γ 6∈ G.

Proof. See Appendix 1.
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Based on Theorem 2.2, the condition γmin ∈ G can be checked as follows:

Algorithm 2.2. Checking for condition γmin ∈ G

1. Construct B(γmin) and G according to (2.44).
2. If ρ (B(γmin)G) ≥ 1, then γmin 6∈ G and STOP. Otherwise, let

p = A−1(γmin)b(γmin).
3. If

∑
l∈O(n) pl ≤ pmax

n for all n ∈ T , then γmin ∈ G and STOP. Otherwise,
γmin 6∈ G and STOP.

2.3.2 Improved lower and upper bounds

Finding tighter bounds is very important as they can substantially increase
the convergence speed of Algorithm 2.1. By exploiting the monotonically
nonincreasing property of f0 [i.e., γ1 ≤ γ2 ⇒ f0(γ1) ≥ f0(γ2)], one improved
lower bound and two improved upper bounds are proposed in this subsection.
Efficient methods of computing them are provided as well.

Note that, in the case of γmin 6∈ G [i.e., Q∩G = ∅, see Figure 2.4(a)], f̃(γ) = 0

for any γ ∈ Q. Thus, both the basic lower bound (2.26) and the basic upper
bound (2.27) are trivially zero and no further improvement is possible since they
are tight. Consequently, tighter bounds can be found only in the case γmin ∈ G
[i.e., Q∩G 6= ∅, see Figure 2.4(b)]. Thus, we consider only this case in the sequel,
unless otherwise specified.

Improved lower bound

Roughly speaking, a tighter lower bound can be obtained as follows. We first
construct the smallest rectangle Q̄? ⊆ Q, which encloses the intersectionQ∩G [see
Figure 2.4(b)]. Let us denote this rectangle as Q̄? = {γ |γl,min ≤ γl ≤ γ̄?l , l ∈ L}.
The improved lower bound is given by f0(γ̄?1 , . . . , γ̄

?
L) 8.

8Further improvement can be obtained by constructing an outer polyblock approximation [89]
for Q̄? ∩ G that lies inside Q̄?. If {v́i}i∈V́ are the proper vertices of the polyblock, it is easy to
see that an improved bound is given by mini∈V́ f0(v́i). Though interesting, in this thesis we do
not consider these possible extensions, which can be carried out in a straightforward manner.
But we refer the reader to [25, Ch. 2, Sec. 7], where similar bound improving techniques are
discussed in the context of (difference of) monotonic optimization problems.
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(a) (b) (c)

Fig 2.4. Illustration of the sets G, Qinit, Q, and Q̄? in a 2−dimensional space, [83]
c© 2011, IEEE.

Recall that Q = {γ |γl,min ≤ γl ≤ γl,max, l ∈ L}. For any Q ⊆ Qinit, the
improved lower bound can be formally expressed as

φImp
lb (Q) =

{
f0(γ̄?) γmin ∈ G
0 otherwise ,

(2.46)

where, γ̄? = (γ̄?1 , . . . , γ̄
?
L) and γ̄?i is the optimal value of the following optimization

problem:
maximize

giipi
σ2 +

∑
j 6=i gjipj

subject to
giipi

σ2 +
∑
j 6=i gjipj

≤ γi,max

γl,min =
gllpl

σ2 +
∑
j 6=l gjlpj

, l ∈ L \ {i}∑
l∈O(n) pl ≤ pmax

n , n ∈ T
pl ≥ 0, l ∈ L ,

(2.47)

where the variable is (pl)l∈L. The first inequality constraint ensures that Q̄? ⊆ Q,
and it is active if and only if the corner point ai = γmin + (γi,max − γi,min)ei lies
inside G, i.e., ai ∈ G [see a1 in Figure 2.4(c)]. Therefore, when ai ∈ G, γ̄?i = γi,max.
Otherwise (i.e., ai 6∈ G ), γ̄?i is limited by the power constraints. In this case, the
first constraint of problem (2.47) can be safely dropped and the resulting problem
can be readily converted into a standard geometric program (GP) [3] so that
the solution can be obtained numerically by using a GP solver, e.g., GGPLAB,
GPPOSY, GPCVX [175]. However, it turns out that the particular structure of
problem (2.47) allows us to analytically find the optimal value. This provides a
more computationally efficient way to compute φImp

lb (Q) without relying on a
GP solver. This method is described soon after the following important property
of φImp

lb (Q) is established.
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Lemma 2.3. For any Q ⊆ Qinit, the lower bound φImp
lb (Q) (2.46) is better than

the basic lower bound φBasic
lb (Q) (2.26), i.e., φmin(Q) ≥ φImp

lb (Q) ≥ φBasic
lb (Q).

Proof. If γmin 6∈ G, we have φmin(Q) = φImp
lb (Q) = φBasic

lb (Q) = 0. Otherwise,
i.e., when γmin ∈ G we obtain

φmin(Q) = inf
γ∈Q

f̃(γ) = inf
γ∈G∩Q

f̃(γ) = inf
γ∈G∩Q

f0(γ)

≥ f0(γ̄?) = φImp
lb (Q) ≥ f0(γmax) = φBasic

lb (Q) , (2.48)

where the first equality is from (2.9), the second equality follows from the
fact that G ∩ Q is nonempty and f̃(γ) = 0 for all γ ∈ Q \ (G ∩ Q), the third
equality follows from f̃(γ) = f0(γ) for all γ ∈ G ∩ Q, the first inequality follows
by noting that γ̄? ≥ γ for all γ ∈ Q ∩ G and f0 is monotonically decreasing
in each dimension, and the last inequality follows since γmax ≥ γ̄? and f0 is
monotonically decreasing.

We describe now an efficient method to find γ̄?i by solving problem (2.47)
when γmin ∈ G and ai 6∈ G. We can assume without loss of generality that
γl,min > 0 for all l ∈ L \ {i}; the proposed method can be extended to the case
where there are links for which γl,min = 0 for some l ∈ L \ {i}. In such cases
the original problem (2.47) is equivalent to a modified problem obtained by
eliminating the dimensions l ∈ L \ {i} (i.e., link indexes) for which γl,min = 0.

The proposed method can be summarized as follows. By using the equality
constraints we eliminate the L − 1 variables (pl)l∈L\{i} and transform prob-
lem (2.47) into a single variable optimization problem (with the variable pi).
This facilitates finding the optimal power p?i (and implicitly γ̄?i ), in an efficient
and straightforward manner.

For a detailed description of the above method it is useful to introduce a
virtual network obtained from the original network by removing the ith link.
Such a network is referred to as reduced network. For notational convenience let
us define the following vectors and matrices associated to the reduced network:
p̄i and γmin,i are obtained from p and γmin by removing the ith entries, i.e., p̄i =

(p1, . . . , pi−1, pi+1, . . . , pL) and γ̄min,i=(γ1,min, . . . , γi−1,min, γi+1,min, . . . , γL,min);
similarly, B̄i(γ̄min,i) and Ḡi are obtained from B(γmin) and G [see (2.44)] by
removing the ith rows and the ith columns. It is important to note that if SINR
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vector γmin is achievable in the original network then γ̄min,i is also achievable in
the reduced network.

Now we turn to problem (2.47). By rearranging the terms, the equality
constraints can be expressed compactly as

[I− B̄i(γ̄min,i)Ḡi]p̄i + di(γ̄min,i)pi = σ2B̄i(γ̄min,i)1 , (2.49)

where

di(γ̄min,i)=−
(
gi1
g11

γ1,min, . . . ,
gii−1

gi−1i−1
γi−1,min,

gii+1

gi+1i+1
γi+1,min, . . . ,

giL
gLL

γL,min

)
.

Similarly to (2.45), let us denote

Āi(γ̄min,i) = I− B̄i(γ̄min,i)Ḡi ; b̄i(γ̄min,i) = σ2B̄i(γ̄min,i)1 (2.50)

and rewrite (2.49) equivalently as

Āi(γ̄min,i)p̄i + di(γ̄min,i)pi = b̄i(γ̄min,i) . (2.51)

Since γmin ∈ G it follows that the SINR vector γ̄min,i > 0 is achievable in
the reduced network. Thus, Theorem 2.2 (applied to the reduced network)
implies that the spectral radius of the matrix B̄i(γ̄min,i)Ḡi is strictly smaller
than one, i.e., ρ(B̄i(γ̄min,i)Ḡi) < 1. This, in turn, ensures that matrix Āi(γ̄min,i)

is invertible and its inverse has nonnegative entries, i.e., Ā−1
i (γ̄min,i) ≥ 0 [174,

Th. 2.5.3, items 2 and 17]. Therefore, we can parameterize all solutions of (2.49),
using pi as a free parameter [3, Sec. C.5, p. 681]. Thus, we obtain[

p̄i

pi

]
=

[
−Ā−1

i (γ̄min,i)di(γ̄min,i)

1

]
pi +

[
Ā−1
i (γ̄min,i)b̄i(γ̄min,i)

0

]

=

[
q̄i

qi

]
pi +

[
s̄i

si

]
, (2.52)

where qi=1, si=0, q̄i=− Ā−1
i (γ̄min,i)di(γ̄min,i), and s̄i=Ā−1

i (γ̄min,i)b̄i(γ̄min,i).
The vectors q̄i and s̄i are introduced for notational simplicity and they have the
following structure:

q̄i = (q1, . . . , qi−1, qi+1, . . . , qL) ; s̄i = (s1, . . . , si−1, si+1, . . . , sL) .

Furthermore, since Ā−1
i (γ̄min,i) ≥ 0 and by noting that di(γ̄min,i) ≤ 0 and

bi(γ̄min,i) ≥ 0 [see (2.50)], we can see that all entries in vectors q̄i and s̄i are
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nonnegative, q̄i ≥ 0 and s̄i ≥ 0. Finally, we can rewrite parametrization (2.52)
as

pj = qjpi + sj , j ∈ L , (2.53)

where qj ≥ 0, sj ≥ 0 for all j ∈ L, and qi = 1, si = 0.
Next we use parametrization (2.53) to convert problem (2.47) (with L power

variables) into an equivalent one with a single power variable pi. To do this, we
first express the objective function of problem (2.47) gi(p) as a function of single
variable pi, i.e.,

gi(p) =
giipi

σ2+
∑
j 6=i

gjipj
=

giipi
σ2 +

∑
j 6=i

gji (qjpi + sj)
= ḡi(pi) . (2.54)

The sum-power constraints of problem (2.47) (i.e.,
∑
l∈O(n) pl ≤ pmax

n , n ∈ T )
can be expressed as

pi ≤
pmax
n −

∑
l∈O(n) sl∑

l∈O(n) ql
, n ∈ T . (2.55)

Furthermore, since qj ≥ 0, sj ≥ 0, all L nonnegativity power constraints of
problem (2.47) can be replaced by pi ≥ 0, i.e., pi ≥ 0 in parametrization (2.53)
implies that pj ≥ 0 for all j ∈ L. Recall that we consider the nontrivial case
ai 6∈ G, and therefore the first inequality constraint of problem (2.47) can be
safely dropped, and therefore problem (2.47) can be expressed equivalently as

maximize ḡi(pi)

subject to pi ≤
pmax
n −

∑
l∈O(n) sl∑

l∈O(n) ql
, n ∈ T

pi ≥ 0 ,

(2.56)

where the variable is pi. By recalling that sl ≥ 0 for all ∈ L, it is easy to see
that the first derivative of the objective function ḡi(pi) is strictly positive. Hence,
the maximum ḡi(pi) can be found by increasing pi until one power constraint
become active. Thus, in the case of ai 6∈ G, we have

p?i = min
n∈T

pmax
n −

∑
l∈O(n) sl∑

l∈O(n) ql
(2.57)

and we can express the optimal γ̄?i as γ̄?i = ḡi(p
?
i ). Hence, the general solution of

problem (2.47) can be expressed as

γ̄?i =

{
γi,max ai ∈ G
ḡi(p

?
i ) otherwise .

(2.58)

60



Note that, the proposed method for checking γmin ∈ G (i.e., Algorithm 2.2) can
be readily applied to check the condition ai ∈ G in (2.58) as well.

Improved upper bound

Based on monotonicity of f0, L tighter upper bounds can be easily obtained by
evaluating f0 at the vertices of Q̄? adjacent to γmin. Specifically, they are given
by f0(āl), l ∈ L, where āl = γmin +(γ̄?l −γl,min)el [see ā1 and ā2 in Figures 2.4(b)
and 2.4(c)]. Note that the values γ̄?l , ∈ L have already been found for computing
the improved lower bound φImp

lb (Q) (2.46). Let l? be the index of the vertex
which provide the best (smallest) upper bound, i.e., l? = arg minl∈L f0(āl). Thus,
our first improved upper bound is given by

φImp
ub (Q) =

{
f0(āl?) γmin ∈ G
0 otherwise .

(2.59)

The following lemma ensures that φImp
ub (Q) is tighter than the basic upper bound

φBasic
ub (Q).

Lemma 2.4. For any Q ⊆ Qinit and γ̌ ∈ G ∩ Q we have φmin(Q) ≤ f0(γ̌) ≤
f0(γmin) = φBasic

lb (Q).

Proof. First note from (2.48) that, φmin(Q) = inf
γ∈G∩Q

f0(γ). Moreover, by noting

that γ̌ ∈ G ∩ Q, we have inf
γ∈G∩Q

f0(γ) ≤ f0(γ̌) and since γmin ≤ γ̌ and f0 is

monotonically decreasing in each dimension, we have f0(γ̌) ≤ f0(γmin). Thus,
we can combine these relations together and the result follows.

We can further improve the previously obtained bound by using efficient
local optimization techniques. Specifically, we can use as an initial point γ = āl?

and (locally) minimize f0(γ) subject to γ ∈ G ∩ Q, i.e.,

minimize f0(γ)

subject to γ ∈ G ∩ Q ,
(2.60)

where the variable is γ. Let us denote the obtained local optimum by γImpCGP.
Thus, our second improved upper bound is given by

φImpCGP
ub (Q) =

{
f0(γImpCGP) γmin ∈ G
0 otherwise .

(2.61)
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One simple approach to efficiently compute γImpCGP via complementary geomet-
ric programming (or CGP) [97] is presented in Appendix 2.

Since all improved bounds are tighter than the basic ones (see Lemma 2.3
and Lemma 2.4), any possible combination of a lower and an upper bound pair
must also satisfy the conditions C1 and C2. This ensures the convergence of the
proposed Algorithm 2.1.

2.4 Extensions to multicast networks

In this section we consider the problem of WSRMax in multicast networks [i.e.,
problem (2.4)] and show how Algorithm 2.1 can be adapted to find the solution
of problem (2.4). By noting the monotonically increasing property of log(·)
function, problem (2.4) can be expressed in the following equivalent form:

maximize
∑
n∈T

∑Mn

m=1 β
m
n log

(
1+ min

l∈Om(n)
SINRml

n (p)
)

subject to
∑Mn

m=1 p
m
n ≤ pmax

n , n ∈ T
pmn ≥ 0, n ∈ T , m = 1, . . . ,Mn ,

(2.62)

where the variable is (pmn )n∈T ,m=1,...,Mn
. By introducing auxiliary variables

γmn , n ∈ T ,m = 1, . . . ,Mn, we can equivalently express problem (2.62) as

minimize
∑
n∈T

∑Mn

m=1−βmn log(1+γmn )

subject to γmn ≤ SINRml
n (p),

n∈T , m = 1, . . . ,Mn,

l ∈ Om(n)∑Mn

m=1 p
m
n ≤ pmax

n , n ∈ T
pmn ≥ 0, n ∈ T , m = 1, . . . ,Mn ,

(2.63)

where the variables are (pmn )n∈T ,m=1,...,Mn and (γmn )n∈T ,m=1,...,Mn . A close
comparison of problems (2.63) and (2.5) reveals that they have a very similar
structure. Therefore, the proposed branch and bound method (i.e., Algorithm 2.1)
can be directly applied to solve problem (2.63) by redefining appropriately the
following sets and functions.

1. γ = (γ1, . . . , γL) is replaced by γ = (γmn )n∈T ,m=1,...,Mn
.

2. f0(γ) is replaced by f̃0(γ), where f̃0(γ) =
∑
n∈T

∑Mn

m=1−βmn log(1 + γmn ).
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3. G is replaced by G̃, where

G̃ =

γ
∣∣∣∣∣∣∣∣∣∣
γmn ≤ SINRml

n (p),
n ∈ T , m = 1, . . . ,Mn,

l ∈ Om(n)∑Mn

m=1 p
m
n ≤ pmax

n , n ∈ T
pmn ≥ 0, n ∈ T , m = 1, . . . ,Mn

 .

4. Qinit is replaced by Q̃init, where

Q̃init =

γ
∣∣∣∣∣∣ 0 ≤ γmn ≤

min
l∈Om(n)

gll

σ2
pmax
n , n∈T , m = 1, . . . ,Mn

 .

5. Q is replaced by Q̃, where

Q̃ =
{
γ
∣∣ γmn,min ≤ γmn ≤ γmn,max, n ∈ T , m = 1, . . . ,Mn

}
.

Note that the definitions of the lower and upper bound functions provided in the
case of singlecast networks [i.e., (2.26), (2.27), (2.46), and (2.59)] are applicable
in the case of multicast networks as well. However, instead of the proposed
efficient methods based on M-matrix theory [174, p. 112] for checking γ ∈ G
(see Algorithm 2.2) and for evaluating γ̄?i [see (2.58)], in the case of multicast
networks, we have to rely on a linear programming (LP) or a GP solver.

2.5 Numerical examples

In this section we first compare the impact of the proposed lower bounds and
upper bounds (Section 2.3) on the convergence of the proposed branch and bound
method (Algorithm 2.1 in Section 2.2). Next, we provide various applications
of Algorithm 2.1 and numerical examples for the considered applications. In
summary, those applications include: sum-rate maximization in singlecast
wireless networks, the problem of maximum weighted link scheduling for wireless
multihop networks [12, Sec. III-B,V-A],[38, Sec. 4], cross-layer control policies for
network utility maximization (NUM) in multihop wireless networks [17, Sec. 5],
finding achievable rate regions in singlecast, as well as in multicast, wireless
networks.

To simplify the presentation we use the abbreviations: LBBasic for the basic
lower bound given in (2.26), UBBasic for the basic upper bound given in (2.27),
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Fig 2.5. (a) Bipartite network, degree 1, N = 8, L = 4; (b) Bipartite network,
degree 1, N = 4, L = 2, [83] c© 2011, IEEE.

LBImp for the improved lower bound given in (2.46), UBImp for the improved
upper bound given in (2.59), and UBImpCGP for the improved upper bound given
in (2.61).

2.5.1 Impact of different lower bounds and upper bounds
on BB

To gain insight into the impact of the proposed lower and upper bounds on
the convergence of Algorithm 2.1, we focus first on the problem of sum-rate
maximization in a simple bipartite network of degree 1 [see Figure 2.5(a)]. The
channel power gain between distinct nodes are modeled as

|hij |2 = µ|i−j|cij , i, j ∈ L , (2.64)

where cijs are small-scale fading coefficients and the scalar µ ∈ [0, 1] is referred to
as the interference coupling index, which parameterizes the interference between
direct links. The fading coefficients are assumed to be exponentially distributed
independent random variables to model Rayleigh fading. An arbitrarily generated
set Ć of fading coefficients, where Ć = {cij | i, j ∈ L} is referred to as a single
fading realization; we use a discrete argument t sometimes, to indicate the fading
realization index. For example Ć(t) represents the tth fading realization. We
define the signal-to-noise ratio (SNR) operating point as (pmax

n = pmax
0 for all

n ∈ T )
SNR =

pmax
0

σ2
. (2.65)

We consider first the nonfading case, i.e., cij = 1, i, j ∈ L, and the proposed
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Fig 2.6. Evolution of lower and upper bounds: (a) Basic lower bound in conjunc-
tion with all upper bounds; (b) Improved lower bound in conjunction with all upper
bounds, [83] c© 2011, IEEE.
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Algorithm 2.1 was run with all possible combinations of the proposed lower
and upper bound pairs. Figure 2.6 shows the evolution of the upper and lower
bounds for the optimal value of problem (2.5) 9 for SNR = 15dB, µ = 0.25,
and βl = 0.25 for all l ∈ L. Specifically in Figure 2.6(a), we used the basic
lower bound LBBasic in conjunction with all proposed upper bounds and in
Figure 2.6(b) we used the improved lower bound LBImp in conjunction with
all proposed upper bounds. The results show that the convergence speed of
Algorithm 2.1 can be substantially increased by improving the lower bound whilst
the tightness of the upper bound has a much reduced impact. Note that this is
in general the behavior of a branch and bound method, where an approximative
solution can be found relatively fast but certifying it typically takes a much larger
number of iterations [82]. Note that in both Figure 2.6(a) and Figure 2.6(b) the
evolution of lower bounds is independent of the upper bound used. This is due
to the fact that in each iteration the branching mechanism depends only on the
lower bound.

In order to provide a statistical description of the speed of convergence
we turn to the fading case and run Algorithm 2.1 for a large number of
fading realizations. For each one we store the number of iterations and the
total CPU time required to find the optimal value of problem (2.5) within
an accuracy of ε = 10−1 for SNR = 15dB, µ = 0.25, and βl = 0.25 for all
l ∈ L. Figure 2.7 shows the empirical cumulative distribution function (CDF)
plots of the total number of iterations [Figure 2.7(a)] and the total CPU
time [Figure 2.7(b)] for all possible combinations of lower and upper bounds pairs.
Figure 2.7(a) shows that, irrespective of the upper bound we use, the improved
lower bound LBImp provides a remarkable reduction in the total number of
iterations when compared to LBBasic. Results further show that, even though
the improved upper bound UBImpCGP makes use of advanced optimization
techniques, such as complementary geometric programming (see Algorithm 2.0.1,
Appendix 2), the benefits from UBImpCGP over the improved upper bound
UBImp is marginal in terms of the total number of iterations. In terms of the
total CPU time [Figure 2.7(b)], significant improvements are often achieved by
using the lower and upper bound pairs (LBImp, UBImp) and (LBImp, UBBasic).
Interestingly, the lower and upper bound pair (LBImp, UBImpCGP) performs very

9The optimal value of problem (2.5) is the negative of the optimal value of problem (2.2).
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Fig 2.7. Empirical CDF plots of: (a) Total number of iterations; (b) Total CPU time,
[83] c© 2011, IEEE.
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poorly. This behavior is due to the complexity of step 2 of Algorithm 2.0.1,
where we have to rely on a GP solver.

Therefore, in all of the following numerical examples, Algorithm 2.1 is run
with the lower and upper bound pair (LBImp, UBImp), unless otherwise specified.

2.5.2 Sum-rate maximization in singlecast wireless
networks

Let us now consider the problem of sum-rate maximization in a bipartite
singlecast network. To evaluate the benefits from multipacket transmit/receive
capabilities of nodes, we chose a network setup with degree 3, as shown in
Figure 2.8. The network is symmetric and the distances between nodes are
chosen as shown in the figure. We assume an exponential path loss model, where
the channel power gains between distinct nodes are given by

|hij |2 =

(
dij
d0

)−η
cij , (2.66)

where dij is the distance from the transmitter of link i to the receiver of link j,
d0 is the far field reference distance [176], η is the path loss exponent, and cij
are defined similarly to their use in (2.64). Note that the interference coefficients
gij s are chosen as we discussed in Section 2.1. The first term of (2.66) represents
the path loss factor and the second term models Rayleigh small-scale fading.
The SNR operating point is defined as (pmax

n = pmax
0 for all n ∈ T )

SNR =
pmax

0

σ2

(
D0

d0

)−η
. (2.67)

In the following simulations we set D0/d0 = 10 and η = 4.
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Figure 2.9(a) shows the dependence of average sum-rate (i.e., βl = 1 for all l ∈
L) on the SNR. Results show that the average sum-rate, in the case of multipacket
transmission/reception, is always better than, or equal to, the case of singlepacket
transmission/reception and the performance gap increases as SNR decreases.
However, as expected for practical SNR values, the benefits of multipacket
transmission/reception are negligible when the receivers perform singleuser
detection [9]. For comparison, we also plot the result obtained from a suboptimal
solution method based on complementary geometric programming [5, 97, 98].
We refer to this suboptimal method as CGP algorithm for the rest of the
section. Note that, CGP algorithm is equivalent to running Algorithm 2.0.1
(Appendix 2) with Q = Qinit and a proper initialization γ̂. Specifically, we
found the initial γ̂l, l ∈ L according to (2.42) by using a uniform feasible power
allocation, which will be referred to as uniform initialization in the rest of the
section. Let us first focus on CGP performance in the case of multipacket
transmission/reception. Results show that there is a significant performance
loss due to the suboptimality of CGP algorithm, especially for SNR > 0dB.
In the case of singlepacket transmission/reception, the average sum-rate that
is obtained by using CGP algorithm is almost zero, irrespective of the SINR
and not plotted in Figure 2.9(a) to preserve clarity. Results confirm that CGP
algorithm cannot handle the huge imbalance between interference coefficient
values 10.

Figure 2.9(b) shows the empirical CDF plots of the total number of iterations
required to find the sum-rate by using Algorithm 2.1, which gives insight into
the complexity of Algorithm 2.1. The plots are for the case of SNR = 10dB and
ε = 10−3. Roughly speaking, results show that the total number of iterations
required in the case of singlepacket transmission/reception is smaller compared
to the case of multipacket transmission/reception.

2.5.3 Maxweight scheduling in multihop wireless networks

Next, we consider a multihop wireless network, where the nodes have only
singlepacket transmit/receive capability and no node can transmit and receive
simultaneously. In such setups the WSRMax problem is equivalent to the maxi-

10Recall from Figure 2.2(a) and 2.2(b) that, if nodes have singlepacket transmitter/receiver
capabilities, then some of the interference coefficients are infinite.
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Fig 2.10. (a) Multihop network, N = 8, L = 12; (b) Empirical CDF of the total
number of iterations, [83] c© 2011, IEEE.

mum weighted matching 11 (MWM) problem [54]. Polynomial time algorithms
are available for the problem in the case of fixed link rates [54],[38, Sec. 4.2]. To
the best of our knowledge, there are no known solution methods for the MWM
problem when the link rates depend on the power allocation of all other links. In
such cases, it is worth noting that our proposed algorithm is able to find the
MWM.

To show this, we use the symmetric multihop wireless network shown in
Figure 2.10(a). The channel power gains, between nodes are given by (2.66) and

11Borrowing terminology from graph theory, a matching is a set of links, no two of which share
a node [54].
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the SNR operating point is given by (2.67). In the following simulations we set
D0/d0 = 10 and η = 4.

Table 2.1 shows MWMs obtained for different link weights (see the left most
column) and the SNR combinations. Here we consider a nonfading scenario (i.e.,
cij = 1, i, j ∈ L) and an accuracy of ε = 10−10. Results show that the smaller
the SNR, the larger the number of links that are activated simultaneously in
the maximum weighted matching. This is intuitively expected since, at low
SNR values, node transmission power is small, and therefore the interference
generated is very small so that many links are activated simultaneously.

To gain some insight into the computational complexity of the algorithm we
plot the CDF of the total number of iterations by running the algorithm for a
large number of fading realizations.

Figure 2.10(b) shows the empirical CDF plots of the total number of iterations
required to terminate Algorithm 2.1 (or to find the MWM). Plots are drawn
for the cases of SNR = 0, 5, 10, and 15dB, βl = 1 for all l ∈ L, and ε = 10−2.
Results show that the smaller the SNR, the smaller the total number of iterations
required to find the MWM. For example, in the case of SNR = 0dB, with
probability 0.9, the MWM is found in less than 1500 iterations. However, in the
case of SNR = 5dB, with the same probability 0.9, the MWM is found in less
than 4000 iterations.

2.5.4 Cross-layer control policies for NUM

In this section we specifically consider the problem of network utility maximization
subject to stability constraints [17, Sec. 5]. Let us first revisit briefly the
commodity description of the network. Exogenous data arrives at the source
nodes and they are delivered to the destination nodes over several, possibly
multihop, paths. The data is identified by their destinations, i.e., all data with
the same destination are considered as a single commodity, regardless of their
source. We label the commodities with integers s = 1, . . . , S (S ≤ N). For
every node, we define Sn ⊆ {1, . . . , S} as the set of commodities, which can
arrive exogenously at node n. The network is time slotted and at each source
node, a set of flow controllers decides the amount of each commodity data
admitted in every time slot in the network. Let xsn(t) denote the amount of
data commodity s admitted in the network at node n during time slot t. It is

73



3

2

D0 m

1

4

x 1
1

x 4
2

(a)

x 1
1

4

2 3

D0 m

1

x 2
2

(b)

Fig 2.11. (a) Multihop network 1, N = 4, fully connected, S = 2; (b) Multihop
network 2, N = 4, fully connected, S = 2, [83] c© 2011, IEEE.

assumed that the data that is successfully delivered to its destination exits the
network layer. Associated with each node-commodity pair (n, s)s∈Sn we define
a concave and nondecreasing utility function usn(y), representing the “reward”
received by sending data of commodity s from node n to node ds at a long term
average rate of y [bits/slot]. Thus, the NUM problem under stability constraints
can be formulated as [17, Sec. 5]

maximize
∑
n∈N

∑
s∈Sn u

s
n(ysn)

subject to (ysn)n∈N ,s∈Sn ∈ Λ ,
(2.68)

where the variable is (ysn)n∈N ,s∈Sn and Λ represents the network layer capacity
region [17, Def. 3.7].

An arbitrarily close to optimal solutions for problem (2.68) is achieved by a
cross-layer control policy, which consists of solving three subproblems: 1) flow
control, 2) next-hop routing and in-node scheduling, and 3) RA, during each time
slot [17]. The RA subproblem exactly resembles the WSRMax problem (2.2),
where the weights are given by the maximum differential backlogs of network
links [17]. Here, we implement the cross-layer control algorithm in [17] and, in
the third step, we use our proposed Algorithm 2.1 to solve the RA subproblem.
The cross-layer control algorithm is simulated for at least T́ = 10000 time slots,
and the average rates x̄sn are computed by averaging the last t0 = 3000 time
slots, i.e., x̄sn = 1/t0

∑T́
t=T́−t0 x

s
n(t). We assume that the rates corresponding

to all node-commodity pairs (n, s)s∈Sn , n ∈ N are subject to proportional
fairness, and therefore we select the utility functions usn(y) = loge(y). For a
detailed description of the cross-layer control policy [17] the reader may refer to
Section 3.1.2.

Two fully connected multihop wireless network setups, as shown in Figure 2.11
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are considered, where all nodes have multipacket transmit/receieve capability and
no node can transmit and receive simultaneously. Each of the networks consist of
four nodes (i.e., N = 4) and two commodities, which arrive exogenously at source
nodes. In the case of the first network setup, shown in Figure 2.11(a), commodity 1

arrives exogenously at node 1, and is intended for node 4; commodity 2 arrives
exogenously at node 4, and is intended for node 1. Nodes are located in a
square grid such that the horizontal and the vertical distance between adjacent
nodes are D0 meters [m]. In the case of the second network setup, shown in
Figure 2.11(b), commodity 1 arrives exogenously at node 1, and is intended
for node 2; commodity 2 arrives exogenously at node 2, and is intended for
node 3. Nodes are located such that three of them form an equilateral triangle
and the fourth one is located at its center [see Figure 2.11(b)]. It is assumed that
the distance from the middle node to any other is D0 m. The channel power
gains are given by (2.66) and SNR operating point is given by (2.67). We set
D0/d0 = 10 and η = 4 in the following simulation.

Figure 2.12 shows the dependence of the average network layer sum-rate on
the SNR for the considered network setups. As a reference, we first consider a
suboptimal and more restrictive RA policy, where only one link can be activated
during each time slot. This policy is called base line single link activation
(BLSLA); BLSLA policy can be easily found and it consists of activating, during
each time slot, only the link which achieves the maximum weighted rate. Other
suboptimal RA policy is based on CGP algorithm (see Section 2.5.2). Specifically,
we use two initialization methods for CGP algorithm: 1) the initial γ̂l, l ∈ L is
found according to (2.42) by using BLSLA power allocation, 2) the uniform
initialization, as discussed in Section 2.5.2.

Results show that the gains obtained by using Algorithm 2.1 are always
larger compared to other suboptimal methods. The relative gains achieved by
Algorithm 2.1 in the case of network setup 1 [Figure 2.12(a)] are more significant
than in the case of network setup 2 [Figure 2.12(b)]. Results further show that,
the suboptimal CGP algorithm is very sensitive to initialization. For example, in
the case of uniform initialization, CGP algorithm performs extremely poorly
compared to the case of BLSLA based initialization. Moreover, in the case of
BLSLA based initialization, the suboptimal CGP algorithm can not perform
beyond the limits that are achieved by simple BLSLA RA policy.
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2.5.5 Achievable rate regions in singlecast wireless
networks

In this section we illustrate how Algorithm 2.1 can be used to find the achievable
rate region in singlecast wireless networks. Recall that we consider the case where
all receiver nodes perform singleuser detection, and therefore the achievable rate
regions we are referring to are different from the information theoretic capacity
regions [177–179]. Note that the information theoretic capacity region is not
known, even in the simple case of two interfering links [180].

To facilitate the graphical illustration, we consider a simple bipartite singlecast
network of degree 1, as shown in Figure 2.5(b). The channel power gains are
given by (2.64) and the SNR operating point is given by (2.65).

We start by defining the directly achievable rate region, the instantaneous
rate region, and the average rate region for singlecast wireless networks. Let
RDIR−SC(µ, Ć(t), pmax

1 , pmax
2 ) denote the directly achievable rate region for a

given interference coupling index µ, a given fading realization 12

Ć(t) = {c11(t), c12(t), c22(t), c21(t)} , (2.69)

and maximum node transmission power pmax
1 and pmax

2 , i.e.,

RDIR−SC(µ, Ć(t), pmax
1 , pmax

2 ) (2.70)

=


(R1, R2)

∣∣∣∣∣∣∣∣∣∣∣∣∣

R1 ≤ log

(
1 +

c11(t)p1

σ2 + µc21(t)p2

)
R2 ≤ log

(
1 +

c22(t)p2

σ2 + µc12(t)p1

)
0 ≤ p1 ≤ pmax

1 , 0 ≤ p2 ≤ pmax
2


.

By invoking a time sharing argument, one can obtain the instantaneous rate region
RINS−SC(µ, Ć(t), pmax

1 , pmax
2 ); the convex hull of RDIR−SC(µ, Ć(t), pmax

1 , pmax
2 ).

That is,

RINS−SC(µ, Ć(t), pmax
1 , pmax

2 ) = conv
{
RDIR−SC(µ, Ć(t), pmax

1 , pmax
2 )

}
,

where conv{R} denotes the convex hull of the set R. As noted in [81], since the
instantaneous rate region RINS−SC(µ, Ć(t), pmax

1 , pmax
2 ) is convex, any boundary

12The argument t is used to indicate the fading realization index.
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point of the rate region can be obtained by using the solution of an optimization
problem in the form of (2.2) with β1 = α, β2 = (1− α) for some α ∈ [0, 1].

Finally, we define the average rate region RAVE−SC(µ, pmax
1 , pmax

2 ) for a given
interference coupling index µ and a maximum node transmission power pmax

1 and
pmax

2 as RAVE−SC(µ, pmax
1 , pmax

2 ) = 1
T́

∑T́
t=1RINS−SC(µ, Ć(t), pmax

1 , pmax
2 ), where

addition and scalar multiplication of sets is used 13. The nonnegative integer
T́ is the total number of fading realizations we used in averaging. Note that,
any boundary point (Rb

1 , R
b
2) of RAVE−SC(µ, pmax

1 , pmax
2 ) is obtained by using

the following steps for some α ∈ [0, 1]: 1) solve problem (2.2) with β1 = α and
β2 = 1− α for T́ fading realizations, 2) for each fading realization t ∈ {1, . . . , T́},
evaluate the rate of link 1 and 2 denoted by r1(t), r2(t) according to (2.1), and 3)
average r1(t) and r2(t) over all T́ fading realizations to obtain Rb

1 = 1
T́

∑T́
t=1 r1(t)

and Rb
2 = 1

T́

∑T́
t=1 r2(t).

Figure 2.13(a) shows RINS−SC(µ, Ć(t), pmax
1 , pmax

2 ), the instantaneous rate
regions for different values of µ and for an arbitrary chosen fading realization in
the case of SNR = 15dB. Specifically, the fading coefficients are c11(t) = 0.4185,
c12(t) = 0.3421, c22(t) = 0.3700, and c21(t) = 1.299. As a reference, we also
plot the directly achievable rate regions RDIR−SC(µ, Ć(t), pmax

1 , pmax
2 ) for all the

scenarios considered. Note that the problem of finding any boundary point
of RDIR−SC(µ, Ć(t), pmax

1 , pmax
2 ) can be easily cast as a GP, or as a problem

of the form (2.47). Results show that the smaller the µ, the larger the rate
regions. This is intuitively explained by noting that the smaller the µ, the
smaller the interference coefficients, gij between links, and therefore the higher
the rates. Results further show that, when µ ≥ 0.2, the directly achievable rate
regions become nonconvex, whereas the instantaneous rate region is a triangle
referred to as time division multiple access (TDMA) rate region, obtained
by time sharing between the maximum rates of R1 and R2. Moreover, when
µ < 0.2, the instantaneous rate region expands beyond the TDMA rate region
and for µ ≤ 0.01, the directly achievable rate region almost overlaps with the
instantaneous rate region.

Figure 2.13(b) shows the average rate region RAVE−SC(µ, pmax
1 , pmax

2 ) for
different values of µ in the case of SNR = 15dB. As a reference, we also plot the
region obtained by using CGP algorithm to problem (2.2). Results show that
13For vector sets A1 and A2 and scalars α1, α2, the set α1A1 + α2A2 is defined as {α1a1 +

α2a2 |a1 ∈ A1,a2 ∈ A2} [3, p. 38].
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Fig 2.13. Rate regions: (a) Directly achievable and instantaneous rate regions;
(b) Average rate regions, [83] c© 2011, IEEE.
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the region obtained by CGP algorithm is always worse than the average rate
region. The gap in performance is more pronounced in the case of larger values
of µ. Note that, even in the case of µ = 1, the average rate region is bounded
by a concave function with end points C1 and C2, although the corresponding
instantaneous rate regions used in the averaging are triangles [see Figure 2.13(a)]
in general. This phenomenon is due to the property of the set addition used in
the definition of RAVE−SC(µ, pmax

1 , pmax
2 ). Results also show that the smaller the

µ, the larger the average rate region.

2.5.6 Achievable rate regions in multicast wireless
networks

We finally show the applicability of Algorithm 2.1 for finding the rate regions in
a multicast wireless networks. A multicast with only two multicast transmis-
sions [see Figure 2.14(a)] is considered for the sake of graphical illustration of
the rate regions. Node 1 has common information to be sent to node 3 and 4,
whereas node 2 has common information to be sent to node 3 and 5. We assume
that node 3 has multipacket receiver capability. The channel power gains are
given by (2.66) and SNR operating point is given by (2.67). Moreover, we set
D0/d0 = 10 and η = 4.

As in the case of singlecast wireless networks, we first define the directly
achievable rate region, instantaneous rate region, and the average rate region for
multicast wireless networks. Particularized to the network setup in Figure 2.14(a),
for a given set of interference coefficients / power gains

Ǵ(t) = {g11(t), g22(t), g33(t), g44(t), g14(t), g32(t)} (2.71)

and maximum node transmission power pmax
1 and pmax

2 , the instantaneous rate
region RINS−MC(Ǵ(t), pmax

1 , pmax
2 ) is defined as

RINS−MC(Ǵ(t), pmax
1 , pmax

2 ) = conv
{
RDIR−MC(Ǵ(t), pmax

1 , pmax
2 )

}
, (2.72)

where RDIR−MC(Ǵ(t), pmax
1 , pmax

2 ) denotes the directly achievable rate region for
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multicast wireless networks, i.e.,

RDIR−MC(Ǵ(t), pmax
1 , pmax

2 ) (2.73)

=


(R1, R2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R1 ≤ log

(
1 +

g11(t)p1
1

σ2 + g33(t)p1
2

)
R1 ≤ log

(
1 +

g22(t)p1
1

σ2 + g32(t)p1
2

)
R2 ≤ log

(
1 +

g33(t)p1
2

σ2 + g11(t)p1
1

)
R2 ≤ log

(
1 +

g44(t)p1
2

σ2 + g14(t)p1
1

)
0 ≤ p1

1 ≤ pmax
1 , 0 ≤ p1

2 ≤ pmax
2


.

Finally, for a given maximum node transmission power pmax
1 and pmax

2 , the
average rate region RAVE−MC(pmax

1 , pmax
2 ) is defined as RAVE−MC(pmax

1 , pmax
2 ) =

1
T́

∑T́
t=1RINS−MC(Ǵ(t), pmax

1 , pmax
2 ).

Figure 2.14(b) shows the average multicast rate region for different SNR
values. Results show that, when the weights associated with rates R1 and R2

are the same, the resulting R1 is always greater than R2. For example, in the
case of SNR = 20dB, we have R1 = 3.71 bits/sec/Hz and R2 = 1.50 bits/sec/Hz.
Roughly speaking, this observation can be explained as follows: R1 is determined
by the rate of link 2 (the weakest of link 1 and 2), R2 is determined by the rate
of link 3 (the weakest of link 3 and 4) and rate of link 2 is larger than that of
link 3 due to path losses.

2.6 Summary and discussion

We have considered the general WSRMax problem for a set of interfering links.
In fact, this problem is NP-hard. A solution method, based on the branch
and bound technique, has been proposed for solving the nonconvex WSRMax
problem globally with an optimality certificate. Efficient and analytic bounds
were proposed and their impact on convergence was numerically evaluated. The
convergence speed of the proposed algorithm can be substantially increased
by improving the lower bound, whilst the tightness of the upper bound has a
much reduced impact. Numerical results showed that the proposed algorithm
converged fairly fast in all considered setups. Nevertheless, since the problem
is NP-hard, the worst case complexity can be exponential in the number of
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variables. The considered link-interference model is fairly general so that it can
model a wide range of network topologies with various node capabilities, such as
single- or multipacket transmission (or reception) and simultaneous transmission
and reception. Unlike other branch and bound based solution methods for
WSRMax, our method does not require the problem to be convertible into a DC
(difference of convex functions) problem. Therefore, the proposed method applies
to a broader class of WSRMax problems (e.g., WSRMax in multicast wireless
networks). Moreover, the method proposed can also be used to maximize any
system performance metric that can be expressed as a Lipschitz continuous and
increasing function of SINR values and is not restricted to WSRMax. Given
its generality, the proposed algorithm can be adapted to address a wide range
of network control and optimization problems. Performance benchmarks for
various network topologies can be obtained by back-substituting it into any
network design method which relies on WSRMax. Several applications, including
cross-layer network utility maximization and maximum weighted link scheduling
for multihop wireless networks, as well as finding achievable rate regions for
singlecast/multicast wireless networks, have been presented. Since there are a
number of suboptimal but low-complex algorithms are typically used in practice,
the proposed algorithm can also be used for evaluating their performance loss.
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3 Low-complexity algorithms for WSRMax

In this chapter we first develop efficient, low-complexity algorithms for the
WSRMax problem in multicommodity, multichannel wireless networks by
using homotopy methods [114] and complementary geometric program (or
CGP) [97]. Our problem formulation is fairly general and it allows frequency
reuse by activating multiple links in the same channel simultaneously. Here, the
interference is solely resolved via power control. Furthermore, our formulation
allows the possibility of exploiting multichannel diversity via dynamic power
allocation across the available channels. The gains that can be achieved at upper
layers in terms of end-to-end rates and network congestion are quantitatively
analyzed by incorporating the proposed algorithms within Neely’s cross-layer
utility maximization framework [16, 17].

It is worth pointing out that the proposed algorithm, based on homotopy
methods, also handles the self-interference problem in such a way that the
combinatorial nature of the problem is circumvented. Here the imperfect self
interference cancelation is modeled as a variable power gain from the transmitter
to the receiver at all nodes. This simple model gives insight into the behavior of
different network topologies when self interference cancellation is employed in
network nodes. A similar approach can be used in a straightforward manner to
model a wide range of network topologies with various node capabilities as well,
e.g., singlepacket transmission, singlepacket reception, and many others. The
proposed method can also be used to find the required level of accuracy for the
self interference cancelation such that certain gains are achieved at the network
layer. In addition, it provides a simple mechanism to evaluate the impact of
scaling the distance between network nodes on the accuracy level of the self
interference cancellation. Thus, from a network design perspective, the proposed
method can be very useful.

Recall that WSRMax problem is NP-hard and we have to rely on exponentially
complex global optimization techniques [24, 25, 82] to obtain the optimal
solution. Nevertheless, the numerical results show that the proposed algorithms
in this section perform close to global optimization methods. We further test
our algorithms by carrying them out on large-scale problems, where global
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optimization methods [55, 57, 60, 62, 83] cannot be used, due to prohibitive
computational complexity. Results show that the proposed algorithms can
provide significant gains at the network layer, in terms of end-to-end rates and
network congestion, by exploiting efficiently the available multichannel diversity.
We also evaluate the potential gains achievable at the network layer when the
network nodes employ self interference cancelation techniques with different
degrees of accuracy.

Finally, we consider different receiver capabilities and evaluate the effect of
the use of multiuser detectors.

3.1 System model and problem formulation

3.1.1 Network model

The wireless network consists of a collection of nodes that can send, receive and
relay data across wireless links. The set of all nodes is denoted by N and we label
the nodes with the integer values n = 1, . . . , N . A wireless link is represented as
an ordered pair (i, j) of distinct nodes. The set of links is denoted by L and
we label the links with the integer values l = 1, . . . , L. We define tran(l) as the
transmitter node of link l, and rec(l) as the receiver node of link l. The existence
of a link l ∈ L implies that direct transmission is possible from tran(l) to rec(l).
We assume that each node can be equipped with multiple transceivers, i.e., any
node can simultaneously transmit to, or receive from, multiple nodes. We define
O(n) as the set of links that are outgoing from node n, and I(n) as the set of
links that are incoming to node n. Furthermore, we denote the set of transmitter
nodes by T and the set of receiver nodes by R, i.e., T = {n ∈ N|O(n) 6= ∅} and
R = {n ∈ N|I(n) 6= ∅}.

The network is assumed to operate in slotted time with slots normalized to
integer values t ∈ {1, 2, 3, . . .}. All wireless links are sharing a set C of orthogonal
channels, labeled with integers c = 1, . . . , C. When there are many channels
which fade independently, at any one time there is a high probability that one of
the channels will be strong. Thus, the main motivation for considering multiple
channels is exploitation of the diversity that results from unequal links’ behavior
across a given wide band.

Let hijc(t) denote the channel gain from the transmitter of link i to the receiver
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Fig 3.1. Choosing the value of interference coefficients, i.e., gij for i 6= j and
link power gains, i.e., gii and gjj (channel index c and time index t are omitted for
clarity): A = {(i, j)}, gij = g, gji = |hji|2, gii = |hii|2, and gjj = |hjj |2, [112] c© 2011,
IEEE.

of link j in channel c during time slot t. We assume that hijc(t) are constant
for the duration of a time slot and are independent and identically distributed
over the time slots, links as well as over the channels. Let giic(t) represent the
power gain of link i in channel c during time slot t, i.e., giic(t) = |hiic(t)|2 (see
Figure 3.1). For any pair of distinct links i 6= j, we denote the interference
coefficient from link i to link j in channel c by gijc(t). In the case of nonadjacent
links (i.e., links i and j do not have common nodes), gijc represents the power
of the interference signal at the receiver node of link j in channel c when one
unit of power is allocated to the transmitter node of link i in channel c, i.e.,
gijc = |hijc|2. When links i and j are adjacent, the value of gijc represents
the power gain in channel c within the same node from its transmitter to its
receiver, and is referred to as the self-interference coefficient (see Figure 3.1).
For notational convenience let A denote the set of all link pairs (i, j) such that
links i and j are adjacent. In other words, A represents the set of all link pairs
(i, j) for which the transmitter of link i and the receiver of link j coincide, i.e.,
A = {(i, j)i,j∈L| tran(i) = rec(j)} (see Figure 3.1). Specifically, for all (i, j) ∈ A,
we set gijc(t) = g to model the residual self-interference gains after a certain
self interference cancelation technique was employed at the network’s nodes
in channel c, where g ∈ [0, 1] is a scalar. We refer to g as the self-interference
gain (see Figure 3.1). A value g = 1 means that no self interference cancelation
technique is used and models the very large self interference that would affect
the incoming links of a node if it simultaneously transmitted and received in
the same channel. On the other hand, a value g = 0 corresponds to a perfect
self interference cancelation. Note that, according to relative distances between
network’s nodes, gijc(t) for all (i, j) ∈ A (i.e., the self-interference coefficients)
can be several orders of magnitude larger than gijc(t) for all (i, j) 6∈ A. The

87



particular class of network topologies, for which A = ∅ (i.e., T ∩ R = ∅) is
referred to as bipartite networks. On the other hand, the class of network
topologies, for which A 6= ∅ (i.e., T ∩ R 6= ∅) is referred to as nonbipartite
networks. Note that all multihop networks are necessarily nonbipartite.

In every time slot a network controller decides the power and rates allocated
to each link in every channel. We denote the power allocated to each link l
in channel c during time slot t by plc(t). The power allocation is subject to a
maximum power constraint

∑
c∈C
∑
l∈O(n) plc(t) ≤ pmax

n for each node n.
We consider first the case where all receivers perform singleuser detection, i.e.,

any receiver decodes each of its intended signals by treating all other interfering
signals as noise. Extensions to more advanced multiuser detection techniques
will be addressed in Section 3.3. Suppose that the achievable rate of link l during
time slot t is given by

rl(t) =
C∑
c=1

Wc log

(
1 +

gllc(t)plc(t)

NlWc +
∑
j 6=l gjlc(t)pjc(t)

)
, (3.1)

where Wc represents the bandwidth of channel c and Nl is the power spectral
density of the noise at the receiver of link l. Note that for any link l, interference
at rec(l)

(
i.e., the term

∑
j 6=l gjlc(t)pjc(t)

)
is created by self transmissions[

i.e.,
∑
j∈O(rec(l)) gjlc(t)pjc(t)

]
, as well as by the other node transmissions

[
i.e.,∑

j∈L\{O(rec(l))∪{l}} gjlc(t)pjc(t)
]
. To simplify the presentation, we assume in

the sequel that all channels have equal bandwidths and that the noise power
density is the same at all receivers (i.e., Wc = W for all c ∈ C and Nl = N0 for
all l ∈ L). The extension to the case of unequal bandwidths Wc and noise power
spectral densities Nl is straightforward. Let σ2 = N0W denote the noise power,
which is constant for all receivers in all channels. Furthermore, we denote by
P(t) ∈ IRL×C+ the overall power allocation matrix, i.e., plc(t) = [P(t)]l,c. The use
of the Shannon formula for the achievable rate in (3.1) is approximate in the
case of finite length packets and is used to avoid the complexity of rate-power
dependence in practical modulation and coding schemes. This is common
practice but it must be noted that this is not strictly correct. However, as the
packet length increases it is asymptotically correct.
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3.1.2 Network utility maximization

Exogenous data arrive at the source nodes and they are delivered to the
destination nodes over several, possibly multihop, paths. We identify the data
by their destinations, i.e., all data with the same destination are considered as
a single commodity, regardless of their source. Actually, our formulation also
permits the anycast case, in which each packet exits the network as soon as any
one of a particular destination set of nodes receives the packet successfully. We
label the commodities with integers s = 1, . . . , S (S ≤ N) and the destination
node of commodity s is denoted by ds. For every node, we define Sn ⊆ {1, . . . , S}
as the set of commodities that can arrive exogenously at node n.

A network utility maximization, or NUM, framework similar to the one
given in [17, Sec. 5.1] is considered. Specifically, exogenously arriving data is
not directly admitted to the network layer. Instead, the exogenous data is first
placed in the transport layer storage reservoirs. To avoid complications that
may arise that are extraneous to our problem, we assume that all commodities
have infinite demand at the transport layer. Nevertheless, the RA algorithms
proposed in this section are still applicable when this assumption is relaxed. At
each source node, a set of flow controllers decides the amount of each commodity
data admitted during every time slot in the network. Let xsn(t) denote the
amount of data of commodity s admitted in the network at node n during time
slot t. At the network layer, each node maintains a set of S internal queues for
storing the current backlog (or unfinished work) of each commodity. Let qsn(t)

denote the current backlog of commodity s data stored at node n. We formally
let qsds(t) = 0, i.e., it is assumed that data, which is successfully delivered to
its destination, exits the network layer. Associated with each node-commodity
pair (n, s)s∈Sn we define a concave and nondecreasing utility function usn(y),
representing the “reward” received by sending data of commodity s from node n
to node ds at a long term average rate of y [bits/slot].

The NUM problem under stability constraints can be formulated as [17,
Sec. 5]

maximize
∑
n∈N

∑
s∈Sn u

s
n(ysn)

subject to (ysn)n∈N ,s∈Sn ∈ Λ ,
(3.2)

where the variable is (ysn)n∈N ,s∈Sn and Λ represents the network layer capacity
region. In particular, the network layer capacity region Λ is the closure of the
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set of all admissible arrival rate vectors that can be stably supported by the
network, considering all possible strategies for choosing the control variables
that affect routing, scheduling, and resource allocation (including those with
perfect knowledge of future events) [17, p. 28].

A dynamic cross-layer control algorithm, which achieves a utility that is
arbitrarily close to the optimal value of problem (3.2), has been introduced in [17,
Sec. 5]. Specifically, the algorithm’s performance can be characterized as follows:

∑
n∈N

∑
s∈Sn

usn(y?sn) − lim inf
T→∞

∑
n∈N

∑
s∈Sn

usn

(
1

T

∑
t=1:T

E{xsn(t)}
)
≤ B

V
, (3.3)

where (y?sn)n∈N ,s∈Sn is the optimal solution of problem (3.2), B > 0 is a well
defined constant, and V > 0 is an algorithm parameter that can be used to
control the tightness of the achieved utility to the optimal value [17, Sec. 5.2.1].
The details are extraneous to the central objective of this section. Particularized
to our network model, in every time slot t, the algorithm performs the following
steps:

Algorithm 3.1. Dynamic cross-layer control algorithm [17, Sec. 5.2].

1. Flow control; each node n ∈ N solves the following problem:

maximize
∑
s∈Sn V u

s
n(xsn)− xsnqsn(t)

subject to
∑
s∈Sn x

s
n ≤ Rmax

n , xsn ≥ 0 ,
(3.4)

where the variable is (xsn)s∈Sn . Set (xsn(t) = xsn)s∈Sn . The parameter V > 0

is a chosen parameter that affects the algorithm performance [see (3.3)] and
Rmax
n > 0 is used to control the burstiness of data delivered to the network

layer.
2. Routing and in-node scheduling; for each link l, let

βl(t) = maxs
{
qstran(l)(t)− q

s
rec(l)(t), 0

}
c?l (t) = arg max

s

{
qstran(l)(t)− q

s
rec(l)(t), 0

}
.

(3.5)

If βl(t) > 0, the commodity that maximizes the differential backlog, i.e., c?l (t),
is selected for potential routing over link l. This is the well known rule of
next-hop transmission under the backpressure algorithm [12].
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3. Resource allocation; the power allocation P(t) is given by P whose entries plc
solve the following problem

maximize
∑
l∈L

βl(t)
∑
c∈C

log

(
1+

gllc(t)plc
σ2+

∑
j 6=l

gjlc(t)pjc

)
subject to

∑
c∈C

∑
l∈O(n)

plc ≤ pmax
n , n ∈ N

plc ≥ 0, l ∈ L, c ∈ C .

(3.6)

Once the optimal power allocation P(t) is determined, compute rate allocation
rl(t) for all l ∈ L by using (3.1). The resulting rate rl(t) is offered to the data
of commodity c?l (t).

In the first step, each node n determines the amount of data of commodity s(
i.e., xsn(t) for all s ∈ Sn

)
that are admitted in the network, based on the

current backlogs
(
i.e., qsn(t) for all s ∈ Sn

)
. In the second step, each node n

computes βl and the corresponding commodity c?l (t) for all l ∈ O(n). The
commodity c?l (t) is selected for potential routing over link l during time slot t.
Recall that in-node scheduling refers to selecting the appropriate commodity
and it is not to be confused with the links scheduling mechanism, which is
handled by the RA subproblem, i.e., step 3. The third step is the most difficult
part of Algorithm 3.1, which computes the power allocation P(t) in each link
l. Of course, the RA subproblem maximizes the sum of weighted rates, i.e.,
WSRMax. The solution P(t) determines implicitly the links/channels that
should be activated in every time slot t. The power allocation P(t) is used to
determine rl(t) [see (3.1)] and the resulting link rate rl(t) is offered to the data of
commodity c?l (t). Since our main contribution resides in problem (3.6), extensive
explanations of Algorithm 3.1 are avoided. However, we refer the reader to [17,
Sec. 5] for more details.

3.2 Algorithm derivation: CGP and homotopy methods

In this section we focus on resource allocation problem (3.6). By using standard
reformulation techniques, we first show that problem (3.6) is equivalent to
a CGP [97]. Then we obtain a successive approximation algorithm for prob-
lem (3.6) in bipartite networks. Next we explain the challenges of the problem in
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nonbipartite networks (e.g., multihop networks), due to the self-interference
problem; when a node simultaneously transmits and receives in the same channel,
its incoming links are affected by very large self interference levels. Finally, we
propose a solution method based on homotopy methods [114], together with
CGP, which circumvents the aforementioned difficulties.

3.2.1 CGP for WSRMax

Let us denote the negative of the objective function of problem (3.6) by f0

(
P
)
.

It can be expressed as

f0

(
P
)

= −
∑
l∈L

∑
c∈C

log

(
1 +

gllcplc
σ2 +

∑
j 6=l gjlcpjc

)βl
(3.7)

= log
∏
l∈L

∏
c∈C

(
1 + γlc

)−βl , (3.8)

where the time index t was dropped for the sake of notational simplicity, and γlc
represents the SINR of link l in channel c, i.e.,

γlc =
gllcplc

σ2 +
∑
j 6=l gjlcpjc

, l ∈ L, c ∈ C . (3.9)

Since log(·) is an increasing function, problem (3.6) can be reformulated equiva-
lently as

minimize
∏
c∈C
∏
l∈L
(
1 + γlc

)−βl
subject to γlc =

gllcplc
σ2 +

∑
j 6=l gjlcpjc

, l ∈ L, c ∈ C∑
c∈C
∑
l∈O(n) plc ≤ pmax

n , n ∈ N
plc ≥ 0, l ∈ L, c ∈ C ,

(3.10)

where the variables are (plc)l∈L,c∈C and (γlc)l∈L,c∈C . Now we consider the related
problem

minimize
∏
c∈C
∏
l∈L
(
1 + γlc

)−βl
subject to γlc ≤

gllcplc
σ2 +

∑
j 6=l gjlcpjc

, l ∈ L, c ∈ C∑
c∈C
∑
l∈O(n) plc ≤ pmax

n , n ∈ N
plc ≥ 0, l ∈ L, c ∈ C ,

(3.11)

with the same variables (plc)l∈L,c∈C and (γlc)l∈L,c∈C. Note that the equality
constraints of problem (3.10) have been replaced with inequality constraints. We
refer to these inequality constraints as SINR constraints for simplicity. Since the
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objective function of problem (3.11) is decreasing in each γlc, we can guarantee
that at any optimal solution of problem (3.11), the SINR constraints must be
active. Therefore we solve problem (3.11) instead of problem (3.10).

Finally, by introducing the auxiliary variables vlc ≤ 1 + γlc and rearranging
the terms, problem (3.6) can be further reformulated as

minimize
∏
c∈C
∏
l∈L v

−βl
lc

subject to vlc ≤ 1 + γlc, l ∈ L, c ∈ C
σ2g−1

llc p
−1
lc γlc +

∑
j 6=l g

−1
llc gjlcpjcp

−1
lc γlc ≤ 1, l ∈ L, c ∈ C∑

c∈C
∑
l∈O(n)

(
pmax
n

)−1
plc ≤ 1, n ∈ N

plc ≥ 0, l ∈ L, c ∈ C ,

(3.12)

where the variables are (plc)l∈L,c∈C , (γlc)l∈L,c∈C , and (vlc)l∈L,c∈C . Problem (3.12)
can be identified as a CGP [97].

3.2.2 Successive approximation algorithm for WSRMax in
bipartite networks

In this section we consider the case of bipartite networks. Recall from Section 3.1.1
that for such networks we have A = ∅. By inspecting problem (3.12), we notice
the following: 1) the objective is a monomial function [5, Sec. 2.1], 2) the
right-hand side (RHS) terms of the first inequality constraints (i.e., 1 + γlc)
are posynomial functions, and 3) the left-hand side terms of all the inequality
constraints are either monomial or posynomial functions. Note that if the RHS
terms of the first inequality constraints were monomial functions (instead of
posynomial ones), problem (3.12) would become a geometric program (or GP)
in standard form. GPs can be reformulated as convex problems and they can
be solved very efficiently, even for large scale problems [5, Sec. 2.5]. These
observations suggest that by starting from an initial point, one can search for a
close local optimum by solving a sequence of GPs, which locally approximate
the original problem (3.12). At each step, the GP is obtained by replacing the
posynomial functions in the RHS of the first inequality constraints with their best
local monomial approximations near the the solution obtained at the previous
step. The solution methods achieved by monomial approximations [5, 97] can
be considered as a subset of a broader class of mathematical optimization
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problems, known in mathematical literature as inner approximation algorithms
for nonconvex problems [181]. The monomial approximation for the RHS terms
of the first inequality constraints in problem (3.12) is described in the following
lemma.

Lemma 3.1. For any γ > 0, let m(γ) = kγa be a monomial function used to
approximate s(γ) = 1 + γ near an arbitrary point γ̂ > 0. Then,

1. the parameters a and k of the best monomial local approximation are given by

a = γ̂(1 + γ̂)−1, k = γ̂−a(1 + γ̂) . (3.13)

2. s(γ) ≥ m(γ) for all γ > 0.

Proof. To show the first part we note the following: the monomial function m is
the best local approximation of s near the point γ̂ if

m(γ̂) = s(γ̂), m′(γ̂) = s′(γ̂) . (3.14)

By replacing the expressions of m and s in (3.14) we obtain the following system
of equations: {

kγ̂a = 1 + γ̂

kaγ̂a−1 = 1 ,
(3.15)

which has the solution given by (3.13).
The second part follows from (3.14) and noting that s(γ) is affine and m(γ)

is concave on IR+; concavity of m(γ) follows from the fact that k > 0 and
0 < a < 1 [3, Sec. 3.1.5].

Figure 3.2 illustrates the monomial approximation given in Lemma 3.1 for
different values of γ̂. Note that the monomial approximation m(γ) is reasonably
close to s(γ) for larger values of γ̂. The approximation given in Lemma 3.1 turns
out to be equivalent to the lower bound approximation used in [66, Sec. III-B]
for dynamic spectrum management in digital subscriber lines.

Let us now turn to the GP obtained by using the local approximation
given by Lemma 3.1. The posynomial functions 1 + γlc of the first inequality
constraints of problem (3.12) are approximated near the point γ̂lc. Consequently
the approximate inequality constraints become

vlc ≤ klcγalclc , l ∈ L, c ∈ C , (3.16)
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Fig 3.2. Monomial approximation given in Lemma 3.1 for γ̂ = 0.5, 0.05, and 0.005.

where alc and klc have the forms given in (3.13). Since the objective function
of problem (3.12) is a decreasing function of vlc, l ∈ L, c ∈ C, it can be easily
verified that all of these modified inequality constraints will be active at the
solution of the GP. Therefore, we can eliminate the auxiliary variables vlc and
rewrite the objective function of problem (3.12) as

∏
l∈L

∏
c∈C

v−βllc =
∏
l∈L

∏
c∈C

k−βllc γ−βlalclc = K
∏
l∈L

∏
c∈C

γlc
−βl

γ̂lc
1+γ̂lc , (3.17)

where K is a multiplicative constant which does not affect the problem solution.
In the following subsections, we base our development on computationally

efficient algorithms to obtain a suboptimal solution for problem (3.12). For
notational convenience it is useful to define the overall SINR matrices γ, γ̂ ∈
IRL×C

+ as [γ]l,c = γlc and [γ̂]l,c = γ̂lc, respectively.
A very brief outline of the proposed successive approximation algorithm is as

follows. It solves an approximated version of problem (3.12) in every iteration
and the algorithm consists of repeating this step until convergence.
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Algorithm 3.2. Successive approximation algorithm for WSRMax

1. Initialization; given tolerance ε > 0, a feasible power allocation P0. Set i = 1.
The initial SINR guess γ̂(i) is given by (3.9).

2. Solving the GP;

minimize K(i)
∏
l∈L

∏
c∈C

γlc
−βl

γ̂
(i)
lc

1+γ̂
(i)
lc

subject to α−1γ̂
(i)
lc ≤ γlc ≤ αγ̂

(i)
lc , l ∈ L, c ∈ C

σ2g−1
llc p

−1
lc γlc +

∑
j 6=l

g−1
llc gjlcpjcp

−1
lc γlc ≤ 1, l ∈ L, c ∈ C∑

c∈C

∑
l∈O(n)

(
pmax
n

)−1
plc ≤ 1, n ∈ N ,

(3.18)

with the variables (plc)l∈L,c∈C and (γlc)l∈L,c∈C . Denote the solution by
(p?lc)l∈L,c∈C and (γ?lc)l∈L,c∈C .

3. Stopping criterion; if max(l,c)∈L×C
∣∣γ?lc − γ̂(i)

lc

∣∣ ≤ ε STOP; otherwise go to
step 4.

4. Set i = i+ 1,
(
γ̂

(i)
lc = γ?lc

)
l∈L,c∈C and go to step 2.

The first step initializes the algorithm and an initial feasible SINR guess γ̂(i)

is computed. For bipartite networks, there is no self-interference problem, and a
simple uniform power allocation can be used.

The second step solves an equivalent GP approximation of problem (3.12)
around the current guess γ̂(i) [see problem (3.18)]. Note that the auxiliary
variables (vlc)l∈L,c∈C of problem (3.12) are eliminated and the objective function
of problem (3.12) is replaced by using the monomial approximation at γ̂(i) given
in (3.17); K(i) is a multiplicative constant which does not influence the solution
of problem (3.18). These monomial approximations are sufficiently accurate
only in the closer vicinity of the current guess γ̂(i). Therefore, the first set of
inequality constraints are added to confine the domain of variables γ to a region
around the current guess γ̂(i) [182]. The first set of inequality constraints of
problem (3.18) are sometimes called trust region constraints [5, 182], which are
not originally introduced in [97]. Therefore, Algorithm 3.2 is a slightly modified
version of the solution method proposed in [97]. The parameter α > 1 controls
the desired approximation accuracy. However, it also influences the convergence
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speed of Algorithm 3.2. At every step, each entry of the current SINR guess γ̂(i)

can be increased or decreased at most by a factor α. Thus, a value of α close to
1 provides good accuracy for the monomial approximations at the cost of slower
convergence speed, while a value much larger than 1 improves the convergence
speed at the cost of reduced accuracy. In most practical cases, a fixed value
α = 1.1 offers a good speed/accuracy tradeoff [5]. Though we have trust region
constraints for problem (3.18), it is not mandatary to include those here and
Algorithm 3.2 can still be carried out.

The third step checks whether the SINRs (γ?lc)l∈L,c∈C obtained from the
solution of problem (3.18) have been significantly changed compared to the entries
of the current guess γ̂(i). If there are no substantial changes, then the algorithm
terminates and the link rate rl(t) =

∑C
c=1W log(1 + γ?lc) is offered to the data of

commodity c?l (t) [given by (3.5)]. Otherwise, the solution (γ?lc)l∈L,c∈C is taken as
the current guess and the algorithm repeats steps 2 to 4 until convergence.

Note that the auxiliary variables (vlc)l∈L,c∈C were only used to reformulate
problem (3.11) as a CGP [97] [i.e., problem (3.12)], but they do not appear
in Algorithm 3.2. In fact, an identical algorithm results if, at each step, the
objective function of problem (3.11) is locally approximated by a monomial
function (see [15, Lem. 4.2.2]). This alternative derivation, known in optimization
literature as signomial programming [5], is presented in Appendix 3. Careful
comparisons reveal that the algorithm recently proposed in [100, p. 3034] is
almost identical to our proposed Algorithm 3.2 for single channel case with no
trust region constraints, i.e., C = 1 and α =∞.

The convergence of the Algorithm 3.2 to a Kuhn-Tucker solution of the original
nonconvex problem (3.12) is guaranteed [181, Th. 1], since the algorithm falls into
the broader class of mathematical optimization problems, inner approximation
algorithms for nonconvex problems [181].

One interesting and important remark is that the objective function of the
approximated problem (3.18) in each iteration i yields a upper bound on the
objective function of the original problem (3.11), i.e.,

K(i) ∏
l∈L

∏
c∈C

γlc
−βl

γ̂
(i)
lc

1+γ̂
(i)
lc ≥

∏
l∈L

∏
c∈C

(
1 + γlc

)−βl (3.19)

for (γlc > 0)l∈L, c∈C , with equality when γ = γ̂(i). This follows directly from the
second statement of Lemma 3.1. By using (3.19), we can show immediately that
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Algorithm 3.2 is monotonically decreasing. The monotonicity of Algorithm 3.2 is
established by the following theorem.

Theorem 3.1. Let i and i+ 1 be any consecutive iterations of Algorithm 3.2 and
γ̂(i) and γ̂(i+1) be the SINR guesses at the beginning of each iteration respectively.
Then ∏

l∈L

∏
c∈C

(
1 + γ̂

(i)
lc

)−βl
≥
∏
l∈L

∏
c∈C

(
1 + γ̂

(i+1)
lc

)−βl
. (3.20)

Proof. To show this we write the following relations:

∏
l∈L

∏
c∈C

(
1 + γ̂

(i)
lc

)−βl
= K(i) ∏

l∈L

∏
c∈C

(
γ̂

(i)
lc

)−βl γ̂
(i)
lc

1+γ̂
(i)
lc (3.21)

≥ K(i) ∏
l∈L

∏
c∈C

(
γ̂

(i+1)
lc

)−βl γ̂
(i)
lc

1+γ̂
(i)
lc (3.22)

≥
∏
l∈L

∏
c∈C

(
1 + γ̂

(i+1)
lc

)−βl
, (3.23)

where (3.21) follows from (3.19), (3.22) follows since γ̂(i+1) is the solution of
problem (3.18), and (3.23) follows again from (3.19).

Therefore we see immediately that Algorithm 3.2 always yields a solution,
which is at least as good as the one in the previous iteration. This is important
in the context of practical implementations, since in practice, one can always
stop the algorithm within few iterations, before it terminates.

3.2.3 The self-interference problem in nonbipartite
networks

Let us now consider the nonbipartite networks; networks for which A 6= ∅. In
other words, the set of nodes cannot be divided into two distinct subsets, T and
R, i.e., T ∩R 6= ∅ (e.g., multihop wireless networks). For example see Figure 3.1
and Figure 3.3. For such network topologies, there is the self-interference problem
and, consequently, the WSRMax problem must also cope with the self-interference
problem. The difficulty comes from the fact that the self-interference gains
g 14 can typically be a few orders of magnitude larger than the power gains
14Recall that gijc = g for all (i, j) ∈ A.
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l =

l =

Fig 3.3. Two node network (channel index c and time index t are omitted for clarity):
A = {(1, 2), (2, 1)}, g12 = 1, g21 = 1, g11 = |h11|2, and g22 = |h22|2, [112] c© 2011,
IEEE.

between distinct network nodes {gjjc}j∈L, e.g., when there is no self interference
cancellation. Therefore there can be a huge imbalance between some entries
of {gijc}i,j∈L, especially when g is large. Roughly speaking, this can destroy
the smoothness of the functions associated with the WSRMax problem [e.g.,
the objective function of problem (3.6)] and can ruin the reliability and the
efficiency of Algorithm 3.2 that solves it, at least suboptimally. In other words,
there can be many highly suboptimal Kuhn-Tucker solutions for problem (3.12)
at which Algorithm 3.2 can terminate by returning an undesirable suboptimal
solution. Moreover, the SINR values at the incoming links of a node that
simultaneously transmits in the same channel are very small and the convergence
of Algorithm 3.2 can be very slow if it starts with an initial SINR guess γ̂
containing entries with nearly zero values. These behaviors are reflected in
the monomial approximations plotted in Figure 3.2. For example, when γ̂ is
smaller (γ̂ = 0.005), the monomial approximation m(γ) shows abrupt changes at
γ = 0.005 and remains constant at an undesirable level almost equal to 1 for all
γ > 0.005. Therefore, the direct application of Algorithm 3.2 can perform very
poorly and further improvements are necessary.

A standard way to deal with the self-interference problem consists of adding a
supplementary combinatorial constraint into the WSRMax problem that does not
allow any node in the network to transmit and receive simultaneously in the same
channel [106, 107, 109]. We will refer to a power allocation, which satisfies this
constraint as admissible. Note that this approach would require solving a power
optimization problem (by using Algorithm 3.2) for each possible subset of links
that can be simultaneously activated. This results inn a combinatorial nature for
the WSRMax problem in the case of nonbipartite networks [38, 51, 163–167].
Of course, since the complexity of this approach grows exponentially with the
number of links and number of channels, this solution method becomes quickly
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impractical.

3.2.4 Successive approximation algorithm for WSRMax in
nonbipartite networks: A homotopy method

To avoid difficulties pointed out in Section 3.2.3, we propose an algorithm inspired
from homotopy methods [114] that can be traced back to late 80’s; see [183] and
the references therein. In fact, the well known interior-point methods [184],[3,
Sec. 11] for convex optimization problems also fall into this general class of
homotopy methods.

The underlying idea is to first introduce a parameterized problem that approx-
imates the original problem (3.11). Specifically, we construct the parameterized
problem from the original problem (3.11) by setting gijc = gv for all (i, j) ∈ A,
where gv ∈ IR+ is referred to as the homotopy parameter. Indeed, in the original
problem (3.11) we have gijc = g for all (i, j) ∈ A. Note that the quality of the
approximation improves as gv reaches g; the true self-interference gain. Of course,
when gv is small (e.g., gv and gjjc are roughly in the same order), Algorithm 3.2
can be used reliably to find a suboptimal solution for the parameterized problem.
Thus, a sequence of parameterized problems are solved, starting at a very small
gv and increasing the parameter gv (thus the accuracy of the approximation) at
each step until gv reaches the true self-interference gain g. Moreover, in each
step, when solving the parameterized problem for the current value of gv, the
initial guess for Algorithm 3.2 is obtained by using the solution (power) of the
parameterized problem for the previous value of gv.

The proposed algorithm based on homotopy methods can be summarized as
follows:

Algorithm 3.3. Successive approximation algorithm for WSRMax in the pres-
ence of self interferers

1. Initialization; given an initial homotopy parameter g0 < g, ρ > 1, a feasible
power allocation P0. Let gv = g0, P = P0.

2. Set gijc = gv for all (i, j) ∈ A. Find the SINR guess γ̂ by using (3.9).
3. Solving parameterized problem; let γ̂(1) = γ̂, perform steps 2 to 4 of

Algorithm 3.2 until convergence to obtain the power (p?lc)l∈L,c∈C and SINR
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values (γ?lc)l∈L,c∈C . Let (plc = p?lc)l∈L,c∈C .
4. If ∃(i, j) ∈ A and c ∈ C such that picpjc > 0 (i.e., P is not admissible), then

set gv = min{ρgv, g} and go to step 5. Otherwise (i.e., P is admissible) STOP.
5. If gv < g, go to step 2, otherwise STOP.

The first step initializes the algorithm; the homotopy parameter gv is initialized
by g0, where g0 is chosen in the same range of values as the power gains between
distinct nodes. Specifically, in our simulations we select g0 = maxj∈L,c∈C{gjjc}.
Step 2 updates the problem data for the parameterized problem and a feasible
SINR guess is computed. The third step finds a suboptimal solution for the
parameterized problem. The algorithm terminates in step 4 if P is admissible
(thus none of nodes in the network are transmitting and receiving simultaneously
in the same channel). On the other hand, if P is not admissible, then the
homotopy parameter gv is increased. If gv reaches its extreme allowed value (i.e.,
the actual self-interference gain value of g), the algorithm terminates. Otherwise
(i.e., gv < g), it returns to step 2 and continues. Terminating Algorithm 3.3 if
the solution is admissible is intuitively obvious for the following reason. The
data associated with the parameterized problem that is solved in step 3 of
Algorithm 3.3 becomes independent of the homotopy parameter gv, and therefore
a further increase in gv after having an admissible solution has no effect on the
results. Our computational experience suggests that Algorithm 3.3 yields an
admissible solution way before gv reaches value g (e.g., in the case of no self
interference cancellation, i.e., g = 1, an admissible power allocation is achieved
in about 1− 4 iterations with ρ = 2).

Since Algorithm 3.3 runs a finite number of instances of Algorithm 3.2, its
computational complexity does not increase more than polynomially with the
problem size. Clearly, Algorithm 3.3 can converge to a Kuhn-Tucker solution
of the last parameterized problem (the one just before the termination of
Algorithm 3.3).

As a specific example to illustrate self interference, consider the simple
network shown in Figure 3.3 and suppose that no self interference cancellation
technique is employed at the network’s nodes, i.e., g = 1. Here, N = 2, L = 2,
and C = 1. Note that A = {(1, 2), (2, 1)} and let β1, β2 6= 0. Suppose that
g12 � g22 and g21 � g11, which is often the case due to path losses. Since
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the gains g12 = 1 and g21 = 1 are very large compared to g22 and g11, for any
nonzero power allocation p1, p2 = p0 the initial SINR guess γ̂1, γ̂2 will have
nearly zero values. This results in difficulties in using Algorithm 3.2 directly. In
Algorithm 3.3 this problem is circumvented by initializing the gains g12 and
g21 by a parameter g0 (e.g., g0 = max{g11, g22}) and executing Algorithm 3.2
repeatedly, increasing incrementally the parameter gv until it reaches 1, the true
values of g12 and g21.

Regarding the complexity of the proposed algorithm we make the following
remarks. The computational complexity of a GP depends on the number of
variables and constraints, as well as on the sparsity pattern of the problem [5].
Unfortunately, it is difficult to quantify precisely the sparsity pattern, and
therefore a general complexity analysis is not available. To give a rough idea, let
us consider a fully connected network with N = 9 nodes and C = 8 channels.
The number of variables in problem (3.18) is 2LC = 1152 and the number of
constraints is 3LC +N = 1737, and it was solved in about 12 seconds on desktop
computer. The number of iterations depends on the starting point, pmax

n and
channel gains gijc, but typically Algorithm 3.2 required around 100 iterations to
converge.

Nevertheless, with some slight modifications it is possible to dramatically
decrease the average complexity per iteration, which is very important in the
context of practical implementations. Two simple modifications are as follows:

1. Use a large values for the parameter α in Algorithm 3.2: as we discussed in
Section 3.2.2, large α can improve the convergence speed of Algorithm 3.2 at
the cost of reduced accuracy of the monomial approximation.

2. Eliminate (relatively) insignificant variables; we can eliminate the power
variables plc and the associated SINR variables γlc from problem (3.18) when
they have relatively very small contributions to the overall objective value of
(3.18). Specifically, the exponent term βl

γ̂
(i)
lc

1+γ̂
(i)
lc

in the objective of (3.18) is
evaluated for all ∈ L, c ∈ C and if

βl
γ̂

(i)
lc

1 + γ̂
(i)
lc

� max
l̄∈L,c̄∈C

(
βl̄

γ̂
(i)

l̄c̄

1 + γ̂
(i)

l̄c̄

)
,

then plc s and the associated γlc s are eliminated in successive GPs.
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3.2.5 Impact of scaling the node distances on the accuracy
of self interference cancelation

Based on a simple exponential path loss model, in this section we discuss the
impact of scaling the distance between network nodes on the accuracy level of
the self interference cancellation.

For simplicity, we focus on the single-channel case (i.e., C = 1). Suppose an
exponential path loss model, where the channel power gains |hij(t)|2, between
distinct nodes are given by

|hij(t)|2 =

(
dij
d0

)−η
cij(t) . (3.24)

Here dij is the distance from the transmitter of link i to the receiver of link j, d0

is the far field reference distance [176], η is the path loss exponent, and cij(t)
are exponentially distributed random variables with unit mean, independent of
the time slots and links. The first term of (3.24) represents the path loss factor
and the second term models Rayleigh small-scale fading.

Suppose pmax
n = pmax

0 for all n ∈ N . For all l ∈ L we define the SNR of link l
as

SNRl =
pmax

0

σ2

(
dll
d0

)−η
. (3.25)

It represents the average SNR at rec(l) when tran(l) allocates all its transmission
power to link l and all the other nodes are silent. Let p(t) ∈ IRL

+ denote the
overall power allocation matrix, i.e., pl(t) = [p(t)]l (note that the channel index
is dropped for simplicity, since C = 1).

Let us consider a network that is obtained from another one, by scaling the
distance between distinct nodes and the maximum node transmission power
such that all link’s SNRs [see (3.25)] are conserved. In the sequel, we show that,
in order to preserve the achievable rate region, the accuracy level of the self
interference cancelation techniques must also be scaled appropriately.

We start by defining two matrices, which will be useful for later reference.
Let D ∈ IRL×L

+ denote the node distance matrix defined as [D]i,j = dij and
G(t) ∈ IRL×L

+ denote the interference coefficient and the power gain matrix
during time slot t, defined as [G(t)]i,j = gij(t). The achievable rate region
with singleuser detection at receivers for a given G(t) and a maximum node

103



transmission power pmax
0 can be expressed as

R(G(t), pmax
0 )=

(r1, . . . , rL)

∣∣∣∣∣∣∣∣∣∣
rl ≤ log

(
1 +

gll(t)pl
σ2 +

∑
j 6=l gjl(t)pj

)
, l ∈ L∑

l∈O(n) pl ≤ pmax
0 , n ∈ N

pl ≥ 0, l ∈ L

 .

(3.26)

From (3.26), it follows that if the matrix G(t) is scaled by a factor of 1/κ, and
the maximum node transmission power pmax

0 is scaled by a factor of κ, then the
achievable rate region is unchanged, i.e.,

R(G(t), pmax
0 ) = R(G(t)/κ, κpmax

0 ) . (3.27)

Let κ = θη. According to the exponential path loss model given in (3.24), the
scaling of G(t) by a factor of 1/κ (or 1/θη) is equivalent to the scaling of node
distance matrix D by a factor of θ and the scaling of self-interference gains g by
a factor of 1/θη. Therefore, with a slight abuse of notation, we rewrite (3.27) as

R(D, g, pmax
0 ) = R(θD, g/θη, θηpmax

0 ) . (3.28)

To interpret the relation in (3.28), we consider a network characterized by D, g,
and pmax

0 . If we construct another network by scaling D by a factor of θ and by
scaling pmax

0 by a factor of θη, then to preserve the achievable rate region, the
accuracy level of the self interference cancelation should be improved to g/θη.
This is intuitively obvious since, the larger the distance between network nodes,
the larger the power levels required to preserve the link SINRs, and therefore the
higher the accuracy level required by the self interference cancelation techniques
to remove the increased transmit power at nodes. Based on (3.28) we can
establish similar equivalences in terms of network layer performance metrics as
well. Roughly speaking, relation (3.28) suggests that in networks where the
nodes are located far apart (e.g., cellular type of wireless networks), the accuracy
of self interference cancellation is more stringent compared to that in networks
where the nodes are located in close vicinity (e.g., a wireless network setup in an
office).
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3.3 Extensions to wireless networks with advanced
transceivers

Until now the receiver structure was basically assumed to be equivalent to a bank
of match filters, each of which attempts to decode one of the signals of interest
at each node while treating the other signals as noise. This is a suboptimal
detector structure that is commonly assumed. In this section, we investigate the
possible gains achievable by using more advanced receiver structures. For clarity,
we discuss first the single-channel case. The extension to the multichannel
case is presented in Appendix 4. We assume that at every node n ∈ N the
transmitter performs superposition coding over its outgoing links O(n), and
the receiver decodes the signals of incoming links I(n) by using a multiuser
receiver based on successive interference cancelation (SIC) strategy. One may
of course assume other detector structure, including the optimum one that
implements maximum likelihood. The largest set of achievable rates is obtained
when the SIC receiver at every node n ∈ N is allowed to decode and cancel
out the signals of all its incoming links I(n) and any subset of the remaining
links in its complement set L \ I(n). Let D(n) denote the set of links, which
are decoded at the node n, i.e., D(n) = I(n) ∪ U(n) for some U(n) ⊆ L \ I(n).
Furthermore, let RSIC(D(1), . . . ,D(N), pmax

1 , . . . , pmax
N ) denote the achievable

rate region for given D(1), . . . ,D(N) and maximum node transmission power
pmax

1 , . . . , pmax
N . We denote by RSIC(pmax

1 , . . . , pmax
N ) the achievable rate region,

which is obtained as a union of all RSIC(D(1), . . . ,D(N), pmax
1 , . . . , pmax

N ) over
all possible 2

∑
n∈N (L−|I(n)|) combinations of sets D(1), . . . ,D(N), i.e.,

RSIC(pmax
1 , . . . , pmax

N ) =
⋃

D(1),...,D(N)|∀n∈N ∃U(n)⊆L\I(n) s.t. D(n)=I(n)∪U(n)

RSIC(D(1), . . . ,D(N), pmax
1 , . . . , pmax

N ) . (3.29)

The receiver of each node n ∈ N is allowed to perform SIC in its own
order. Let πn =

(
πn(1), . . . , πn(|D(n)|)

)
be an arbitrary permutation of the

links in D(n), which describes the decoding and cancelation order at node
n. Specifically, the signal of link πn(l) is decoded after all codewords of links
πn(j), j < l have been decoded and their contribution to the signal received
at node n has been canceled. Thus, only the signals of the links πn(j), j > l

act as interference. The rate region RSIC(D(1), . . . ,D(N), pmax
1 , . . . , pmax

N ) is
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obtained by considering all possible combinations of decoding orders for all
nodes, i.e., all possible

∏
n∈N (|D(n)| !) combinations π ∆

= π1 × π2 × . . .× πN .
Thus, RSIC(D(1), . . . ,D(N), pmax

1 , . . . , pmax
N ) can be expressed as

RSIC(D(1), . . . ,D(N), pmax
1 , . . . , pmax

N ) =

⋃
π


(r1, . . . , rL)

∣∣∣∣∣∣∣∣∣∣∣∣

rπn(l) ≤ log

(
1 +

Gπn(l)n(t) pπn(l)

σ2 +
∑
j>lGπn(j)n(t) pπn(j)

)
,

∀(n, l) s.t. n ∈ N , l ∈ {1, . . . , |D(n)|}∑
l∈O(n) pl ≤ pmax

n , n ∈ N
pl ≥ 0, l ∈ L


, (3.30)

where Gln, l ∈ L, n ∈ N represents the power gain from the transmitter of link l
to the receiver at node n, and pl represents the power allocated for the signal of
link l. Clearly, the computational complexity experiences a formidable increase.
Nevertheless, the RA subproblem at the third step of Dynamic Cross-Layer
Control Algorithm 3.1 can be written as 15

maximize
∑
l∈L βl(t)rl

subject to (rl)l∈L ∈ RSIC(pmax
1 , . . . , pmax

N ) ,
(3.31)

where the variable is (rl)l∈L.
The combinatorial description of RSIC(pmax

1 , . . . , pmax
N ) implies that solving

problem (3.31) requires optimization over all possible combinations of decoding
sets D(1), . . . ,D(N) and decoding orders π. This is intractable, even for off
line optimization of moderate size networks. Therefore, in the following we
propose two alternatives to find the solution of a more constrained version of
problem (3.31) instead of solving problem (3.31) itself. The first alternative
limits the access protocol so that only one node can transmit in all its outgoing
links in each time slot. The second alternative adopts a similar view by assuming
that only one node can receive from all its incoming links in each time slot.
The main advantage of the alternatives above is their simplicity. As a result, a
cheaply computable lower bound on the optimal value of problem (3.31) can be
obtained. Moreover, these simple access protocols can be useful in practical
applications with more advanced communication systems.
15Note that RSIC(pmax

1 , . . . , pmax
N ) represents the set of directly achievable rates. By invoking

a time sharing argument, one can extend the achievable rate region to the convex hull of
RSIC(pmax

1 , . . . , pmax
N ). However, this would not affect the optimal value of problem (3.31)

because the objective function is linear [39].
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3.3.1 Single node transmission case

By imposing the additional constraint that only one node can transmit during
each slot, problem (3.31) is reduced to a problem where the optimal power
and rate allocation can be computed via convex programming. Specifically,
problem (3.31) is reduced to N WSRMax problems for the scalar broadcast
channel, one for each possible transmitting node.

For any node n ∈ N , let ρn =
(
ρn(1), . . . , ρn(|O(n)|)

)
be a permutation of

the set of outgoing links O(n) such that

gρn(1)ρn(1)(t) ≤ gρn(2)ρn(2)(t) ≤ . . . ≤ gρn(|O(n)|)ρn(|O(n)|)(t) ,

where gii(t) denotes the power gain from the transmitter of link i to the receiver
of link i during time slot t. Now we consider the case where node n is the
transmitter. This results in a scalar Gaussian broadcast channel with |O(n)|
users. Thus for all i ∈ {1, . . . , |O(n)|}, the optimal decoding and cancelation
order at the receiver node of links ρn(i) is specified by ρn [9, Sec. 6]. Specifically,
the receiver of the link ρn(i) decodes its own signal after all the codewords of links
ρn(j), j < i have been decoded and their contribution to the received signal has
been canceled. Thus, only the signals of the links ρn(j), j > i act as interference
at the receiver of the link ρn(i). Now we can rewrite problem (3.31) by using the
capacity region descriptions of the scalar Gaussian broadcast channels [185] as

maximize
∑
l∈O(n) βlrl

subject to n ∈ N

rρn(i) ≤ log

(
1+

gρn(i)ρn(i) pρn(i)

σ2+gρn(i)ρn(i)

∑|O(n)|
j=i+1 pρn(j)

)
,

i ∈ {1, . . . , |O(n)|}∑
l∈O(n) pl ≤ pmax

n

pl ≥ 0, l ∈ O(n)

pl = 0, l /∈ O(n) ,

(3.32)

where the variables are n, (pl)l∈L, and (rl)l∈L. Note that the time index t is
dropped for notational convenience. The solution of problem (3.32) is obtained
in two steps. First, we solve N independent subproblems (one subproblem for
each possible transmitting node n ∈ N ). Then we select the solution of the
subproblem with the largest objective value. The subproblem can be expressed
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as

maximize
∑|O(n)|
i=1 βρn(i)rρn(i)

subject to rρn(i) = log

(
1 +

gρn(i)ρn(i) pρn(i)

σ2+gρn(i)ρn(i)

∑|O(n)|
j=i+1 pρn(j)

)
,

i ∈ {1, . . . , |O(n)|}∑
l∈O(n) pl ≤ pmax

n

pl ≥ 0, l ∈ O(n) ,

(3.33)

where the variables are (pl)l∈O(n) and (rl)l∈O(n). Problem (3.33) represents the
WSRMax over the capacity region of a scalar Gaussian broadcast channel [185,
Sec. 2] with |O(n)| users. The barrier method [3, Sec. 11.3.1], or the explicit
greedy method proposed in [185, Sec. 3.2], can be used to efficiently solve this
problem. Here we use the barrier method and refer the reader to Appendix 5 for
more details. Let g(n), p(n)

l , and r(n)
l denote the optimal objective value and the

corresponding optimal solution (i.e., power and rate) respectively. Then the
rate/power relation can be expressed as

r
(n)
ρn(i) = log

(
1+

gρn(i)ρn(i) p
(n)
ρn(i)

σ2+gρn(i)ρn(i)

∑|O(n)|
j=i+1 p

(n)
ρn(j)

)
, i ∈ {1, . . . , |O(n)|} (3.34)

and the optimal solution of problem (3.32) is given by

n? = arg max
n∈N

g(n) ;

p?l =

{
p

(n?)
l l ∈ O (n?)

0 otherwise ;

r?l =

{
r

(n?)
l l ∈ O (n?)

0 otherwise .

(3.35)

3.3.2 Single node reception case

Here we consider the case where only one node can receive during each slot. As
a result, the associated problem (3.31) is reduced to a simpler form where the
optimal power and rate allocation can be computed very efficiently by considering
N WSRMax problems for the Gaussian multiple access channel, one for each
possible receiving node.

We start by considering the capacity region descriptions of the Gaussian
multiaccess channel with |I(n)|, n ∈ N users [179],[9, Sec. 6]. For any receiving
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node n ∈ N , the capacity region of a the |I(n)| user Gaussian multiaccess
channel, with power constraints pl, l ∈ I(n), is given by the set of rate vectors
that lie in the intersection of the constraints∑

l∈V(n) rl ≤ log

(
1 +

∑
l∈V(n) gllpl

σ2

)
(3.36)

for every subset V(n) ⊆ I(n). Thus, we can rewrite problem (3.31) as

maximize
∑
l∈I(n) βlrl

subject to n ∈ N∑
l∈V(n) rl ≤ log

(
1 +

∑
l∈V(n) gllpl

σ2

)
, V(n) ⊆ I(n)

0 ≤ pl ≤ pmax
tran(l), l ∈ I(n)

pl = 0, l /∈ I(n) ,

(3.37)

where the variables are n, (pl)l∈L, and (rl)l∈L. Again, the solution is obtained in
two steps. First, we solve N independent subproblems (one subproblem for each
possible receiving node n ∈ N ). Then we select the solution of the subproblem
with the largest objective value. The subproblem has the form

maximize
∑
l∈I(n) βlrl

subject to
∑
l∈V(n) rl ≤ log

(
1 +

∑
l∈V(n) gllpl

σ2

)
, V(n) ⊆ I(n)

0 ≤ pl ≤ pmax
tran(l), l ∈ I(n) ,

(3.38)

where the variables are (pl)l∈I(n) and (rl)l∈I(n). Problem (3.38) is equivalent
to the WSRMax over the capacity region of the Gaussian multiaccess channel
with |I(n)| users [9, Sec. 6]. The solution is readily obtained by considering the
polymatroid structure of the capacity region [179, Lem. 3.2]. Again we denote
by g(n), p(n)

l , and r(n)
l the optimal objective value and the optimal solution of

problem (3.38) respectively. Thus, the solution of problem (3.38) can be written
in closed form as p(n)

l = pmax
tran(l) for all l ∈ I(n) and

r
(n)
%n(i) = log

(
1+

g%n(i)%n(i) p
(n)
%n(i)

σ2+
∑|I(n)|
j=i+1 g%n(j)%n(j) p

(n)
%n(j)

)
, i ∈ {1, . . . , |I(n)|} ,

(3.39)
where %n = (%n(1), . . . , %n(|I(n)|)) is a permutation of the set of incoming links
I(n) such that

β%n(1) ≤ β%n(2) ≤ . . . ≤ β%n(|I(n)|) . (3.40)
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One can in fact identify %n as the SIC order at the receiving node n ∈ N . Finally,
the optimal solution of problem (3.37) can be expressed as

n? = arg max
n∈N

g(n) ;

p?l =

{
p

(n?)
l l ∈ I (n?)

0 otherwise ;

r?l =

{
r

(n?)
l l ∈ I (n?)

0 otherwise .

(3.41)

3.4 Numerical examples

In this section, we use the algorithms of the preceding sections to identify the
solutions to the selected NUM problem and their properties, so as to get insight
into network design and provisioning methods. Specifically, in every time slot t,
the rate allocation at step 3 of the Dynamic Cross-Layer Control Algorithm (i.e.,
Algorithm 3.1, Section 3.1) is obtained by using the proposed algorithms for
WSRMax described in Section 3.2 and Section 3.3.

We assume a block fading Rayleigh channel model where the channel gains are
constant during each time slot and change independently from slot-to-slot. The
small-scale fading components of the channel gains are assumed to be independent
and identically distributed over the time slots, links, and channels. Recall that
we consider equal power spectral density for all receivers, i.e., Nl = N0 for all
l ∈ L and equal channel bandwidths, i.e., Wc = W for all c ∈ C. Furthermore,
the maximum power constraint is assumed to be the same for all nodes, i.e.,
pmax
n = pmax

0 for all n ∈ N (independent of the number of channels C). For
a fair comparison between cases with different numbers of channels, we have
assumed that the total available bandwidth is constant regardless of C, i.e.,∑C
c=1Wc = Wtot. In all our simulations we have selected the total bandwidth to

be normalized to one, i.e., Wtot = 1 Hz.
For comparing different algorithms, we consider the following two performance

metrics: 1) the average sum-rate
∑
n∈N

∑
s∈Sn x̄

s
n and 2) the average network

congestion
∑
n∈N

∑S
s=1 q̄

s
n. For each network instance, the Dynamic Cross-Layer

Control Algorithm (i.e., Algorithm 3.1) is simulated for at least T́ = 10000

time slots and the average rates x̄sn and queue sizes q̄sn are computed by
averaging the last t0 = 3000 time slots, i.e., x̄sn = 1/t0

∑T́
t=T́−t0 x

s
n(t) and
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q̄sn = 1/t0
∑T́
t=T́−t0 q

s
n(t). We assume that the rates corresponding to all node-

commodity pairs (n, s)s∈Sn , n ∈ N are subject to proportional fairness, and
therefore we select the utility functions usn(y) = loge(y). In all considered setups,
we selected V = 100 [see (3.4)] and the parameters Rmax

n [see (3.4)] were chosen
such that all conditions presented in [44, Sec. III-D] were satisfied.

We start with a simple network instance (Section 3.4.1); a bipartite network
where no self interferers exist (i.e., A = ∅) and the proposed successive approxi-
mation algorithm, Algorithm 3.2 (Section 3.2.2) is used in resource allocation.
The associated results show important consequences on upper layers due to the
proposed successive approximation algorithm. We then consider more general
networks (Section 3.4.2), with the presence of self interferers (i.e., A 6= ∅) and no
self interference cancellation at network’s nodes (i.e., g = 1). Here Algorithm 3.3
(Section 3.2.4) is used in resource allocation. The gains achievable at the network
layer, due to different degrees of the self interference cancelation performed at
the network nodes, are investigated quantitatively in Section 3.4.3. By changing
g in the interval [0, 1], the results are able to capture the effect of self interference
cancelation performed with different levels of accuracy. Finally, we look at
the multiuser receiver scenario, again using the same network instance as in
Section 3.4.2. The associated results (Section 3.4.4) show impacts in upper layer
performance due to advanced receiver architectures.

3.4.1 NUM for bipartite networks with singleuser detection
at receivers

A bipartite network, as shown in Figure 3.4, is considered. There are N = 8 nodes,
L = 4 links, and S = 4 commodities. One distinct commodity arrives exogenously
at every node n from the subset {1, 2, 3, 4} ⊆ N . Without loss of generality we
assume that the nodes and commodities are labeled such that commodity i
arrives at node i for any i ∈ {1, 2, 3, 4}. The destination nodes are specified by the
following commodity-destination node pairs (s, ds) ∈ {(1, 5), (2, 6), (3, 7), (4, 8)}.

The channel power gains between distinct nodes are given by

|hijc(t)|2 = µ|i−j|cijc(t), i, j ∈ L, c ∈ C , (3.42)

where cijc(t) are exponentially distributed independent random variables with
unit mean used to model Rayleigh small-scale fading and the scalar µ ∈ [0, 1] is
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Fig 3.4. Bipartite wireless network with N = 8 nodes, L = 4 links, and S = 4

commodities, [112] c© 2011, IEEE.

referred to as the interference coupling index, which parameterizes the interference
between direct links. For example, if µ = 0, transmissions of links are interference
free. The interference between transmissions increases as the parameter µ
grows. Similar channel gain models for bipartite networks has also been used
in [186]. Of course, this simple hypothetical model provides useful insights into
the performance of proposed algorithms in bipartite networks (e.g., cellular
networks). We define the SNR operating point as

SNR =
pmax

0

N0Wtot
. (3.43)

Figure 3.5 shows the dependence of the average sum-rate [Figure 3.5(a)]
and the average network congestion [Figure 3.5(b)] on the interference coupling
index µ for our proposed Algorithm 3.2 and for the optimal base line single
link activation (or BLSLA) policy 16. We consider the single-channel case
C = 1 operating at three different SNR values 2, 8, and 16dB. The initial
power allocation P0 for Algorithm 3.2 is chosen such that [P0]l,1 = pmax

0 unless
otherwise specified. Here we can make several observations. First, the proposed
Algorithm 3.2 provides substantial gains, both in the average sum-rate, as well as
in the average network congestion, especially for small and medium values of the
interference coupling index. The gains diminish as interference between direct
links become significant. This is intuitively expected since for large SNR values
the BLSLA policy becomes optimal when the interference coupling index µ
approaches 1. It is interesting to note that at small SNR values the network can
16A channel access policy where, during each time slot, only one link is activated in each
channel is called BLSLA policy. Finding the optimal BLSLA policy that solves problem (3.6)
is a combinatorial problem with exponential complexity in C. Thus, it quickly becomes
intractable, even for moderate values of C. However, for the case C = 1 the optimal BLSLA
policy can be easily found and it consists of activating, during each time slot, only the link
that achieves the maximum weighted rate.
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Fig 3.5. Dependence of the average sum-rate and the average network congestion
on the interference coupling index µ; C = 1 and SNR = 2, 8, 16dB, [112] c© 2011,
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still benefit from scheduling multiple links per slot, even for the case µ = 1. This
gain comes from the fact that the channel gains between interfering links are also
affected by fading. Thus, links that experience low instantaneous interference
levels can be simultaneously scheduled. Results suggest that, especially for small
and medium values of the interference coupling index, the proposed solution
method often yields designs that are far superior to those obtained by BLSLA.

Figure 3.6 shows the dependence of the average sum-rate [Figure 3.6(a)] and
of the average network congestion [Figure 3.6(b)] on the number of iterations of
Algorithm 3.2. We consider the single-channel case C = 1 with interference
coupling index µ = 0.5 and SNR values 2, 8, and 16dB. To facilitate faster
convergence, Algorithm 3.2 is run without considering the trust region constraints;
to do this, we can simply set the parameter α in Algorithm 3.2 to a very large
positive number, e.g., α = 10100 [see problem (3.18)]. As a reference, we consider
the optimal BLSLA policy. Results show that the incremental benefits are very
significant for the first few iterations and are marginal later. For example, in
the case of SNR = 16dB, when the numbers of iterations changes from 1 to 3,
the improvement in the average sum-rate is around 18.1%, whereas when it
changes from 7 to 9, the improvement is around 0.30%. Therefore, by running
Algorithm 3.2 for a few iterations (e.g., 5 iterations) we can yield performance
levels which are almost indistinguishable from those that would have been
obtained by running Algorithm 3.2 until it terminates (see the stopping criterion
in step 3). This observation can be very useful in practice, since we can terminate
Algorithm 3.2 when the incremental improvements between consecutive iterations
become negligible.

Figure 3.7 shows the dependence of the average sum-rate [Figure 3.7(a)] and
of the average network congestion [Figure 3.7(b)] on the SNR for Algorithm 3.2
and optimal BLSLA policy. We have considered the case C = 1 and µ = 0.3.
For comparison, we also plot the results due to a commonly used high SINR
approximation [34] where the achievable rates log(1 + γlc) are approximated by
log(γlc). In particular, the objective function of problem (3.11) is approximated
by
∏
c∈C
∏
l∈L γ

−βl
lc . Recall that γlc represents the SINR of link l in channel c

and βl represents the differential backlog of link l. This results in a convex
approximation (i.e., a GP) of problem (3.11). One should not confuse high SINR
with high SNR, since those are fundamentally different and a high SNR value
does not ensure high SINR values in all links. Results show that, when compared
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with other methods, RA based on Algorithm 3.2 offers larger average sum-rate as
well as reduced average network congestion. The relative gains of Algorithm 3.2
reduce, compared to the BLSLA at high SNR, e.g., the relative gain offered
by proposed Algorithm 3.2 in the average sum-rate changes from 40% to 17%

[Figure 3.7(a)] and the relative gain in the average network congestion changes
from 23% to 15% [Figure 3.7(b)] when the SNR value is increased from γ = 16dB
to γ = 24dB respectively. This observation is consistent with the fact that
at high SNR it is very likely the optimal RA has a BLSLA structure. As a
result, at the optimal RA, different links correspond to different SINR regions,
and therefore the high SINR approximation is, of course, unreasonable and
suffers a large penalty, especially at high SNR values. This poor performance is
qualitatively consistent with intuition: the solution obtained by employing high
SINR approximation in RA must contain all nonzero entries (i.e., nonzero γlc) to
drive the approximated objective

(
i.e.,

∏
c∈C
∏
l∈L γ

−βl
lc

)
into a nonzero value,

and therefore never yields a solution to the form of BLSLA.
Figure 3.8 shows the dependence of the average sum-rate [Figure 3.8(a)] and

of the average network congestion [Figure 3.8(b)] on the number of channels
C for Algorithm 3.2. We consider the case SNR = 16dB and µ = 0.3 and
the initial power allocation P0 for Algorithm 3.2 is simply chosen such that
[P0]l,c = pmax

0 /C. The plots illustrate that increasing the number of channels
will yield better performance in both the average sum-rate and the average
network congestion (e.g., when the number of channels C changes from 1 to
8, the improvement in the average sum-rate and the reduction in average
network congestion is around 12% and 12.4% respectively). We stress that
the benefits are solely achieved by opportunistically exploiting the available
multichannel diversity in the network via the proposed Algorithm 3.2 without
any supplementary bandwidth or power consumption. Moreover, the incremental
benefits are very significant for small C, e.g., when the number of channels
C changes from 1 to 2, the improvement in the average sum-rate is around
6%, whereas when C changes from 7 to 8, the improvement is around 0.25%.
The plots give much insight into why multichannel designs are important and
beneficial compared to the single-channel counterpart.
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Fig 3.8. Dependence of the average sum-rate and the average network congestion
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3.4.2 NUM for nonbipartite networks with singleuser
detection at receivers

First, two small fully connected multihop wireless network setups, which are
identical to the once shown in Figure 2.11 are considered.

We assume an exponential path loss model; the channel power gains |hijc(t)|2

between distinct nodes are given by

|hijc(t)|2 =

(
dij
d0

)−η
cijc(t) , (3.44)

where dij is the distance from the transmitter of link i to the receiver of link j,
d0 is the far field reference distance [176], η is the path loss exponent, and cijc(t)
are exponentially distributed random variables with unit mean, independent
over the time slots, links, and channels. The first term of (3.44) represents the
path loss factor and the second term models Rayleigh small-scale fading. The
SNR operating point is defined as

SNR =
pmax

0

N0Wtot
·
(
D0

d0

)−η
. (3.45)

In the following simulations we set D0/d0 = 10 and η = 4.
Figure 3.9 shows the dependence of the average network layer sum-rate on the

SNR for the considered network setups, where we use C = 1. As a benchmark,
we first consider the branch and bound algorithm proposed in Section 2.2 to
optimally solve the RA subproblem. It should be stressed that the optimality of
the algorithm proposed in Section 2.2 is achieved at the expense of prohibitive
computational complexity, even in the case of very small problem instances. We
then consider the optimal BLSLA policy and Algorithm 3.3 with two initialization
methods: 1) Uniform initialization and 2) BLSLA based initialization. In the
case of uniform initialization the initial power allocation P0 is chosen such
that [P0]l,1 = pmax

0 /(|Otran(l)|). In the case of BLSLA based initialization the
initial power allocation P0 is chosen such that [P0]l?,1 : [P0]j,1 = P : 1 for all
j ∈ L, j 6= l? where l? is the index of the active link obtained based on the
optimal BLSLA policy and P � 1 is a real number. For comparison, we also
plot the results for Algorithm 3.2 with uniform and BLSLA initializations.

Results show that the performance of Algorithm 3.3 is very close to the
optimal branch and bound algorithm. Specifically, Algorithm 3.3 with BLSLA
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Fig 3.9. (a) Dependence of the average network layer sum-rate on SNR for net-
work 1; (b) Dependence of the average network layer sum-rate on SNR for net-
work 2, [112] c© 2011, IEEE.

120



x 7
3

9

D0 m

5

6 7 8

9 2

3 4

1

x 1
2

x 

x 
2

x 
2

3

5

3
3

x 
1

7

Fig 3.10. Multihop wireless network with N = 9 nodes and S = 3 commodities,
[112] c© 2011, IEEE.

initialization is almost indistinguishable from the optimum and at least as good
as the optimal BLSLA, for all considered cases. In contrast, Algorithm 3.3
with uniform initialization exhibits significant deviations from both the optimal
branch and bound algorithm and BLSLA, specially at high SNR values. This
behavior is not surprising since Algorithm 3.3 is a local method for the nonconvex
problem (3.6). Therefore, the initialization point of the algorithm can influence
the resulting solution [3, Sec. 1.4.1]. Nevertheless, a carefully selected initialization
point can improve the performance of Algorithm 3.3 to very close to the optimum.
For example, at high SNR values, the performance of Algorithm 3.3 with BLSLA
initialization is almost identical to the optimum, whereas the performance with
uniform initialization deviates a bit from the optimum. It is important to remark
that at low and moderate values of SNR, results derived from Algorithm 3.3 are
not significantly affected by the initialization method. Results also convince
that, in the presence of self interferers, Algorithm 3.2 cannot perform well and it
can converge to a very bad suboptimal point, as we pointed out in Section 3.2.4.
Therefore, even though the computational complexity of Algorithm 3.3 does
not increase more than polynomially with the problem size, results show that
Algorithm 3.3 with a proper initialization performs close to the optimum.

Next, a larger network; a fully connected multihop, multicommodity wireless
network as shown in Figure 3.10 is considered. There are N = 9 nodes and
S = 3 commodities. The commodities arrive exogenously at different nodes in
the network as described in Table 3.1. Thus we have S1 = {2},S2 = {3},S3 =

{3},S5 = {2},S7 = {1, 3}, and Si = ∅ for all i ∈ {4, 6, 8, 9}. The nodes are
located in a rectangular grid such that the horizontal and vertical distances
between adjacent nodes are D0 m. The channel power gains, between nodes, are
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Table 3.1. Network commodities, destination nodes, and source nodes, [112]
c© 2011, IEEE.

Commodity (s) Destination node (ds) Source nodes

1 2 7

2 3 1, 5

3 9 2, 3, 7

given by (3.44) and the SNR operating point is given by (3.45). Moreover, we
set D0/d0 = 10 and η = 4.

Figure 3.11 shows the dependence of the average sum-rate [Figure 3.11(a)]
and of the average network congestion [Figure 3.11(b)] on the SNR for several
algorithms, where we use C = 1. First we have considered the optimal BLSLA
policy and Algorithm 3.3 with the two initialization methods: 1) Uniform
initialization and 2) BLSLA based initialization (the same initializations as
used when plotting Figure 3.9). For comparison, we also plot the results for the
low-complex approaches where the set of nodes N is first partitioned into two
disjoint subsets, the set of transmitting nodes T and the set of receiving nodes
R and then Algorithm 3.2 and high SINR approximation are used in RA. The
partitioning of the set of nodes N into two disjoint subsets is performed using
two simple methods: 1) random partitioning and 2) greedy partitioning based on
differential backlogs. In random partitioning, each node is allocated either to T
or to R with equal probabilities. Greedy partitioning is performed as follows.
We start with an empty set of links L̄ = ∅. At each step, the link l? from the set
L \ L̄ which has the largest differential backlog βl (i.e., l? = arg maxl∈L\L̄ βl) is
added to the set L̄. Then all links outgoing from rec(l?) and all links incoming
to tran(l?) are deleted from L. This procedure continues until there are no
links left in L \ L̄. The sets T and R can be found as T = {tran(l)|l ∈ L̄} and
R = {rec(l)|l ∈ L̄}.

From Figure 3.11 we make the following observations. First, Algorithm 3.3
with BLSLA based initialization yields results better than any other counterpart.
In contrast, Algorithm 3.3 with uniform initialization shows significant deviations
from the BLSLA solution at high SNR, especially in the terms of average
sum-rate [Figure 3.11(a)]. Moreover, it is important to observe again that at
low and moderate values of SNR, results derived from Algorithm 3.3 are not
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Fig 3.11. Dependence of the average sum-rate and the average network conges-
tion on the SNR; C = 1, [112] c© 2011, IEEE.
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substantially affected by the initialization method. These observations are almost
the same as those we saw in Figure 3.9. We also observe that Algorithm 3.3 with
a proper initialization, can significantly outperform Algorithm 3.2 in conjunction
with either random or greedy partitioning. This elaborates the importance
of gradual self-interference gain increments (i.e., step 4 of Algorithm 3.3) in
finding a better RA compared to the direct application of Algorithm 3.2 with
heuristic partitioning. In most cases there is no advantage to using high SINR
approximation. These observations are very useful in practice since they illustrate
that Algorithm 3.3 often works well when initialized with a reasonable starting
point (e.g., BLSLA based initialization). In addition, we note that even with
a very simple initialization, e.g., uniform initialization, Algorithm 3.3 yields
substantial gains, especially at small and moderate SNR values (e.g., 0dB - 20dB).

Figure 3.12 shows the dependence of the average sum-rate [Figure 3.12(a)]
and of the average network congestion [Figure 3.12(b)] on the numbers of
channels C for Algorithm 3.3. We have considered the case SNR = 16dB and
have considered a uniform initialization for Algorithm 3.3 where the initial power
allocation P0 is chosen such that [P0]l,c = pmax

0 /(C.|Otran(l)|). For comparison,
we also plot the results for Algorithm 3.2 with random and greedy partitioning of
nodes N . The results are consistent with our previous observations in Figure 3.8,
i.e., as the number of channels increases better performance in both the average
sum-rate and the average network congestion is achieved. These benefits are again
obtained by opportunistically exploiting the available multichannel diversity in
the network via the proposed algorithms. Moreover, the results suggest that
using Algorithm 3.3 in the RA can increase the gains very significantly, compared
to the RA based on simple extensions to Algorithm 3.2, which runs with either
random or greedy partitioning of nodes. For example, the relative gains in the
average sum-rate are above 23% [Figure 3.12(a)] and the relative gains in the
average network congestion are above 4.7% [Figure 3.12(b)] over the range of
interest, C = 1 to C = 8.

3.4.3 Effect of self interference cancelation

For the considered network setups in this section, the channel power gains between
nodes are given by (3.44) and the SNR operating point is given by (3.45). For
illustration purposes we consider a single-channel case (i.e., C = 1). Moreover,

124



1 2 3 4 5 6 7 8
3

3.5

4

4.5

5

5.5

6

6.5

 C

A
v
e

ra
g

e
 n

e
tw

o
rk

 l
a

y
e

r 
s
u

m
−

ra
te

 [
b

it
s
/s

lo
t]

 

 

proposed Alg. 3.3, uniform init.

proposed Alg. 3.2, greedy partitioning

proposed Alg. 3.2, random partitioning

(a) Average network layer sum-rate
∑9
n=1

∑
s∈Sn x̄

s
n

1 2 3 4 5 6 7 8

1800

2000

2200

2400

2600

2800

3000

C

A
v
e

ra
g

e
 n

e
tw

o
rk

 c
o

n
g

e
s
ti
o

n
 [

b
it
s
] 

 

 

proposed Alg. 3.2, random partitioning

proposed Alg. 3.2, greedy partitioning

proposed Alg. 3.3, uniform init.

(b) Average network congestion
∑9
n=1

∑3
s=1 q̄

s
n
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Fig 3.13. (a) Two node wireless network with N = 2 nodes, L = 2 links, and
S = 2 commodities. Different commodities are represented by different color;
(b) Tandem wireless network with N = 4 nodes and S = 2 commodities. Different
commodities are represented by different color.

we set D0/d0 =
√

10 and η = 4. In all the simulations in this subsection,
Algorithm 3.3 with BLSLA based initialization is considered.

Inspired by the Gaussian two-way channel [180], we first consider a simple two
node wireless network as shown in Figure 3.13(a). There are two commodities,
the first one arrives at node 1, and is intended for node 2; the second commodity
arrives at node 2, and is intended for node 1. As explained in [180], a Gaussian
two-way channel is equivalent to two independent Gaussian channels where
perfect self interference cancelation is realized (i.e., g = 0). As a result, the
sum-capacity of the symmetric Gaussian two-way channel becomes twice the
capacity of either of the equivalent Gaussian channels. The considered two node
network allows us to illustrate similar behavior in terms of the network layer
average sum-rate.

Figure 3.14 shows the dependence of the average sum-rate [Figure 3.14(a)]
and of the average network congestion [Figure 3.14(b)] on the self-interference
gain g. We consider three link SNR values, 5, 16, and 30dB, which correspond
to low, medium, and high data rate systems respectively. The results show
that the average sum-rate with perfect self interference cancelation (i.e., g = 0)
is increased by a factor of 2 and the average network congestion reduced
significantly, as compared to no self interference cancelation (i.e., g = 1); see
Figure 3.14(a). Similar gains are achieved in terms of average network congestion
as well; see Figure 3.14(b). The results also reveal that, even with an imperfect
self interference cancelation technique, we can achieve the performance limits
guaranteed by perfect self interference cancelation. For example, a decrease of
the self-interference gain up to a value g = 10−4 is enough to double the average
sum-rate for link SNR = 5dB.

Let us now consider a tandem wireless network, as shown in Figure 3.13(b).
There are two commodities, the first one arrives at node 1, and is intended for
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Fig 3.14. Dependence of the average sum-rate and of the average network conges-
tion on the self-interference gain g in the case of the two node wireless network.
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Fig 3.15. Dependence of the average sum-rate and the average network conges-
tion on the self-interference gain g in the case of the four node tandem wireless
network.
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node 4; the second commodity arrives at node 4, and is intended for node 1.
Thus we have S1 = {1},S4 = {2}, and Sn = ∅ for all n ∈ {2, 3}.

Figure 3.15 shows the dependence of the average sum-rate and of the average
network congestion on the self-interference gain g for SNR values 5, 16, and
30dB. The behavior is very similar to the case of Figure 3.14. For example, in
the case SNR = 5dB, the results show that by decreasing the self-interference
gain from g = 10−1 to g = 10−4 the average sum-rate is increased by a factor of
around 1.82 [see Figure 3.15(a)] and the average network congestion has reduced
significantly as well [see Figure 3.15(b)].

Let us next consider a fully connected multihop, multicommodity wireless
network as shown in Figure 3.10. Figure 3.16 shows the dependence of the
average sum-rate and of the average network congestion on the self-interference
gain g for SNR values 5, 16, and 30dB. Let us first consider the case of a low SNR
value, i.e., SNR = 5dB. The results show that by decreasing the self-interference
gain from g = 10−1 to g = 10−4 the average sum-rate is increased by a factor of
about 1.22 [see Figure 3.16(a)]. From Figure 3.16(b), we see reductions in the the
average network congestion as well. The network performance remains the same
as in the case of perfect self interference cancelation for all values of g < 10−4.
In this region the network performance is limited by the interference between
distinct nodes, and no further improvement is possible by only increasing the
accuracy of the self interference cancelation. On the other hand, no gain in
the network performance is achieved by using an imperfect self interference
cancelation technique which leads to g > 10−1. In this region the RA solution
provided by Algorithm 3.3 is always admissible (i.e., no node transmits and
receives simultaneously).

In each considered network setup (i.e., Figure 3.13(a),3.13(b), and 3.10) a
similar behavior of the results holds for medium and high SNR values as well
(i.e., SNR = 16 and 30dB). Moreover, as we change SNR from low values to
high values, the accuracy level required by the self interference cancelation
becomes more stringent. For example, in the case of the fully connected multihop,
multicommodity wireless network in Figure 3.10, if the SNR operating point is
changed from 5 to 30dB, then the accuracy level required by the self interference
cancelation should be improved from g = 10−1 to g = 10−3 to start gaining in
network layer performances. This is intuitively expected since, the larger the
SNR operating point, the larger the power levels of the nodes, and therefore the
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Fig 3.16. Dependence of the average sum-rate and of the average network conges-
tion on the self-interference gain g in the case of the nine node multihop wireless
network.
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higher the accuracy level required by the self interference cancelation techniques
to remove the increased transmit power at nodes.

Note that the relative gains due to self interference cancellation in the
considered fully connected multihop network (Figure 3.10) are smaller compared
to the relative gains experienced in the tandem wireless network [Figure 3.13(b)].
This behavior is intuitively explained by looking in to the network topology.
When the self interference is significantly canceled, the resultant interference at
the receiver node of any link in the case of the tandem multihop wireless network
in Figure 3.13(b) is smaller on average to that of the multihop wireless network
in Figure 3.10; note that any receiver node of the fully connected multihop
network has many adjacent interfering nodes. Thus, with zero self interference,
links in the tandem network can operate at larger rates, and therefore yields
larger relative gains.

Finally, we show by an example, how to apply rate-equivalence (3.28) to find
the required value of self-interference gain g in order to preserve network layer
performances if the distance between nodes is scaled. Let us construct a new
network by scaling the distances between the nodes of the original network (see
Figure 3.10) by a factor of θ =

√
10 and the maximum node transmission power

pmax
0 by a factor of θη = 100 (note that η = 4). We refer to this new network as

the scaled network. To illustrate the idea let us consider the case SNR = 5dB in
Figure 3.11 and focus to the point g = 10−4 for which the average sum-rate is
3.5 [bits/slot]. The value of g at this point can be considered as the minimum
required accuracy level of self interference cancelation to achieve an average
sum-rate of 3.5 bits/slot in the original network. Now we ask what is the required
self-interference gain gnew that would result in the same average sum-rate value
(i.e., 3.5 bits/slot) in the scaled network. From (3.28) it follows that the required
accuracy level of self interference cancelation should be improved at least to a
level of gnew = g/θη = 10−4/100 = 10−6.

3.4.4 NUM for networks with multiuser detection at
receivers

The network in Figure 3.10 is considered. The assumptions and the simulation
parameters are exactly the same as in Section 3.4.2.
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Fig 3.17. Dependence of the average sum-rate and the average network conges-
tion on the SNR; C = 1, [112] c© 2011, IEEE.
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Figure 3.17 shows the dependence of the average sum-rate [Figure 3.17(a)]
and of the average network congestion [Figure 3.17(b)] on the SNR for RA where
only one node is allowed to transmit in each slot and receivers perform multiuser
detection. For illustration purposes we consider the single-channel case (i.e.,
C = 1). We also show the results for a nonfading case [i.e., by having cijc(t) = 1

in (3.24)] for comparison. Here we can make several observations. Fading can
significantly improve the overall performance in average sum-rate and average
network congestion. This observation has an analogy with multiuser diversity in
downlink fading channels [9, Sec. 6.6]. Intuition suggests that when there are
many links which fade independently, at any time slot there is a high probability
that the resulting rate and power allocation yields a better schedule (see [17,
Sec. 4.7]) compared to the nonfading case. There are significant advantages
to having multiuser detection, especially for high SNR values. At low SNR,
gains are marginal. Thus, multiuser detectors have a practical advantage over
singleuser detectors, especially in a high SINR regime. For example, in a fading
environment, at SNR = 24dB we obtain around a 7.5% increase in the average
sum-rate and a 5% decrease in the average network congestion. In a nonfading
environment multiuser detectors offer around a 16% increase in the average
sum-rate and a 13.5% decrease in the average network congestion.

3.5 Summary and discussion

We have considered the power and rate control problem in a wireless network in
conjunction with the next-hop routing / scheduling and the flow control problem.
Thus, although our focus lies on the so-called resource allocation problem that is
confined to the physical / medium access control layers, its formulation captures
interactions with the higher-layers in a manner similar to the one employed
in [44]. The result is a cross layer formulation. The problem, unfortunately, is
NP-hard, and therefore there are no polynomial time algorithms to solve it. Our
contribution has been to consider first a general access operation, but with a
relatively simple form of receiver structure (bank of match filters), and then
to limit the access operation to a single node at a time (either transmitting
or receiving) but allowing for increased multiuser detector complexity at the
receiver.

In the first case, we offer a new optimization methodology based on homo-
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topy methods and complementary geometric programming solution methods.
Numerical results showed that the our proposed algorithms perform close to
exponentially complex optimal solution methods. In addition, they are in fact
fast and are capable of handling large-scale problems.

The proposed method was also used to evaluate the gains achievable at
the network layer when the network nodes employ self interference cancelation
techniques with different degrees of accuracy. Numerical results have shown
that the self interference cancelation requires a certain level of accuracy to
obtain quantifiable gains at the network layer. The gains saturate after a certain
cancelation accuracy. The level of accuracy required by the self interference
cancelation techniques depends on many factors, such as the distances between
the network nodes and the operating power levels of the network nodes. For the
considered network setups, the numerical results showed that a self interference
reduction in the range 20− 60dB leads to significant gains at the network layer.
We emphasize that this level of accuracy is practically achievable, e.g., the recent
proposals [170, 171, 187, 188] provide cost effective mechanisms for an up to
55dB reduction in the self-interference coefficient. These observations are indeed
important in the context of certain future cellular systems. For example, as the
trend in cellular systems is to increase the data rates of users by introducing very
small cells (e.g., femtocells), the difference between transmitted and received
power might not be very large. Therefore, self interference cancellation strategies
can be of great benefit to such systems. Numerical results further show that the
topology of the network has a substantial influence on performance gains. For
example, in the case of tandem multihop wireless networks, the benefits due to
self interference cancellation are more pronounced when compared to those of a
multihop network, in which the nodes are located in a square grid.

In the second case, we obtain a complete solution and illustrate numerically
the performance gain due to multiuser detector capability. The main benefit
here is the simplicity of the proposed solution methods. As a result, these simple
access protocols can be potentially useful in practical applications with more
advanced communication systems.
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4 WSRMax for downlink OFDMA systems

In this chapter, we propose a low-complexity method for WSRMax in OFDMA
downlink systems. The method is based on the primal decomposition tech-
nique [36, 189]. By using numerical simulations, its performance is compared
to the Lagrangian relaxation based algorithm [21], as well as to the optimal
exhaustive search algorithm. Numerical results show that the proposed algorithm
converges very fast compared to the Lagrangian relaxation based methods [21].
Although, the optimality of the final value can not be guaranteed due to the
nonconvexity of the problem, the simulations show that rate region achieved by
the proposed algorithm exactly matches the one obtained using the optimal
exhaustive search algorithm.

4.1 System model and problem formulation

Consider a single antenna OFDMA downlink transmission with J users and C
subcarriers, as shown in Figure 4.1. The signal received by user j in subcarrier c
can be expressed as

yjc = ajcxjc
√
qjc + zjc, j = 1, . . . , J, c ∈ Cj , (4.1)

where j is the user index, c is the subcarrier index, Cj denotes the set of
subcarriers allocated to user j, xjc is the transmitted signal, qjc is the power
allocated, ajc is channel gain, and zjc is the received noise. We assume that ajc
is time invariant and its value is available at the base station. The noise samples
are assumed to be independent and identically distributed as zjc ∼ CN (0, σ2).
Let bjc denote the channel SNR of jth user in subcarrier c, i.e., bjc = |ajc|2/σ2

and βj denote the weight associated with the rate of user j. The WSRMax
problem subject to a sum-power constraint pmax

0 can be formulated as [21]

maximize
∑J
j=1

∑
c∈Cj βj log(1 + qjcbjc)

subject to
∑J
j=1

∑
c∈Cj qjc = pmax

0

Cj ∩ Cl = ∅, ∀j 6= l

qjc ≥ 0, j = 1, . . . , J, c = 1, . . . , C ,

(4.2)

where the variables are (qjc)j=1,...,J,c=1,...,C and Cj for all j = 1, . . . , J .
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Fig 4.1. A downlink OFDMA system with J users and C subcarriers.

It is also useful to introduce a virtual system where each subcarrier can be
used by all users in the same time. This results in a general OFDMA downlink
channel where the signal received by user j in subcarrier c is given by

ȳjc = ajcxjc
√
qjc + ajc

J∑
i6=j

xic
√
qic + zjc . (4.3)

The second term in the RHS represents the interference from other users.
Assuming independent channel coding across users at the transmitter and
independent decoding at receivers, the WSRMax problem for the virtual system
can be formulated as

maximize
∑J
j=1

∑C
c=1 βj log

(
1 +

qjc∑J
i=1,i6=j qic + b−1

jc

)
subject to

∑J
j=1

∑C
c=1 qjc = pmax

0

qjc ≥ 0, j = 1, . . . , J, c = 1, . . . , C ,

(4.4)

where the variable is (qjc)j=1,...,J,c=1,...,C . The constraints associated with
orthogonal subcarrier allocations in problem (4.2) have been dropped out and
the interference among users allocated to the same subcarrier is reflected in the
objective.

Here we can make several observations. First, any solution of problem (4.4)
is such that the second constraint in problem (4.2) is automatically satisfied, for
reasons that will be explained at the beginning of Section 4.2.2. In other words,
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any solution of problem (4.4) is feasible for problem (4.2). Moreover, at any of
these solutions the objective function of problem (4.4) will be exactly the same
as the objective function of problem (4.2). Based on these observations it can be
concluded that any solution of the auxiliary problem (4.4) is a solution for the
original problem (4.2) as well.

The original problem (4.2) is combinatorial and it requires exponential
complexity to find a global optimum. Although problem (4.4) is still nonconvex,
it is noncombinatorial. Thus, in the following, we focus on solving problem (4.4)
instead of solving the original problem (4.2). A similar approach has been
used in [67] to solve the (nonweighted) sum-rate maximization problem, i.e.,
for the particular case βk = 1, k = 1, . . . , J . However, the methods proposed
there do not apply to the general case of arbitrary weights, since the properties
exploited in solving the sum-rate maximization problem are ruined when there
are arbitrary weights. Due to the nonconvexity of problem (4.4) finding the
global optimum is intractable. Thus, a successive approximation method inspired
from primal decomposition techniques is presented in Section 4.2.

4.2 Algorithm derivation

4.2.1 Primal decomposition

To reveal the complicating constraints [189] we introduce C new variables
q̄c =

∑J
j=1 qjc, c = 1, . . . , C, and reformulate problem (4.4) as follows:

maximize
∑J
j=1

∑C
c=1 βj log

(
1 +

qjc

q̄c − qjc + b−1
jc

)
subject to

∑C
c=1 q̄c = pmax

0∑J
j=1 qjc = q̄c, c = 1, . . . , C

qjc ≥ 0, j = 1, . . . , J, c = 1, . . . , C ,

(4.5)

where the variables are (qjc)j=1,...,J,c=1,...,C and (q̄c)c=1,...,C . Note that q̄c repre-
sents the total power allocated to subcarrier c. By treating q̄m as complicating
variables, problem (4.5) can be decomposed [36, 189] into a master problem and
C subproblems, one subproblem for each subcarrier c = 1, . . . , C. For a given
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subcarrier c, the subproblem is given by

maximize
∑J
j=1 βj log

(
1 +

qjc

q̄c − qjc + b−1
jc

)
subject to

∑J
j=1 qjc = q̄c

qjc ≥ 0, j = 1, . . . , J ,

(4.6)

where the variable is (qjc)j=1,...,J . The master problem can be expressed as

maximize
∑C
c=1 f

?
c (q̄c)

subject to
∑C
c=1 q̄c = pmax

0

q̄c ≥ 0, c = 1, . . . , C ,

(4.7)

where the variable is (q̄c)c=1,...,C and f?c (q̄c) represents the optimal value of
subproblem (4.6) for fixed q̄c.

4.2.2 Subproblem

In this section we focus on subproblem (4.6) and provide the solution in closed
form. Let us first denote the feasible set of problem (4.6) by P. Note that
problem (4.6) is not a convex optimization problem since we have to maximize
a convex function. However, its objective function is convex with respect
to optimization variable (q1c, . . . , qJc), its feasible set is a nonempty convex
polyhedral set (i.e., a simplex [3]), and its objective is bounded above on P . Thus,
by following the approach of [67, Sec. III], from [190, Cor. 32.3.4] 17 it follows
that the solutions of problems (4.6) must be achieved at one of the vertices of
the polyhedral set P. Consequently, the solutions of the cth subproblem can be
expressed as

(q?1c, . . . , q
?
Jc) = q̄celc , (4.8)

where lc represents the index of the user allocated to the cth subcarrier, i.e.,

lc = arg max
j

(1 + q̄cbjc)
βj . (4.9)

Solution (4.8) confirms that, even though in subproblem (4.6) all users are
allowed to use all subcarriers, the optimal power allocation consists of allocating
only one user per subcarrier. This guarantees that solution (4.8) is feasible for
the original problem (4.2).
17If a convex function f is bounded above on a convex set X ⊆ dom f , then the maximum of
f relative to X is attained at one of the finitely many extreme points of X .
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4.2.3 Master problem

In this section we first show that the master problem (4.7) is nonconvex, which
means that standard convex optimization techniques (e.g., subgradient based
methods) cannot be directly applied to solve problem (4.7). Therefore, for
updating the complicating variables q̄c, we propose a method which uses a convex
approximation of the master problem. In particular, we use a local convex
approximation (a lower bound function) instead of the true objective of the
master problem.

We start by substituting (4.8) and (4.9) in the objective of (4.6). Thus,
f?c (q̄c) can be expressed as

f?c (q̄c) = βlc log (1 + q̄cblcc) (4.10)

= max
j
βj log (1 + q̄cbjc) . (4.11)

We note that the index lc depends on q̄c according to (4.9) and the function
f?c (q̄c) is the pointwise maximum of a set of concave functions. Therefore f?c (q̄c)

is not a concave function with respect to q̄c in general [3]. This prevents direct
application of standard convex optimization techniques, such as subgradient
based methods for updating the complicating variables.

We next provide a method for updating the complicating variables by using
successive convex lower bound approximations of the objective of the master
problem. Let l(i)c , c = 1, . . . , C denote user to subcarrier allocations obtained by
solving C subproblems of the form (4.6) for a given subcarrier power allocation
q̄

(i)
c , c = 1, . . . , C. Here the superscript (i) represents an iteration index. Then,
the objective of the master problem is approximated by the following lower
bound:

C∑
c=1

β
l
(i)
c

log
(

1 + q̄cbl(i)c c

)
≤

C∑
c=1

f?c (q̄c), (q̄c)c=1,...,C ∈ P̄ , (4.12)

where P̄ denotes the feasible set of the master problem (4.7). Thus, the
approximated master problem is as follows:

maximize
∑C
c=1 βl(i)c

log
(

1 + q̄cbl(i)c c

)
subject to

∑C
c=1 q̄c ≤ pmax

0

q̄c ≥ 0, c = 1, . . . , C ,

(4.13)
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where the variable is (q̄c)c=1,...,C . Note that in problem (4.13), the objective
function of problem (4.7) is replaced by using the lower bound function given in
(4.12). In addition, the sum-power constraint

∑C
c=1 q̄c = pmax

0 of problem (4.7) is
relaxed as

∑C
c=1 q̄c ≤ pmax

0 . Of course, at the optimal solution of problem (4.13),
the sum-power constraint must be active since the objective function of (4.13) is
increasing in each q̄c.

The solution of the approximated master problem (4.13) can be found by the
multilevel waterfilling algorithm [20]. In particular, the solution of problem (4.13)
is given by the following multilevel waterfilling expression [20]:

q̄?c =
(
Mβ

l
(i)
c
− b−1

l
(i)
c c

)+

, c = 1, . . . , C , (4.14)

where M is chosen such that the power constraint is satisfied with equality, i.e.,

M =
pmax

0 +
∑
{c|q̄?c>0} b

−1

l
(i)
c c∑

{c|q̄?c>0} βl(i)c
. (4.15)

The resulting solution is used as the subcarrier power allocation for the next
iteration i+ 1.

4.2.4 Algorithm for WSRMax in OFDMA downlink

The proposed iterative algorithm can be summarized as follows:

Algorithm 4.1. Primal decomposition based method for OFDMA weighted
sum-rate maximization

1. Initialization; set i = 1. Given a feasible point
(
q̄

(i)
c

)
c=1,...,C

for problem (4.13).

2. Let
(
q̄c = q̄

(i)
c

)
c=1,...,C

and find
(
l
(i)
c

)
c=1,...,C

by using (4.9).
3. Solve the approximated the master problem (4.13). Denote the solution by

(q̄?c )c=1,...,C and let
(
q̄

(i+1)
c = q̄?c

)
c=1,...,C

.
4. Stopping criterion; if the stopping criterion is satisfied STOP, otherwise set
i = i+ 1 and go to step 2.
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Convergence behavior and exit criterion

In this section, we first investigate the monotonicity of the proposed algorithm.
Then we provide a specific exit criterion, which certifies the convergence of
the algorithm to a fixed power and subcarrier allocation. A simple graphical
illustration is provided as well.

The following theorem establishes the monotonic behavior of the proposed
algorithm.

Theorem 4.1. For any iteration i ≥ 1,

C∑
m=1

f?c

(
q̄(i)
c

)
≤

C∑
c=1

f?c

(
q̄(i+1)
c

)
, (4.16)

i.e., the proposed Algorithm 4.1 is an ascent algorithm.

Proof. From Algorithm 4.1 step 2, (4.10), and (4.11), it follows that the solution
of problem (4.6) after the ith iteration of Algorithm 4.1 is given by

f?c

(
q̄(i)
c

)
= max

j
βj log

(
1 + q̄(i)

c bjc

)
(4.17)

= β
l
(i)
c

log
(

1 + q̄(i)
c b

l
(i)
c c

)
.

Now we can write the following chain of relations:

C∑
c=1

f?c

(
q̄(i)
c

)
≤

C∑
c=1

β
l
(i)
c

log
(

1 + q̄(i+1)
c b

l
(i)
c c

)
(4.18)

≤
C∑
c=1

max
j
βj log

(
1 + q̄(i+1)

c bjc

)
(4.19)

=

C∑
c=1

f?c

(
q̄(i+1)
c

)
, (4.20)

where the first inequality follows from the third step of Algorithm 4.1, the second
one follows trivially from the maximization over the users, and the equality
follows from (4.17).

The exit criterion for a such an ascent algorithm is typically chosen heuristi-
cally, e.g., the objective value increment between two successive iterations is
below a certain predefined threshold. However, for the proposed algorithm we
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are able to find an exit criterion, which certifies that the algorithm converges to
a fixed power and subcarrier allocation and further improvement is not possible.
This is established by the following theorem.

Theorem 4.2. If at iteration n + 1 (n ≥ 1) we have l
(n)
c = l

(n+1)
c for all

c = 1, . . . , C, then the following holds:

1. l(i)c = l
(n)
c for all i ≥ n and c = 1, . . . , C.

2. q̄(i)
c = q̄

(n+1)
c for all i ≥ n+ 1 and m = 1, . . . , C.

3.
∑C
c=1 f

?
c

(
q̄

(i)
c

)
−
∑C
c=1 f

?
c

(
q̄

(n+1)
c

)
= 0, for all i ≥ n+ 1,

i.e., the algorithm converges to a fixed power and subcarrier allocation.

Proof. Since bjcs are continuous random variables, the probability of having
multiple solutions for (4.9) is zero; for any q̄c > 0, (4.9) has multiple solutions if
and only if (1 + q̄cbjc)

βj = (1 + q̄cbic)
βi for some i 6= j. Thus, in the following

we assume that lc given by (4.9) is unique
Now we can write the following:

l(n)
c = l(n+1)

c for all c = 1, . . . , C⇒
(
q̄(n+1)
c = q̄(n+2)

c

)
c=1,...,C

(4.21)

⇒ l(n+1)
c = l(n+2)

c for all c = 1, . . . , C , (4.22)

where (4.21) follows by noting that the objective function of (4.13) is strictly
concave, and therefore it has a unique solution [3]. The second implication [i.e.,
(4.22)] follows because (4.9) has a unique solution. Thus, item 1) of the theorem
follows directly from (4.22) and by induction. Furthermore, item 2) follows
from item 1), (4.21), and by induction. Finally, item 3) follows trivially from
item 2).

Thus, the exit criterion checks if the subcarrier allocation between two
successive iterations remains unchanged. Such a point is a local optimum
(possible global) in the sense that the objective can not be increased by changing
the power allocation or subcarrier allocation only.

As a specific example, consider the simple OFDMA system with two subcar-
riers (i.e., c = 1, 2). By performing the variable transformations q̄1 = (1− t)pmax

0

and q̄2 = tpmax
0 , where t is a scalar such that t ∈ [0, 1], we can express the

variation of
∑2
c=1 f

?
c (q̄c) on P̄ as,

h(t) = max
j
βj log (1 + (1− t)pmax

0 bj1) + max
j
βj log (1 + tpmax

0 bj2) ,
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Fig 4.2. Convergence of Algorithm 4.1.

which is plotted in Figure 4.2. According to Figure 4.2(a) the global optimum
is achieved at the iteration (i+ 3). Achieving global optimality is not always
possible because quasiconcavity [3] of h(t) cannot be guaranteed with random
channel SNR, bjc. Consequently, Algorithm 4.1 can converge to a local optimal
solution as shown in Figure 4.2(b).

Complexity analysis

In this section we analyze and compare the computational complexity of the
proposed Algorithm 4.1 to the Lagrangian relaxation based algorithm [21],
as well as to the optimal exhaustive search algorithm. With J users and C

subcarriers, altogether we have JC user-subcarrier combinations. Therefore,
finding optimal subcarrier and power assignment requires JC searches. Combined
with multilevel waterfilling at each instance of the subcarrier assignment, O(CJC)

operations are required to find the solution. The algorithm proposed in [21]
for the weighted sum-rate maximization problem requires O(CJ) operations
to obtain a suboptimal solution. Our proposed Algorithm 4.1, described in
Section 4.2.4, requires O(CJ) operations in step 2 and O(C logC) operations in
step 3, i.e., for ordering. In practice, it is reasonable to assume that J � logC

for the following reasons. The number of users simultaneously serviced by the
system can be very large. For example, in a Wi-Max system C can be up to
2048 [191]. However, the value of logC will not become very large (in a WiMax
system logC = 11 at most). Therefore, the complexity of Algorithm 4.1 can be
approximated by O(CJ).
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Particularization to the sum-rate maximization

The problem of the sum-rate maximization (i.e., βj = 1 for all j = 1, . . . , J) in
downlink OFDMA systems is solved in [67, Sec. III]. The solution method is
exactly equivalent to only one iteration of Algorithm 4.1. Unlike the general
weighted sum-rate maximization, in which user weights βjs are different, in the
case of sum-rate maximization (i.e., βj = 1 for all j = 1, . . . , J) the index lc
will not depend on q̄c according to (4.9). Thus, by using (4.10) and (4.11) the
function f?c (q̄c) can be found as f?c (q̄c) = log (1 + q̄cblcc) = log (1 + q̄c.maxi bic),
which is concave with respect to q̄c (recall that the function f?c (q̄c) is not concave
with respect to q̄c when the user weights βjs are different). As a result, the
inequality given in (4.12) holds with equality and solving problem (4.7) gives the
optimal subcarrier power allocation [67, Sec. III].

4.3 Numerical examples

The performance of the Algorithm 4.1 (Section 4.2.4) is compared to the dual
decomposition based algorithm proposed in [21], denoted as Seong-WSRMax, as
well as to the optimal algorithm based on exhaustive search. The Seong-WSRMax
algorithm uses a bisection search method to update the dual variable λ [21,
Sec. IV]. For initializing the bisection search interval [λmin, λmax], we exploit the
fact that the subgradient of the dual function can be analytically computed.
Since the dual function is convex, the sign of its subgradients change as we pass
through the minimum point of the dual function [21, eq. (11)]. Therefore, we use
a grid search (with step size 1) to identify the interval, in which the subgradient
of the dual function changes its sign, and it is used as the initial bisection search
interval. Thus, the interval [λmin, λmax] is guaranteed to contain the optimal
value of the the dual function and the width of the initial interval is one, i.e.,
(λmax − λmin) = 1. Our proposed Algorithm 4.1 is initialized by allocating equal
power to all subcarriers unless otherwise stated, i.e.,

(
q̄

(1)
c = pmax

0 /C
)
c=1,...,C

.
We start by comparing the convergence behavior of Algorithm 4.1 and the

Seong-WSRMax algorithm. For a fair comparison, we define the following metric:

∆DWSR = E

{
| Copt − Ĉsubopt |

Copt

}
, (4.23)

which is referred to as the average normalized WSR deviation, where Copt is
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the optimal WSR value obtained by exhaustive search, Ĉsubopt is the estimated
objective value from either Algorithm 4.1 or the Seong-WSRMax algorithm,
and expectation E{·} is taken with respect to channel realization. An OFDMA
system with C = 8 subcarriers and a uniform power delay profile with 4 channel
taps is considered. We define the SNR operating point as

SNR =
pmax

0

σ2C
.

Figure 4.3 shows the convergence behavior of the considered algorithms
with SNR = 10dB for J = 2 and J = 4 users. The weights of the users are
(1, 2) for J = 2 and (1, 2, 1, 2) for J = 4 18. The floor of the curves is due
to the suboptimality of the algorithms. The results show that Algorithm 4.1
converges faster than the Seong-WSRMax algorithm and provides smaller
average normalized WSR deviations. Specifically, for both cases J = 2 and
J = 4, Algorithm 4.1 requires only 3 iterations on average to achieve an average
normalized WSR deviation of 10−4 whilst the Seong-WSRMax algorithm requires
around 15 iterations to reach the same accuracy level. It is intuitively obvious
that the number of iterations required by Algorithm 4.1 is sensitive to the
nature of the surface of the objective function

∑C
c=1 f

?
c (q̄c) of problem (4.7); see,

e.g., Figure 4.2. In general, it is hard to quantify the number of iterations before
convergence (or to quantify any bounds on the number of iterations) due to the
nonconvexity of problem (4.5). However, the numerical results suggest that
Algorithm 4.1 often converges fast in practice. It should be emphasized that
the number of iterations required in the initialization of the Seong-WSRMax
algorithm (i.e., the number of iterations required to find the initial bisection
search interval) is not considered when drawing the curves. In particular, for
the initialization process, the Seong-WSRMax algorithm requires a number
of steps [each step has complexity of O(JC)] and our proposed Algorithm 4.1
requires none. Moreover, it is hard to find good initialization methods for the
Seong-WSRMax algorithm (i.e., initialization for the bisection search method)
requiring a compromise between the number of steps required in the initialization
and the width of the initial searching interval (λmax − λmin). Consequently,
additional precautions are required, and therefore in practical implementations
Algorithm 4.1 is more favorable compared to the Seong-WSRMax algorithm.

18Numerical experience suggests that the algorithm behavior is insensitive to the weights.
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Fig 4.3. Average normalized WSR deviation vs. Iterations for J = 2 and 4 users,
C = 8 subcarriers and SNR = 10dB.
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Let us now consider another metric Pξ, the probability of missing the global
optimum, to compare the behavior of Algorithm 4.1 and the Seong-WSRMax
algorithms. In particular, Pξ is defined as

Pξ = Prob
{
| Copt − Ĉsubopt |> ξ

}
, (4.24)

where ξ is a small number, which quantifies the maximum admissible deviation
between Copt and Ĉsubopt. It is considered that the global optimum is missed if
Ĉsubopt is more than ξ away from Copt.

Figure 4.4 uses the same simulation setup as that in Figure 4.3 and depict
the variation of probability of missing the global optimum, Pξ with the number
of iterations. The floor of probability Pξ is again due to the suboptimality of
both algorithms. The influence of ξ on Pξ is totally indistinguishable in the
case of Algorithm 4.1. This behavior shows that Algorithm 4.1 can achieve
very close to optimal solutions within a very small number of iterations and
then it remains there. The results further show that the Pξ evaluated using the
Seong-WSRMax algorithm is highly dependent on ξ. In particular, the smaller
the deviations in the Ĉsubopt from the optimal Copt, the larger the number of
iterations required by the Seong-WSRMax algorithm to reach the expected
target value Pξ. Therefore, independent from the ξ, Algorithm 4.1 allows us to
find a suboptimal solution within a small number of iterations at the expense of
a slight increase in Pξ. These observations are very useful in practice since they
carry significant information from the system design point of view. For example,
consider a design requirement P10−4 ≤ 0.3. Here, the Seong-WSRMax algorithm
requires 18 iterations. If we tighten the design requirement to P10−6 ≤ 0.3, then
the number of iterations required by the Seong-WSRMax increases to 24. In
contrast Algorithm 4.1 always requires just one iteration.

Figure 4.5 shows the achievable rate region computed by using all considered
algorithms. Note that the standard way to characterize the boundary points in
the 2-user rate region is by solving problem (4.4) for β1 = α and β2 = 1− α,
where α ∈ [0, 1] [185]. The same simulation setup as in [21] was used, i.e.,
C = 8, J = 2, pmax

0 = 16 and the channel SNR vectors for users 1 and 2

are 10(12, 22, . . . , C2) and 10(C2, (C − 1)2, . . . , 12) respectively. Although the
computational complexity of the proposed algorithm is much smaller compared
to that of the optimal exhaustive search based method, Figure 4.5 indicates that
the rate region obtained by Algorithm 4.1 almost coincides with the optimal rate
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region. This behavior is expected since the average normalized WSR deviation
(4.23) is in the order of 10−4 as shown in Figure 4.3.

Let us next compare the behavior of Algorithm 4.1 and the Seong-WSRMax
algorithm with large numbers of subcarriers and users. Since, for large numbers
of users and subcarriers the complexity of evaluating Copt is prohibitively high,
the metrics defined in (4.23) and (4.24) are not used. Instead, the behavior of
Algorithm 4.1 is compared with that of the Seong-WSRMax algorithm.

In Figure 4.6, the evolution of the average WSR provided by Algorithm 4.1 is
compared to the average WSR from the Seong-WSRMax algorithm, where the
averaging is performed with respect to channel realization. An OFDMA system
with C = 256 subcarriers, a uniform power delay profile with 128 channel taps
and J = 8, 16, 32, 64 users is considered. The weights of the users are taken from
the sequence {1, 2, 1, 2, . . . , 1, 2}, e.g., when J = 8, weights are (1,2,1,2,1,2,1,2).
The SNR is assumed to be 10dB. The results show that even for a large number
of carriers, Algorithm 4.1 converges fast compared to the Seong-WSRMax
algorithm, independent of the number of users.

It is important to note that several instances of Algorithm 4.1 can be carried
out independently, in parallel by starting them at several initialization points
and by keeping track of the best solution found so far. To do this, in addition to
running the Algorithm 4.1 with uniform initialization

(
q̄

(i)
c = pmax

0 /C
)
c=1,...,C

,
nrand instances of Algorithm 4.1 with arbitrarily chosen initialization points
are carried out. Specifically, in step 1 of each parallel instance, we set

(
q̄

(i)
c =

upmax
0 /C

)
c=1,...,C

, where u is a random number which is uniformly distributed
between 0 and 1, i.e., u ∼ U(0, 1). Moreover, at the end of every iteration i of
parallel algorithms, we keep track of the best point found so far.

Figure 4.7 shows the convergence behavior of the parallel version of Algo-
rithm 4.1 and the Seong-WSRMax algorithm with SNR = 10dB for nrand = 0, 1, 5

and 10. The weights of the users are (1, 2). The floor of the curves is due to the
suboptimality of the algorithms. The results show that the parallel version of
Algorithm 4.1 converges faster than the Seong-WSRMax algorithm and provides
smaller values of average normalized WSR deviations. Specifically, for any
value of nrand parallel implementation requires only 3 iterations on average
to achieve a constant level of average normalized WSR deviations, while the
Seong-WSRMax algorithm requires around 15 iterations to reach a constant
level. This remarkable reduction of the average normalized WSR deviation is
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obtained when nrand is changed from 0 to 1, 5, and 10. As nrand increased the
incremental gains that can be obtained in terms of average normalized WSR
deviations are reduced.

Figure 4.8 uses the same simulation setup as that in Figure 4.7 and depicts the
variation of the probability of missing the global optimum Pξ with the number
of iterations. The floor of probability Pξ is again due to the suboptimality of
both algorithms. Results again show that in the case of Algorithm 4.1, the
influence of ξ on Pξ is indistinguishable and the algorithm can achieve close to
optimal solutions within a small number of iterations and then it remains there.
Results further show that changing nrand from 0 to 1, 5, and 10 yields significant
improvements in Pξ. As the number of parallel initialization points (i.e., nrand)
is increased, Pξ become almost zero.

4.4 Summary and discussion

A joint subcarrier and power allocation algorithm, which is inspired by primal de-
composition techniques, has been proposed for maximizing the WSR in multiuser
OFDMA downlink systems. Although the original problem is nonconvex, the
proposed algorithm finds fast a suboptimal, but still close to optimal, solution
(i.e., more than 90% of the time). Performance can be further improved by using
parallel implementations of the proposed algorithm; several instances of the
algorithm are carried out independently, in parallel, by starting them at different
initialization points. Unlike the dual decomposition based algorithms (e.g., [21]),
our proposed method requires no additional precautions in the initialization.
The algorithm’s convergence to a suboptimal solution is possible within a very
small number of iterations. Although the proposed primal decomposition based
solution method does not rely on zero duality gap for proving optimality in the
case of a large number of subcarriers, our computational experience with larger
numbers of subcarriers suggests that the proposed algorithm is just as capable of
finding the same solution as the dual decomposition based algorithm [21] (which
is asymptotically optimal when the number of carriers grows to ∞), even with
very few iterations.
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5 A distributed approach for WSRMax in
cellular networks with multiple antennas

This chapter provides an alternative distributed algorithm for the WSRMax
problem in a multicell MISO downlink system, which does not rely on ZF
beamforming or high SINR approximation. Our proposed method is based on
primal decomposition methods and subgradient methods [189, 192]. Specifically,
we first apply primal decomposition techniques [189] to split the problem into
many subproblems and a master problem. The subproblems can be carried out
independently, in parallel (one for each BS). Each BS optimizes locally the decision
variables associated with its assigned users, i.e., transmit beamforming directions
and transmit powers of each beam. Here we adopt an ascent algorithm originally
proposed in [15, Sec. 4.3], which is based on second-order cone programming
(SOCP) [193] and GP. The master problem resolves the out-of-cell interference
levels, which are the complicating variables of the original WSRMax problem.
Here we adopt a sequential convex approximation strategy [182] together with
a subgradient method [192], which is carried out via BS coordination. We
compare the proposed algorithm with the optimal branch and bound method
proposed in [88] and the centralized one proposed in [15, Sec. 4.3]. The numerical
results show that significant gains can be achieved by only a small amount of
BS coordination. Of course, the global optimality of the solution cannot be
guaranteed due to the nonconvexity of the original WSRMax problem.

5.1 System model and problem formulation

A multicell MISO downlink system, with N BSs, each equipped with T transmit
antennas, is considered. The set of all BSs is denoted by N and we label them
with the integer values n = 1, . . . , N . The transmission region of each BS is
modeled as a disc with radius RBS centered at the location of the BS. A single
data stream is transmitted for each user. We denote the set of all data streams
in the system by L and label them with the integer values l = 1, . . . , L. The
transmitter node (i.e., the BS) of the lth data stream is denoted by tran(l)

and the receiver node of the lth data stream is denoted by rec(l). We have
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L = ∪n∈NL(n), where L(n) denotes the set of data streams transmitted by the
nth BS. Note that the users of the data streams transmitted by each BS are
necessarily located inside the transmission region of the BS (see Figure 5.1).

The antenna signal vector transmitted by the nth BS is given by

xn =
∑
l∈L(n)

√
plslvl , (5.1)

where pl ∈ IR+, sl ∈C, and vl ∈CT represent the power, the information symbol,
and the transmit beamformer associated with the lth data stream. We assume
that sl and vl are normalized such that E|sl|2 = 1 and ‖vl‖2 = 1. Moreover, we
assume independent data streams, i.e., E{sls∗j} = 0 for all l, j ∈ L, where l 6= j.

The signal received at rec(l) is given by

yl = hH
ll

√
plslvl +

∑
j∈L(tran(l)),j 6=l

hH
jl
√
pjsjvj +

∑
j∈L\L(tran(l))

hH
jl
√
pjsjvj + zl (5.2)

= hH
ll

√
plslvl +

∑
j∈L(tran(l)),j 6=l

hH
jl
√
pjsjvj +

∑
i∈N\{tran(l)}

∑
j∈L(i)

hH
jl
√
pjsjvj + zl ,

(5.3)

where hH
jl ∈C1×T is the channel matrix between tran(j) and rec(l), and zl is

circular symmetric complex Gaussian noise with variance σ2
l . Note that the

second term in (5.3) represents the intra-cell interference and the third term
represents the out-of-cell interference. The received SINR of the lth data stream
is given by

γl =
pl|hH

llvl|2

σ2
l +

∑
j∈L(tran(l)),j 6=l

pj |hH
llvj |2 +

∑
i∈N\{tran(l)}

wil
, (5.4)

where wil =
∑
j∈L(i) pj |hH

jlvj |2, which represents the out-of-cell interference
power from the ith BS to rec(l).

The out-of-cell interference term in (5.4)
(
i.e.,

∑
i∈N\{tran(l)} wil

)
prevents

resource allocation (or RA) on an intra-cell basis and demands centralized RA
methods. To facilitate potential distributed algorithms for RA, we make the
following assumption: transmissions from the ith BS do interfere with the
lth data stream transmitted by BS n 6= i, if the distance between the ith BS
and rec(l) is smaller than the threshold Rint

19. The disc with the radius Rint

centered at the location of any BS is referred to as the interference region of the
19Similar assumptions are made in [194] in the context of arbitrary wireless networks.
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regions of each BS.

BS (see Figure 5.1). Thus, if the ith BS is located at a distance larger than Rint

to rec(l), then the associated wil components are set to zero 20. Based on the
assumption above, we can express γl as

γl =
pl|hH

llvl|2

σ2
l +

∑
j∈L(tran(l)),j 6=l

pj |hH
llvj |2 +

∑
i∈Nint(l)

wil
, (5.5)

where Nint(l) ⊆ N \ {tran(l)} is the set of out-of-cell interfering BSs that are
located at a distance less than Rint to rec(l). For example, in Figure 5.1 we
have Nint(9) = {1}, Nint(12) = {2}, Nint(6) = {1, 3}, and Nint(l) = ∅ for all
l ∈ L \ {6, 9, 12}. Finally, it is useful to define the set Lint of data streams that
are subject to out-of-cell interference, i.e., Lint = {l | l ∈ L,Nint(l) 6= ∅}. For
example, in Figure 5.1 we have Lint = {6, 9, 12}.

Let βl be an arbitrary positive weight associated with the lth data stream.
We consider the case where all receivers are using singleuser detection (i.e., a
receiver decodes its intended signal by treating all other interfering signals as
noise). Assuming that the power allocation is subject to a maximum power
constraint

∑
l∈L(n) pl||vl||2 ≤ pmax

n for each BS n ∈ N , the problem of WSRMax
can be expressed as

20Setting certain wils to zero can be captured as a change in the statistical characteristics of
noise zl at rec(l). However, those issues are extraneous to the main focus of this chapter.

155



maximize
∑
n∈N

∑
l∈L(n)

βl ln

1 +
pl|hH

llvl|2

σ2
l +

∑
j∈L(tran(l)),j 6=l

pj |hH
llvj |2 +

∑
i∈Nint(l)

wil


subject to wil =

∑
j∈L(i) pj |hH

jlvj |2, l ∈ Lint, i ∈ Nint(l)∑
l∈L(n) pl||vl||22 ≤ pmax

n , n ∈ N
||vl||2 = 1, pl ≥ 0, l ∈ L ,

(5.6)
where the variables are (pl,vl)∈L and (wil)∈Lint,i∈Nint(l). Here we assume natural
logarithm ln(·) instead of log(·) without loss of generality to simplify the
presentation.

5.2 Distributed algorithm derivation

In this section we derive a distributed algorithm for the WSRMax problem (5.6).
The proposed algorithm is based on primal decomposition methods and subgra-
dient methods. By treating out-of-cell interference powers (wil)l∈Lint,i∈Nint(l) as
complicating variables, we first break problem (5.6) into N subproblems (one for
each BS) and a master problem. In the case of the subproblems, the associated
variables are optimized by using SOCP and GP based approaches. In the case of
the master problem, we adopt a subgradient method to update the complicating
variables (wil)l∈Lint,i∈Nint(l) via subproblem coordination.

5.2.1 Primal decomposition

We start by first reformulating problem (5.6) as

minimize −
∑
n∈N

∑
l∈L(n)

βl ln

1+
pl|hH

llvl|2

σ2
l +

∑
j∈L(tran(l)),j 6=l

pj |hH
llvj |2+

∑
i∈Nint(l)

wil


subject to wil ≥

∑
j∈L(i) pj |hH

jlvj |2, l ∈ Lint, i ∈ Nint(l)∑
l∈L(n) pl||vl||22 ≤ pmax

n , n ∈ N
||vl||2 = 1, pl ≥ 0, l ∈ L ,

(5.7)
where the variables are (pl,vl)∈L and (wil)∈Lint,i∈Nint(l). Problem (5.6) and (5.7)
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are equivalent, since 1) function ln(·) is increasing and 2) the objective function
of problem (5.7) is increasing in wil, and therefore the first set of constraints
holds with equality at the optimal point.

Let Lint(n) denote the set of data streams for which base station n acts as
an out-of-cell interferer. In particular, Lint(n) = {l|l ∈ Lint, n ∈ Nint(l)}. By
noting that the sets {(l, i)|l ∈ Lint, i ∈ Nint(l)} and {(l, n)|n ∈ N , l ∈ Lint(n)}
are identical, we can rewrite the first inequality constraint of problem (5.7) as

wnl ≥
∑
j∈L(n) pj |hH

jlvj |2, n ∈ N , l ∈ Lint(n) . (5.8)

Now, we treat wnl as complicating variables and use primal decomposition
techniques to split problem (5.7) into N subproblems (one for each BS) and a
master problem. The nth subproblem maximizes the weighted sum rate of nth
BS by regarding wnl fixed, i.e.,

minimize −
∑
l∈L(n) βl ln

1 +
pl|hH

llvl|2
σ2
l +

∑
j∈L(n),j 6=l

pj |hH
llvj |2 +

∑
i∈Nint(l)

wil


subject to wnl ≥

∑
j∈L(n) pj |hH

jlvj |2, l ∈ Lint(n)∑
l∈L(n) pl||vl||22 ≤ pmax

n

||vl||2 = 1, pl ≥ 0, l ∈ L(n) ,

(5.9)
with the variable (pl,vl)∈L(n), while the master problem updates the complicating
variables (wnl)n∈N ,l∈Lint(n) to maximize the overall weighed sum rate [i.e., to
maximize the objective of problem (5.7)]. To express the master problem
compactly, let us denote the vector (wnl)n∈N ,l∈Lint(n) of out-of-cell interference
components by w and the optimal value of problem (5.9) by fn(w). The master
problem is given by

minimize
∑
n∈N fn (w)

subject to w � 0 ,
(5.10)

where the variable is w.

5.2.2 Subproblem: BS optimization

Each subproblem (5.9) should be solved to compute the objective value of the
master problem (5.10). However, note that problem (5.9) is NP-hard [23], and
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therefore we have to rely on approximations. In this section, we adopt the ascent
algorithm originally proposed in [15, Section 4.3] to find a suboptimal solution
to problem (5.9).

Let us first introduce auxiliary variables γl for all l ∈ L(n) and reformulate
problem (5.9) equivalently as

minimize −
∑
l∈L(n) βl ln(1 + γl)

subject to γl ≤
pl|hH

llvl|2
σ2
l +

∑
j∈L(n),j 6=l

pj |hH
llvj |2 +

∑
i∈Nint(l)

wil
, l ∈ L(n)

wnl ≥
∑
j∈L(n) pj |hH

jlvj |2, l ∈ Lint(n)∑
l∈L(n) pl||vl||22 ≤ pmax

n

||vl||2 = 1, pl ≥ 0, l ∈ L(n) ,

(5.11)

where the variable is (pl, γl,vl)∈L(n). The equivalence of problem (5.9) and
(5.11) follows since the objective function of problem (5.11) is decreasing in γl,
and therefore the first set of constraints holds with equality at the optimal point.

Particularized to our problem (5.11), the method proposed in [15, Section 4.3]
is adopted to obtain the following algorithm, which yields a suboptimal solution
for problem (5.11) [see Figure 5.2(a)].

Algorithm 5.1. Finding a suboptimal solution for BS optimization (5.11)

1. Initialization; given an initial beamformer configuration
(
v

(0)
l

)
∈L(n)

and an

initial power allocation
(
p

(0)
l

)
l∈L(n)

. Set iteration index i = 0.
2. Compute γ̂l for all l ∈ L(n) as follows:

γ̂l =
p

(i)
l |hH

llv
(i)
l |2

σ2
l +

∑
j∈L(n),j 6=l

p
(i)
j |h

H
llv

(i)
j |

2+
∑

m∈Nint(l)

wml
.

3. By fixing vl = v
(i)
l for all l ∈ L(n), solve the following problem for the
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variable (pl, γl)l∈L(n):

minimize
∏
l∈L(n)

(
γ̂
−γ̂l/(1+γ̂l)
l (1 + γ̂l)

)−βl∏
l∈L(n) γl

−βl
γ̂l

1+γ̂l

subject to γl ≤
pl|hH

llvl|2
σ2
l +

∑
j∈L(n),j 6=l

pj |hH
llvj |2 +

∑
m∈Nint(l)

wml
, l ∈ L(n)

wnl ≥
∑
j∈L(n) pj |hH

jlvj |2, l ∈ Lint(n)∑
l∈L(n) pl ≤ pmax

n

pl ≥ 0, l ∈ L(n) .

(5.12)
Denote the solution by (p?l , γ

?
l )l∈L(n).

4. Stopping criterion; if the stopping criterion is satisfied STOP by returning the
suboptimal solution (p̃l, γ̃l, ṽl)l∈L(n), where p̃l = p?l , γ̃l = γ?l , and ṽl = v

(i)
l .

Otherwise, update the achieved SINR values γtmp
l = γ?l for all l ∈ L(n).

5. By fixing γl = γtmp
l for all l ∈ L(n), solve the following problem for the

variables (pl,vl)l∈L(n) and t:

minimize t

subject to γl ≤
pl|hH

llvl|2
σ2
l +

∑
j∈L(n),j 6=l

pj |hH
llvj |2 +

∑
m∈Nint(l)

wml
, l ∈ L(n)

t2wnl ≥
∑
j∈L(n) pj |hH

jlvj |2, l ∈ Lint(n)∑
l∈L(n) pl||vl||22 ≤ t2pmax

n

||vl||2 = 1, pl ≥ 0, l ∈ L(n) .

(5.13)
Denote the solution by (p?l ,v

?
l )l∈L(n) and t?. Update p

(i+1)
l = p?l /(t

?)2 and
v

(i+1)
l = v?l for all l ∈ L(n). Set i = i+ 1 and go to step 2.

The block diagram shown in Figure 5.2(a) summarizes Algorithm 5.1. The
first step initializes the algorithm. The second step computes a feasible (γl)l∈L(n)

for problem (5.11), which is given by (γ̂l)l∈L(n). The point (γ̂l)l∈L(n) is used
in step 3 to obtain an approximated variant of problem (5.11). In particular,
the objective of (5.11) is replaced by using an upper bound function 21 and the

21From Lemma 3.1 we can readily obtain −
∑
l∈L(n) βl ln(1 + γl) = ln

∏
l∈L(n)(1 + γl)

−βl ≤

ln
∏
l∈L(n)

(
γ̂
−γ̂l/(1+γ̂l)
l (1 + γ̂l)

)−βl ∏
l∈L(n) γl

−βl
γ̂l

1+γ̂l for all (γl > 0)l∈L(n), where γ̂ls are
arbitrary positive numbers. In the objective function of problem (5.12), the natural logarithm
‘ln’ has been safely dropped since ln(·) is an increasing function.
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BS optimization:
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BS optimization:

objective 
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BS optimization:

GP

BS optimization:

SOCP

YES

Step 1

NO

Stopping criterion
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Step 5

STOP

Step 4

(a) Algorithm 5.1

loop 2

loop 1

Step 3

Objective is 
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this point

Step 2-(a)

Algorithm initialization

BS optimization:

objective 

approximation

BS optimization:

GP

BS optimization:

SOCP

YES

Step 1

NO

F
Subgradient 

method

Per BS stopping 
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Step 2-(b)

Step 2-(c)

Step 2-(d)

(b) Algorithm 5.2

Fig 5.2. Block diagrams of the proposed algorithms.

optimization is carried out with respect to a subset of variables (pl, γl)l∈L(n)

by considering the others, i.e., (vl)l∈L(n) fixed. Note that problem (5.12) can
easily be posed as a GP. Step 4 checks a stopping criterion. The algorithm
terminates if the stopping criterion is satisfied. Otherwise, step 5 is carried out,
where the beamformer directions (vl)l∈L(n), as well as the power allocated to
beamformers (pl)l∈L(n) are optimized to compute a power margin t? at the BS
such that (γl)l∈L(n) is preserved. Indeed, problem (5.13) can be equivalently
formulated as a SOCP (see [15, Section 4.3]), i.e.,

minimize t

subject to


√

1 + 1
γl

hH
llml

MH
nhll√

σ2
l +

∑
i∈Nint(l)

wil

 �SOC 0, l ∈ L(n)

[
t
√
wnl

MH
nhlnl

]
�SOC 0, l ∈ Lint(n)[

t
√
pmax
n

vec
(
Mn

) ] �SOC 0 ,

(5.14)

where the variables are Mn = [ml]l∈L(n) and t, the notation �SOC denotes the
generalized inequality with respect to the second-order cone [3, Section 2.2.3],
and ln is any arbitrary data stream such that ln ∈ L(n). The solution of
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problem (5.14) [m?
l ]l∈L(n) is used to recover the solution of problem (5.13) as

follows: v?l = m?
l /||m?

l ||2, p?l = ||m?
l ||22.

Algorithm 5.1 is a descent algorithm as discussed in [15, Section 4.3]. Note
that we have considered (− WSR) in problem (5.11), and therefore the algorithm
is descending. Of course, the value of WSR is ascending. We refer the reader
to [15] for more details since the main focus of this chapter is to find a distributed
algorithm for the original problem (5.6) [or problem (5.7)].

5.2.3 Master problem

Recall that computing the objective value of the master problem (5.10) requires
the solution of each subproblem (5.9) that is NP-hard [23]. Moreover, even
if we were able to solve the subproblems, we cannot directly apply standard
subgradient methods to solve the master problem (5.10) since it is not convex. To
handle these difficulties, we develop a method that solves successive approximated
variants of the original master problem (5.10). Each approximated problem
can be transformed into a convex problem by a change of variables. Thus, a
subgradient method can be carried out to solve the resulting convex problem.
It is increasingly important to note that the approximations and variable
transformations mentioned above are such that we can always rely on the
results of BS optimizations (see Section 5.2.2) to compute a subgradient for the
subgradient method. This allows the coordination of the BS optimizations to
find an approximate solution for the master problem (5.10), which resolves the
out-of-cell interference.

We start by approximating the objective function of problem (5.10) from an
upper bound function, which in turn is used to obtain an approximation of the
master problem. We refer to the resulting approximation as the approximated
master problem. Next, we derive an equivalent convex form of the approximated
master problem, followed by the subgradient methods to solve it.

Derivation of an upper bound function for the master objective

To simplify the presentation, we first define two sets H and Ȟ, where H is the
feasible set of problem (5.11) and Ȟ is a set such that Ȟ ⊂ H. In particular, H
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is given by

H=


(pl, γl,vl)l∈L(n)

∣∣∣∣∣∣∣∣∣∣∣∣∣

γl≤
pl|hH

llvl|2
σ2
l +

∑
j∈L(n),j 6=l

pj |hH
llvj |2 +

∑
i∈Nint(l)

wil
, l ∈ L(n)

wnl≥
∑
j∈L(n) pj |hH

jlvj |2, l ∈ Lint(n)∑
l∈L(n) pl||vl||22 ≤ pmax

n

||vl||2 = 1, pl ≥ 0, l ∈ L(n)


.

(5.15)
By fixing vl = v̌l in (5.15), we obtain the subset Ȟ of H. More specifically,

Ȟ=


(pl, γl)l∈L(n)

∣∣∣∣∣∣∣∣∣∣∣∣∣

γl ≤
pl|hH

ll v̌l|2
σ2
l +

∑
j∈L(n),j 6=l

pj |hH
ll v̌j |2 +

∑
i∈Nint(l)

wil
, l ∈ L(n)

wnl ≥
∑
j∈L(n) pj |hH

jlv̌j |2, l ∈ Lint(n)∑
l∈L(n) pl ≤ pmax

n

pl ≥ 0, l ∈ L(n)


.

(5.16)
Now we can write the following relations:

fn (w) = inf
(pl,γl,vl)l∈L(n)∈H

−
∑
l∈L(n) βl ln(1 + γl) (5.17)

≤ inf
(pl,γl)l∈L(n)∈Ȟ

−
∑
l∈L(n) βl ln(1 + γl) (5.18)

= inf
(pl,γl)l∈L(n)∈Ȟ

ln
(∏

l∈L(n)(1 + γl)
−βl
)

(5.19)

≤ inf
(pl,γl)l∈L(n)∈Ȟ

ln

(∏
l∈L(n)

(
γ̌
− γ̌l

1+γ̌l

l (1 + γ̌l) γl
− γ̌l

1+γ̌l

)−βl)
(5.20)

= ln

(
inf

(pl,γl)l∈L(n)∈Ȟ

∏
l∈L(n)

(
γ̌
− γ̌l

1+γ̌l

l (1 + γ̌l) γl
− γ̌l

1+γ̌l

)−βl
︸ ︷︷ ︸

f̌n(w)

)
(5.21)

= ln
(
f̌n (w)

)
. (5.22)

The first equality (5.17) follows from the definition of fn(z) and the equivalence
of problem (5.9) and (5.11), (5.18) follows since Ȟ ⊂ H, (5.19) follows trivially

by using the properties of ln(·) function, (5.20) follows since 1 + γl ≥ γ̌
− γ̌l

1+γ̌l

l (1 +

γ̌l)γl
− γ̌l

1+γ̌l , where γ̌l is an arbitrary positive number (see Lemma 3.1), (5.21)
follows since ln(·) is a nondecreasing function, and f̌n (w) is the optimal value of
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the following problem:

minimize
∏
l∈L(n)

(
γ̌
−γ̌l/(1+γ̌l)
l (1 + γ̌l)

)−βl∏
l∈L(n) γl

−βl
γ̌l

1+γ̌l

subject to (pl, γl)l∈L(n) ∈ Ȟ ,
(5.23)

where the variable is (pl, γl)l∈L(n). Note that problem (5.23) is equivalent to
problem (5.12) with (vl = v̌l)l∈L(n) and (γ̂l = γ̌l)l∈L(n).

From (5.17)-(5.22) we have fn (w) ≤ ln
(
f̌n (w)

)
, which holds for all n ∈ N .

Thus we have ∑
n∈N fn (w) ≤

∑
n∈N ln

(
f̌n (w)

)
, (5.24)

which gives an upper bound on the objective function of (5.10).

The approximated master problem and its convex form

The approximated master problem is obtained by replacing the objective function
of the original master problem (5.10) by the upper bound function given in
(5.24) and by replacing the constraint w � 0 with w � 0, i.e.,

minimize
∑
n∈N ln

(
f̌n (w)

)
subject to w � 0 ,

(5.25)

where the variable is w. It is worth noting that the approximated master
problem (5.25) still can allow ZF solutions (if any) by enforcing appropriate
elements of w to be arbitrarily close to zero.

Next, we note for later reference the problem obtained from (5.25) by using
the logarithmic change of variables w̄il = lnwil (so wil = ew̄il), i.e.,

minimize
∑
n∈N ln

(
f̌n
(
ew̄
))
, (5.26)

with the variable w̄ = {w̄il}l∈Lint,i∈Nint(l). Here we use the notation ey, where
y is a vector, to mean componentwise exponentiation: [ey]k = eyk . In the
sequel, we show that problem (5.26) is indeed a convex reformulation of the
approximated master problem (5.25).

To do this, we must show that the objective function of problem (5.26),
i.e.,

∑
n∈N ln

(
f̌n
(
ew̄
))

is convex in w̄. The convexity of
∑
n∈N ln

(
f̌n
(
ew̄
))

is
readily verified by considering the convex form of GP (5.23). To see this, we first
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restate GP (5.23) by explicitly characterizing its constrains, i.e.,

minimize
∏
l∈L(n)

(
γ̌
−γ̌l/(1+γ̌l)
l (1 + γ̌l)

)−βl∏
l∈L(n) γl

−βl
γ̌l

1+γ̌l

subject to γl ≤
pl|hH

ll v̌l|2
σ2
l +

∑
j∈L(n),j 6=l

pj |hH
ll v̌j |2 +

∑
i∈Nint(l)

wil
, l ∈ L(n) \ Llocal(n)

γl ≤
pl|hH

ll v̌l|2
σ2
l +

∑
j∈L(n),j 6=l

pj |hH
ll v̌j |2

, l ∈ Llocal(n)

wnl ≥
∑
j∈L(n) pj |hH

jlv̌j |2, l ∈ Lint(n)∑
l∈L(n) pl ≤ pmax

n

pl ≥ 0, l ∈ L(n) ,

(5.27)
where the variable is (pl, γl)l∈L(n) and Llocal(n) is the subset of data streams
transmitted by the nth BS, which are not interfered with by any out-of-cell
interference, i.e., Llocal(n) = {l | l ∈ L(n),Nint(l) = ∅}. Let us next obtain the
geometric program (5.27) in convex form by using the logarithmic change of
variables p̄l = ln pl, γ̄l = ln γl, and a logarithmic transformation of the objective
and constraint functions as follows:

minimize
∑
l∈L(n)

βlγ̌l
1 + γ̌l

γ̄l + ln

( ∏
l∈L(n)

(
γ̌
− γ̌l

1+γ̌l

l (1 + γ̌l)

)−βl)

subject to ln

(
g−1
ll e

γ̄l − p̄l(σ2
l +

∑
j∈L(n),j 6=l gjle

p̄j +
∑
i∈Nint(l)

wil
))
≤ 0,

l ∈ L(n) \ Llocal(n)

ln

(
g−1
ll e

γ̄l − p̄l(σ2
l +

∑
j∈L(n),j 6=l gjle

p̄j
))
≤ 0, l ∈ Llocal(n)

ln

(∑
j∈L(n) gjlw

−1
nl e

p̄j
)
≤ 0, l ∈ Lint(n)

ln

(∑
l∈L(n)(p

max
n )−1ep̄l

)
≤ 0 ,

(5.28)
where the variable is (p̄l, γ̄l)l∈L(n) and gjl = |hH

jlv̌j |2. Since the optimal value
of GP (5.27) is f̌n (w), the optimal value of the GP in its convex form (i.e.,
problem (5.28) above) is given by ln(f̌n (w)). Moreover, by setting w =

ew̄ in problem (5.28), we note the following: 1) the constraint functions of
problem (5.28) become jointly convex in (p̄l, γ̄l)l∈L(n) and w̄, 2) the optimal value
of problem (5.28) becomes ln

(
f̌n
(
ew̄
))
. Therefore, by applying [36, Lem. 1], we

conclude that ln
(
f̌n
(
ew̄
))

is convex in w̄. Consequently, the objective function
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of problem (5.26), i.e.,
∑
n∈N ln

(
f̌n
(
ew̄
))

becomes convex in w̄ as well.

Subgradient method to solve the convex form of the approximated
master problem

In this subsection, we derive the subgradient method for solving problem (5.26).
To do this, we need to find a subgradient of

∑
n∈N ln

(
f̌n
(
ew̄
))

at w̄.
A subgradient of

∑
n∈N ln

(
f̌n
(
ew̄
))

at w̄ is obtained as follows. For each
n ∈ N , solve problem (5.28) by fixing w = ew̄ and return a subgradient of
ln
(
f̌n
(
ew̄
))

at w̄. For a given n, let (dnil(w̄))l∈Lint,i∈Nint(l) denote the subgradient
of ln

(
f̌n
(
ew̄
))

at w̄. Thus, a subgradient of
∑
n∈N ln

(
f̌n
(
ew̄
))

at w̄ is simply
given by

∑
n∈N (dnil(w̄))l∈Lint,i∈Nint(l). The subgradient method for problem (5.26)

is given by [192]

w̄
(j+1)
il = w̄

(j)
il − θ

(j)∑
n∈N d

n
il

(
w̄(j)

)
, l ∈ Lint, i ∈ Nint(l) , (5.29)

where j is the current iteration index of the subgradient method and θ(j) ∈ IR+

is a step size. Let us next see the computation of dnil(w̄).
By applying [36, Lem. 1], dnil(w̄) for all l ∈ Lint, i ∈ Nint(l) is given by

dnil(w̄)=



λ?l
(
ew̄
)
ew̄il

σ2
l +
∑
j∈L(n),j 6=l gjle

p̄?j
(
ew̄
)
+
∑
m∈Nint(l)

ew̄ml

l ∈ L(n) \ Llocal(n),

i ∈ Nint(l)

−µ?l
(
ew̄
)

l ∈ Lint(n), i = n

0 otherwise ,

(5.30)
where (λ?l (w))l∈L(n)\Llocal(n) denotes the optimal Lagrange multipliers associated
with the first set of constraints of problem (5.28), (µ?l (w))l∈Lint(n) denotes the
optimal Lagrange multipliers associated with the third set of constraints of (5.28),
and (p̄?l (w), γ̄?l (w))l∈L(n) denotes the optimal solution of problem (5.28). Since
problem (5.28) and (5.27) are equivalent, we can further simplify (5.30) by
considering the optimal sensitivity values (see [5, Section 3.3]) and the solution
of problem (5.27) for w = ew̄, i.e.,

dnil(w̄)=


λ?l (w)wil

σ2
l +
∑
j∈L(n),j 6=l gjlp

?
j (w)+

∑
m∈Nint(l)

wml

l ∈ L(n) \ Llocal(n),

i ∈ Nint(l)

−µ?l (w) l ∈ Lint(n), i = n

0 otherwise ,

(5.31)
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where (λ?l (z))l∈L(n)\Llocal(n) is given by the optimal sensitivity values associated
with the first set of constraints of problem (5.27), (µ?l (z))l∈Lint(n) is given by the
optimal sensitivity values associated with the third set of constraints of (5.27),
and (p?l (z), γ?l (z))l∈L(n) is the optimal solution of problem (5.27).

Finally, we recall that problem (5.23) [and therefore (5.27)] is equivalent to
problem (5.12) with (vl = v̌l)l∈L(n) and (γ̂l = γ̌l)l∈L(n). This equivalence is very
important in deriving our distributed algorithm for WSRMax. In particular, the
subproblem solution method, i.e., Algorithm 5.1 for all n ∈ N can be coordinated
to find the subgradient

∑
n∈N (dnil(w̄))l∈Lint,i∈Nint(l), and therefore to solve the

convex form of the approximated master problem (5.26), as we will see in the
following section.

5.2.4 Distributed algorithm for WSRMax

In this section we blend the solution methods 1) Algorithm 5.1, which finds
a suboptimal solution to subproblem (5.9) (see Section 5.2.2) and 2) the sub-
gradient method, which solves an approximation of the master problem (5.10)
(see Section 5.2.3). The result is an algorithm, which solves a series of approxi-
mated variants of the original master problem (5.10) via a subgradient method.
Subgradients for the subgradient method are computed by coordinating the
subproblems or the BS optimizations. Note that each BS does not need to
reveal the entirety of its own subproblem during the BS coordination; only a
little communication is needed, and therefore the protocol between BSs can be
very light or thin. The main skeleton of the proposed distributed algorithm is
depicted in Figure 5.2(b). Note that the equivalence between problem (5.23) and
problem (5.12) allows a smooth integration of the subgradient method (5.29)
and Algorithm 5.1 in an iterative manner, as shown in Figure 5.2(b).

A graphical interpretation of the behavior of the proposed algorithm by using
the objective functions of the master problem (5.10) and the approximated master
problems of the form (5.25) are depicted in Figure 5.3. First, each BS n carries
out Algorithm 5.1 in parallel for a globally agreed out-of-cell interference w until
a stopping criterion is satisfied (see Figure 5.3). Once the stopping criterion
is satisfied, each BS has just solved a GP of the form (5.27); see step 2-(b) of
Figure 5.2(b). Then the results of the BS optimizations are collected via BS
coordination to carry out the subgradient method (5.29) for some approximated
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subgradient method (5.29)

BA

each BS n carries out Algorithm 5.1

each BS n carries out Algorithm 5.1

as long as per BS stopping criterion 

is not satisfied (or violated)

upper bound functions,                                   ;

each coresponds to an approximated master 

problem in convex form; see (5.26)

subgradient method (5.29) is 

carried out as long as per BS 

stopping criterion is satisfied

master problem         

objective, 

Fig 5.3. The behavior of Algorithm 5.2; the objective function of problem (5.10)
and (5.25) are shown in the domain of w̄.

master problem of the form (5.26). The subgradient method (5.29) is carried out
as long as the per BS stopping criterion is satisfied. This allows updating the
out-of-cell interference to a new value; see the change of w̄ from w̄1 to w̄2 in
Figure 5.3. Once the per BS stopping criterion is violated, each BS n can again
carry out Algorithm 5.1 in parallel for the new out-of-cell interference values of
w until the stopping criterion is satisfied. The process continues in an iterative
manner (see Figure 5.3). The detailed algorithm is as follows (see Figure 5.2(b)
for a concise block diagram).

Algorithm 5.2. Distributed algorithm for WSRMax

1. Initialization; given the globally agreed initial out-of-cell interference w, an
initial beamformer configuration

(
v

(0)
l

)
∈L(n)

, and an initial power allocation(
p

(0)
l

)
∈L(n)

. Set BS iteration index in = 0 for all n ∈ N .
2. For n = 1 to N

(a) Compute

γ̂l =
p

(in)
l |hH

llv
(in)
l |2

σ2
l +

∑
j∈L(n),j 6=l

p
(in)
j |h

H
llv

(in)
j |2+

∑
i∈Nint(l)

wil
, l ∈ L(n) .
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(b) By fixing vl = v
(in)
l for all l ∈ L(n), solve the following problem for the

variable (pl, γl)l∈L(n):

minimize
∏
l∈L(n)

(
γ̂
−γ̂l/(1+γ̂l)
l (1 + γ̂l)

)−βl∏
l∈L(n) γl

−βl
γ̂l

1+γ̂l

subject to γl≤
pl|hH

llvl|2
σ2
l +

∑
j∈L(n),j 6=l

pj |hH
llvj |2+

∑
i∈Nint(l)

wil
, l ∈ L(n) \ Llocal(n)

γl ≤
pl|hH

llvl|2
σ2
l +

∑
j∈L(n),j 6=l

pj |hH
llvj |2

, l ∈ Llocal(n)

wnl ≥
∑
j∈L(n) pj |hH

jlvj |2, l ∈ Lint(n)∑
l∈L(n) pl ≤ pmax

n

pl ≥ 0, l ∈ L(n) .

(5.32)
Denote the solution by (p?l (w), γ?l (w))l∈L(n).

(c) Per BS stopping criterion; if the stopping criterion is satisfied set (w̄il =

lnwil)l∈Lint,i∈Nint(l), return dnil(w̄) by using (λ?l (w))l∈L(n)\Llocal(n) and
(µ?l (w))l∈Lint(n), which correspond to the optimal sensitivity values of
the first and third constraints of problem (5.32), respectively, and go to
step 3. Otherwise, update achieved SINR values γtmp

l = γ?l (w) for all
l ∈ L(n) and set the subgradient iteration index j = 0.

(d) By fixing γl = γtmp
l for all l ∈ L(n), solve the following problem for the

variables (pl,vl)l∈L(n) and t:

minimize t

subject to γl ≤
pl|hH

llvl|2
σ2
l +

∑
j∈L(n),j 6=l

pj |hH
llvj |2 +

∑
i∈Nint(l)

wil
, l ∈ L(n)

t2wnl ≥
∑
j∈L(n) pj |hH

jlvj |2, l ∈ Lint(n)∑
l∈L(n) pl||vl||22 ≤ t2pmax

n

||vl||2 = 1, pl ≥ 0, l ∈ L(n) .

(5.33)
Denote the solution by (p?l ,v

?
l )l∈L(n) and t?n. Update p

(in+1)
l = p?l /(t

?
n)2

and v
(in+1)
l = v?l for all l ∈ L(n). Set in = in + 1 and go to step 2-(a).

3. Set w̄(j) = w̄. Carry out (5.29) to yield
(
w̄

(j+1)
il

)
l∈Lint,i∈Nint(l)

and update

the out-of-cell interference by setting w =
(
ew̄

(j+1)
il

)
l∈Lint,i∈Nint(l)

. Increment
subgradient iteration index j, i.e., set j = j + 1 and go to step 2-(b).
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time periods for which per BS 

stopping criterion is satisfied

signalling phase

data transmission phase

1 2

BS optimization windows :

time periods for which per BS 

stopping criterion is not satisfied

3

Initial signalling window :

used for Algorithm 5.2 

initialization

Fig 5.4. An example signalling frame structure.

The first step initializes Algorithm 5.2. Steps 2-(a) to 2-(d) represent the
per BS optimizations that can be carried out in a parallelized or decentralized
fashion by each BS as long as the per BS stopping criterion is violated. Note that
steps 2-(a) to 2-(d) of Algorithm 5.2 are analogous to steps 2 to 5 of Algorithm 5.1;
see Figure 5.2. In step 2-(c), once each BS has realized that the per BS stopping
criterion has been satisfied, BS coordination is initiated. For example each BS n
(∈ N ) computes its own dnil(w̄) and those parameters are exchanged between
BSs to carry out step 3. Step 3 is, of course, the subgradient method (5.29),
which in turn updates the global out-of-cell interference variable w. For clarity,
the solid-lined blocks in Figure 5.2(b) represent the steps that are carried out in
fully decentralized fashion and the dash-lined blocks represent the steps that are
carried out via BS coordination.

Figure 5.4 suggests a signalling strategy between BSs so that Algorithm 5.2
can be carried out in a decentralized fashion with backhaul message exchanges.
In particular, each BS’s transmissions are synchronized and the data transmission
phase of each BS is preceded by a signalling phase, in which the rate/power
allocation of each BS is determined via WSRMax; see Figure 5.4. The signalling
phase consists of three types of time slots called initial signalling window, BS
optimization window, and BS coordination window. The initial signalling window
is used for step 1 of Algorithm 5.2, i.e., the initialization step. The latter two
(i.e., BS optimization window and BS coordination window) are repeated until
the data transmission phase is reached, as shown in Figure 5.4. We define the
BS coordination windows to be the time periods for which the per BS stopping
criterion [see step 2-(c)] of Algorithm 5.2 is satisfied. Therefore, during any
BS coordination window, step 2(c), step 3, and step 2(b) of Algorithm 5.2 is
carried out repeatedly; see loop 2 of Figure 5.2(b). The BS optimization windows
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are defined to be the time periods for which the per BS stopping criterion is
violated or not satisfied. Therefore, during BS optimization windows, step 2(c),
step 2-(d), step 2-(a), and step 2(b) of Algorithm 5.2 are carried out repeatedly;
see loop 1 of Figure 5.2(b). Typically, we may assume that the time period
of any BS optimization window is significantly smaller compared to the time
period of any BS coordination window because of the following reasons: 1) the
extensive computational power available at BSs enabling the BS optimization to
be carried out very fast, 2) BS coordination requires backhaul message exchanges
between BSs, which in turn demand stringent time requirements.

5.3 Numerical examples

In this section we run our proposed Algorithm 5.2 (Section 5.2.4) in multiuser
multicell environments and the benefits due to different degrees of BS coordination
are numerically evaluated. As benchmarks, we consider the centralized suboptimal
algorithm proposed in [15, Section 4.3] and the optimal branch and bound
method proposed in [88].

Since the main goal of this section is to numerically evaluate the performance
of Algorithm 5.2, for simplicity, in our simulations we consider a slightly modified
signalling strategy compared to the one described at the end of Section 5.2.4;
see Figure 5.4. In particular, we assume that during any BS optimization
window shown in Figure 5.4, each BS carries out loop 1 [see Figure 5.2(b)] of
Algorithm 5.2 repeatedly only for a fixed JBS−opt number of iterations (instead
of for a fixed time period). Moreover, during any BS coordination window,
each BS coordinates to carry out loop 2 of Algorithm 5.2 repeatedly for a fixed
Jsubgrad number of iterations (instead of for a fixed time period). Note that in
either loop 1 or in loop 2 of Algorithm 5.2, step 2-(b) or the ‘BS optimization:
GP’ is always carried out; see Figure 5.2(b). Therefore, the overall iterations of
loop 1 and loop 2 in Algorithm 5.2 during the signalling phase can be determined
by the number of times that step 2-(b) is carried out. We refer to the combined
loop 1 and loop 2 iterations in Algorithm 5.2 as GP iterations for simplicity.

We consider an exponential path loss model, where the channel gains between
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BSs and users are given by

hij =

√(
dij
d0

)−η
cij , (5.34)

where dij is the distance from the transmitter of the ith data stream to the
receiver of jth data stream, d0 is the far field reference distance [176], η is the
path loss exponent, and cij ∈CT such that cij ∼ CN (0, I) (i.e., frequency-flat
fading with uncorrelated antennas). The first term of (5.34) represents the
path loss factor and the second term models Rayleigh small-scale fading. An
arbitrarily generated set Ć of fading coefficients where Ć = {cij | i, j ∈ L} is
referred to as a single fading realization. The variance of the noise is considered
equal for all data streams, i.e., σ2

l = N0 for all l ∈ L and the maximum power
constraint is assumed the same for all nodes, i.e., pmax

n = pmax
0 for all n ∈ N . We

define the SNR operating point at a distance d [distance units] as

SNR(d) =


pmax

0

N0
d ≤ d0

pmax
0

N0

(
d

d0

)−η
otherwise .

(5.35)

In all our simulations we set d0 = 1, η = 4, pmax
0 /N0 = 45 dB, SNR(Rint) = 0 dB,

where Rint is the radius of the interference region of each BS, and SNR(RBS) =

8 dB, where RBS is the radius of the transmission region of each BS.
In our simulations two multicell multiuser wireless cellular networks, as shown

in Figure 5.5 are considered. In the case of the first network [i.e., Figure 5.5(a)],
there are N = 2 BSs with T = 4 antennas at each one. The BSs are located such
that the distance between the two BSs is DBS = 1.5×RBS. In the case of the
second network [i.e., Figure 5.5(b)], there are N = 3 BSs with T = 4 antennas at
each one. Moreover, the BSs are located such that they form an equilateral
triangle and the distance between any two BSs is DBS = 1.5×RBS. There are 4

users per each BS located inside the transmission region of the BS. The locations
of users associated with BSs are arbitrarily chosen, as shown in Figure 5.5. A
single data stream is transmitted for each user.

To see the behavior of Algorithm 5.2, we first consider a nonfading case and
run the algorithm in both networks shown in Figure 5.5. Figure 5.6 shows the
objective value of problem (5.6) computed at point ‘F’ of Algorithm 5.2 [see
Figure 5.2(b)] in the case of the two considered networks for arbitrary generated
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Fig 5.5. (a) Multicell network 1, N = {1, 2}, L = {1, . . . , 8}, L(1) = {1, . . . , 4}, L(2) =

{5, . . . , 8}, Lint = {3, . . . , 7}; (b) Multicell network 2, N = {1, 2, 3}, L = {1, . . . , 12},
L(1) = {1, . . . , 4}, L(2) = {5, . . . , 8}, L(3) = {9, . . . , 12}, Lint = {1, 2, 4, 6, . . . , 11}.

fading realizations. Note that the X-axes of Figure 5.6 represent GP iterations,
i.e., combined loop 1 and loop 2 iterations in Algorithm 5.2. Plots are drawn for
the cases of JBS−opt = 15 and Jsubgrad = 1, 5, 10, 20, 50. Note that Jsubgrad is
a measure of the degree of BS coordination, e.g., Jsubgrad = j means that the
subgradient method is carried out j consecutive times during any BS coordination
window. The weights βl of each data stream are arbitrarily chosen from the
interval (0, 1]. In step 1 of Algorithm 5.2, the components of the initial out-of-cell
interference vector w are chosen on the order of noise variance N0. Moreover, the
initial beamformers

(
v

(0)
l

)
l∈L(n)

are randomly generated and a uniform initial

beamformer power allocation is chosen, i.e.,
(
p

(0)
l = pmax

0 /T
)
l∈L(n)

.
Let us first focus on the case of Jsubgrad = 1 in Figure 5.6(a) to describe

the behavior of the algorithm. Each solid circle on the curve represents the
subgradient iteration of Algorithm 5.2 carried out during BS coordination
windows [see loop 2 in Figure 5.2(b)]. The solid line segment of the curve,
starting at any circle represents BS optimizations performed in parallel during
the BS optimization windows [see loop 1 in Figure 5.2(b)]. Note that the BS
optimizations are always nondecreasing steps; nondecreasing because we have
plotted the positive WSR value instead of the negative value. The flattening of
the solid line segments means that BS optimizations cannot further improve
the system objective. Note that the subgradient method is not an ascent
algorithm [192] in general, and therefore it does not necessarily increase the
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Fig 5.6. Objective value versus GP iteration: (a) Multicell network 1; (b) Multicell
network 2.
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objective value. Of course, if one needs to obtain a monotonic algorithm, it is
achieved easily by keeping track of the best point found so far [192]. Results
show that BS coordination can resolve the out-of-cell interference (i.e., w) via
the subgradient method, which increases substantially the system objective
value. For example, before the very first subgradient iteration in BS coordination
window 1, the algorithm achieves 6.066 bits/sec/Hz and before the subgradient
iteration in BS coordination window 2, the algorithm achieves 6.6643 bits/sec/Hz.
Therefore, after the very first subgradient iteration in BS coordination window 1,
the overall system objective has been improved by more than 9.8% compared to
the noncoordinating case [see Figure 5.6(a)]. A 17% gain is achieved after the
subgradient iteration in the fifth BS coordination window [see Figure 5.6(a)]. As
a reference, we consider the overall system objective value achieved by using the
optimal branch and bound algorithm given in [88] and the centralized algorithm
proposed in [15, Section 4.3]. Results show that our proposed algorithm achieves
close to optimal solutions, even in a distributed manner, with a small amount
of BS coordination. For example, five BS coordinations, i.e., five subgradient
iterations yield 96% of the objective value obtained by the optimal branch and
bound algorithm [88] and the centralized method given in [15, Section 4.3].

Figure 5.6(a) further shows that the value of Jsubgrad, which parameterizes
the degree of BS coordination, has a significant impact on the overall system
objective value. It is interesting to note that a smaller number of consecutive
subgradient iterations (e.g., Jsubgrad = 1, 5) during any BS coordination window
can perform better compared to a larger number of consecutive subgradient
iterations (e.g., Jsubgrad = 20, 50). This behavior is very important in practice to
reduce significantly the backhaul message exchanges during any BS coordination
window (see Figure 5.4). We can intuitively explain the behavior by considering
the two points ‘A’ and ‘B’ in Figure 5.3. In particular, point ‘A’ corresponds to
a smaller Jsubgrad, where the (convex form) approximated master problem (5.26)
is solved to a low accuracy. Point ‘B’ corresponds to a larger Jsubgrad, where the
(convex form) approximated master problem is solved to a high accuracy. Of
course, point ‘B’ is better than point ‘A’ for the (convex form) approximated
master problem. But the accuracy of the solution is absolutely irrelevant as far
as the original master problem (5.10) is concerned; see the master objective
depicted in Figure 5.3. The main concern is to have a suggestive point for the
next approximation. Therefore, refining the approximation more often (which
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corresponds to a smaller Jsubgrad), rather than solving some approximated master
problem to a high accuracy (i.e., a larger Jsubgrad) is more beneficial.

Figure 5.6(b) shows the algorithm’s behavior in the case of network 2 in Fig-
ure 5.5(b). As a reference, here we consider only the centralized algorithm [15,
Section 4.3]. Note that the problem dimension in the case of network 2 is
substantially larger, and therefore the computational complexity of evaluating
the optimal value by using the branch and bound algorithm [88] is prohibitively
high. Results show that the behavior of Algorithm 5.2 is almost the same as
Figure 5.6(a). The network can yield substantial gains by carrying out a lower
number of subgradient iterations during any BS coordination window, i.e., less
backhaul message exchanges between BSs. For example, after the subgradient
iteration in the fifth BS coordination window, the overall system objective
value has been improved by 23% compared to the noncoordinating case [see
Figure 5.6(b)]. Moreover, 93% of the objective value given by the centralized
algorithm [15, Section 4.3] is achieved as well [see Figure 5.6(b)].

Next we present an example to show that our proposed distributed Algo-
rithm 5.2 can sometimes outperform the centralized algorithm given in [15,
Section 4.3]. Figure 5.7 shows the objective value of problem (5.6) computed at
point ‘F’ of Algorithm 5.2 in the case of network 1 and network 2 for some other
arbitrary generated fading realizations; see Figure 5.7(a) and 5.7(b), respectively.
The algorithm parameters are the same as in Figure 5.6 except for the fading
realizations. Note that Algorithm 5.2 outperforms the centralized one in the case
of both networks. This behavior is intuitively expected since both algorithms,
i.e., Algorithm 5.2 and the one given in [15, Section 4.3] are suboptimal methods
to problem (5.6), and therefore optimality is not guaranteed.

In order to see the average behavior of the proposed algorithm, finally, we
consider a fading case. We run Algorithm 5.2 for 500 fading realizations with
Jsubgrad = 1. Recall that the algorithm parameter Jsubgrad = 1 means that during
any BS coordination window only one subgradient iteration is carried out. The
average objective value of problem (5.6) achieved at point ‘F’ of Algorithm 5.2
[see Figure 5.2(b)] is computed before each BS coordination window.

Figure 5.8 shows the dependence of the average objective value on the
number of BS coordinations in the case of the considered network 1 and 2.
Note that any BS coordination represents a single BS coordination window or a
subgradient iteration since Jsubgrad = 1. Results show that the performance

175



20 40 60 80 100 120
10

10.5

11

11.5

12

12.5

13

13.5

14

14.5

 GP iterations

O
b

je
c
ti
v
e

 v
a

lu
e

 [
b

it
s
/s

e
c
/H

z
]

 

 

proposed Alg. 5.2, J
subgrad

 = 50

proposed Alg. 5.2, J
subgrad

 = 20

proposed Alg. 5.2, J
subgrad

 = 10

proposed Alg. 5.2, J
subgrad

 = 5

proposed Alg. 5.2, J
subgrad

 = 1

centralized alg. [15]

(a)

20 40 60 80 100 120
16

18

20

22

24

26

28

 GP iterations

O
b

je
c
ti
v
e

 v
a

lu
e

 [
b

it
s
/s

e
c
/H

z
]

 

 

proposed Alg. 5.2, J
subgrad

 = 50

proposed Alg. 5.2, J
subgrad

 = 1

centralized alg. [15]

(b)

Fig 5.7. Objective value versus GP iteration: (a) Multicell network 1; (b) Multicell
network 2.
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Fig 5.8. Average objective value versus number of BS coordinations: (a) Multicell
network 1; (b) Multicell network 2.
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gains of the proposed algorithm are very significant. For network 1, a more
than 12% improvement in the average objective value is achieved within five BS
coordinations when compared to the noncoordinating case [see Figure 5.8(a)].
Moreover, the achieved average objective value in five BS coordinations is
around 99% of the value given by the centralized algorithm [15, Section 4.3].
For network 2, within five BS coordinations, a more than 24% improvement in
the average objective value is achieved when compared to the noncoordinating
case [see Figure 5.8(b)]. Moreover, the corresponding average objective value is
more than 94% of the value given by the considered centralized algorithm. Here
Algorithm 5.2 performs very closely to the centralized algorithm, but has not
outperformed the centralized one, as in the case of network 2 [see Figure 5.8(a)].
This is intuitively expected for the following reasons. The larger the number of
BSs, the larger the amount of out-of-cell interference coupling between BSs.
Therefore, a centralized approach, of course, can resolve the interference coupling
more reliably.

5.4 Summary and discussion

We considered the WSRMax problem in a multicell downlink system. Indeed,
the problem is NP-hard in general. A distributed algorithm based on primal
decomposition and subgradient methods has been derived to finds a suboptimal
solution to the problem. In particular, the main problem was split into many
subproblems (one for each BS) and a master problem. An ascent algorithm
based on second-order cone programming and geometric programming were
adopted in the case of subproblems, where the beamforming directions and the
beamforming powers of each BS are optimized for fixed out-of-cell interference
values in a fully decentralized fashion. The master problem resolves out-of-cell
interference values, which are the complicating variables of the main problem. A
sequential convex approximation strategy together with a subgradient method
were blended to tackle the master problem. The subgradient method relies on
subproblem coordinations (i.e., BS coordinations) to find a subgradient. Because
of the subgradient iterations, the overall algorithm is not necessarily an ascent
algorithm. Nevertheless, one can readily obtain an ascent algorithm by keeping
track of the best point found during the iterations of our proposed method.

Numerical results have been presented to see the benefits due to different
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degrees of BS coordination. Results showed that the proposed algorithm could
significantly improve the overall system objective value with a small amount of
BS coordination. In addition, we compared our proposed distributed algorithm
with an optimal branch and bound based method. The considered simulation
scenario indicated that our proposed algorithm can achieve WSR values, which
are substantially close to the optimal value. Since the computational complexity
of the optimal branch and bound based method was prohibitively expensive, we
considered a suboptimal centralized algorithm designed for the same problem
as another benchmark. The average behavior of the proposed algorithm has
been numerically compared with that of the centralized variant. Results showed
that for all considered network setups, more than 94% of the average objective
given by the centralized algorithm has been achieved by our proposed algorithm
within five BS coordinations.
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6 Conclusions and future work

In this chapter we first summarize the conclusions of this thesis, highlighting our
contributions and the main results. Finally, we highlight some future research
directions.

6.1 Conclusions

Radio resource management algorithms for wireless communication networks by
applying optimization techniques were investigated in this thesis. A greater
emphasis was placed on the general WSRMax problem, which is NP-hard;
it plays an important role in various problems of recent interest in wireless
communication, including NUM, cross-layer design, link scheduling, and many
others.

The first chapter was mainly intended to highlight the motivation for the
research and to review earlier and parallel work. In Chapter 2, a global
optimization approach based on the branch and bound technique was developed
to solve the nonconvex WSRMax problem with an optimality certificate. Efficient
analytic bounding methods were developed and their effect on the convergence of
the BB algorithm was analyzed numerically. Though the convergence speed was
dramatically increased by improving the lower bound, the benefits of improving
the upper bounding methods are imperceptible. This suggests that a grater
emphasis should be placed on exploring better lower bounding techniques. Unlike
other branch and bound based algorithms for WSRMax, our method does not
rely on the convertibility of the problem into a DC (difference of convex functions)
problem. Therefore, the proposed method applies to a broader class of WSRMax
problems (e.g., WSRMax in multicast wireless networks). More importantly, it
can tackle any system performance metric that can be expressed as a Lipschitz
continuous and increasing function of SINR values (not restricted to WSRMax).

The worst case complexity of the proposed BB algorithm increases exponen-
tially with the problem size for a given accuracy. Even a small-scale problems
(e.g., one with few tens of variables) can take a long time, and therefore such
global methods are applicable when the computing time requirements are not
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critical. This means that, in the case of wireless networks, where the computing
time is often crucial, the proposed global optimization method is hardly applica-
ble. However, it is indeed useful to provide performance benchmarks, e.g., for
evaluating the performance loss encountered by any suboptimal method for
WSRMax.

The link-interference model considered in Chapter 2 is very general; it can
accommodate a wide variety of network topologies. Moreover, the considered
link-interference model supports different node capabilities, including single- or
multipacket transmission, single- or multipacket reception, and many others.
Numerical examples of diverse application domains of WSRMax were presented
to demonstrate our proposed BB algorithm.

Fast, suboptimal algorithms for the WSRMax problem in general multi-
commodity, multichannel wireless networks were developed in Chapter 3. The
proposed algorithms were carried out within a general cross-layer utility maxi-
mization framework and the quantitative impact of gains that can be achieved
at the network layer in terms of end-to-end rates and network congestion was
numerically evaluated.

First, a general access operation with a relatively simple form of receivers
structure (a bank of match filters) was considered; a receiver decodes each
of its intended signals by treating all other interfering signals as noise. The
proposed algorithms were based on complementary geometric programming and
homotopy methods. The algorithm based on homotopy methods handled the self-
interference problem without combinatorial constraints to enforce simultaneous
transmissions and receptions in the same frequency band; thus the combinatorial
nature of the problem has been circumvented. Numerical results showed that
our algorithms could exploit the multichannel diversity via dynamic power
allocation across the available channels. It was interesting to see numerically
that they performed closely to the exponentially complex optimal BB algorithm.
The proposed methods also provide a mechanism, based on which the gains
achievable at the network layer could be evaluated when the network nodes
employ self interference cancelation techniques with different degrees of accuracy.
Numerical results showed that quantifiable gains at the network layer have been
achieved after a certain level of the self interference cancelation accuracy, e.g., a
self interference reduction in the range 20− 60dB led to significant gains at the
network layer.
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The latter part of Chapter 3 considered a case where all receivers perform
multiuser detection and the gains that can be achieved at the network layer were
numerically evaluated. The proposed solution methods here were obtained by
imposing additional constraints, such as that only one node can transmit to
others at a time or that only one node can receive from others at a time. The
main benefit of such constraints was the problem tractability and simplicity
of the solution methods. Consequently, these simple access protocols can be
potentially useful in practice with more advanced communication systems.

Note that all the algorithms purposed in Chapter 3 are reliant on the well
known interior-point methods. Therefore, the proposed algorithms are fast,
compared to the optimal BB algorithm proposed in Chapter 2 and they can
be deployed in relatively large-scale problems (e.g., one with few hundreds of
variables), which are not, of course, apparently handled by exponentially complex
optimal algorithms. However, to facilitate the use of the algorithms in real-time
applications further improvements in the efficiency are required. There are many
important issues and methods in linear algebra that can be used to improve
the efficiency of the proposed algorithms. For example, the structure of the
problem can be heavily exploited. We may assume in a wireless network that,
the problem variables (e.g., power and SINRs) are not fully coupled due to
exponential path losses. Such assumptions can result desirable sparsity patterns
in the involved problem data (e.g., sparse matrices), which in turn can greatly
affect the efficiency of the proposed methods.

In Chapter 4, the WSRMax problem in OFDMA downlink systems was
considered and a low-complexity suboptimal algorithm was developed. The
proposed algorithm was based on primal decomposition techniques and it jointly
optimizes the subcarrier and power allocation in the OFDMA downlink. The
algorithm is fast compared to the optimal exhaustive search based algorithms,
and numerical results showed that its performance results in close to optimal
solution, e.g., more than 90% of the time. It was interesting to see numerically
that the performance has been further increased by carrying out parallel instances
of the algorithm (with a different initialization point for each one). Numerical
results showed that the convergence of the proposed algorithm to a suboptimal
solution was possible within a small number of iterations, independent of the
number of subcarriers or users.

A distributed algorithm for WSRMax in the context of multiantenna multicell
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downlink systems was proposed in Chapter 5. The proposed method was based
on classical primal decomposition techniques and subgradient methods, where the
main problem was split into many subproblems (one for each BS) and a master
problem. A GP and a SOCP based ascent method was developed to tackle
the subproblems, where the BSs’ own decision variables, such as beamformers’
directions and power allocation, are locally optimized in a fully distributed
fashion. The BS optimizations, or the subproblems, are coordinated to find an
approximate solution for the master problem, where the out-of-cell interference
levels are resolved. In the case of the master problem, a sequential convex
approximation strategy, together with a subgradient method, have been adopted.
One obvious limitation of the proposed method is the use of single antenna
receivers instead of multiantennas, which can also be considered as multiantenna
receivers with fixed linear receivers. However, such limitations are desirable,
especially when producing low-complexity receivers.

Numerical examples showed that the proposed algorithm could significantly
improve the overall system objective value with a small amount of BS coordination.
Comparisons were made numerically between the proposed distributed algorithm
and the optimal BB algorithms. Simulation indicated that the proposed algorithm
could perform substantially close to the optimal BB based algorithm. Finally,
the average behavior of the proposed algorithm was numerically compared with
that of a centralized algorithm. Results showed that, more than 94% of the
average objective of the centralized algorithm could be achieved within five
BS coordinations. These observations are indeed favorable in the context of
large-scale practical communication systems; BS coordination can be carried out
with a small amount of backhaul message exchanges to determine distributively
the rate/power allocation of each BS before any data transmission phase.

6.2 Future work

Indeed, many problems of recent interest in wireless communication networks can
be posed in the framework of mathematical optimization. One important direction
of interest is radio resource management strategies for new cellular systems with
very small cells, such as femtos. To leverage the successful deployment of such
future cellular systems, efficient resource management solutions are increasingly
important. For example, new sophisticated protocols are to be investigated
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in order to enable the coordination between the entities macrocell-macrocell,
macrocell-femtocell, and femtocell-femtocell such that overall system performance
is improved. Due to the the emergence of large scale wireless networks, there
can be hundreds or thousands of femtocells deployed in future cellular systems.
Therefore, the scalability of the signalling protocols are central from a systems
perspective so that they can be implemented without explosion. In other words,
the protocols should be light or thin to reduce signalling overheads. Application
of mathematical optimization tools as a basis for such protocol designs is still
to be explored, e.g., classical optimization approaches such as mathematical
decomposition methods (pimal/dual decomposition), subgradient methods, and
more refined variants (with superior convergence properties), such as consensus
optimization via the alternating direction method of multipliers.

Another important direction yet to be investigated is the deployment of
self-interference cancellation electronics in future wireless networks. It seems that
the trend in certain future cellular systems is to enhance the system coverage by
introducing very small femtocells. Therefore, the difference between transmit and
received signal power levels of the nodes inside femtocells are not necessarily high.
These observations suggest that a moderate level of self-interference cancellation
carried out at a node can scale down the self-interference power to an acceptable
level so that its reception is uninterrupted. One other example in which such
self-interference cancellation mechanisms can potentially be useful is with relay
nodes. To facilitate such simultaneous transmissions and receptions sophisticated
transceivers that support realtime optimization and signal processing capabilities
are needed of course.

There are still many unsolved, but interesting problems in the context of
MIMO wireless networks. For example, the joint optimization of beamforming
patterns, transmit powers, and link activations to maximize a weighted sum of
achievable link rates in MIMO networks is still an open problem. Of course,
there are many local optimization methods, even though the optimality is
not guaranteed. But the problem is not yet solved globally. Therefore, it is
very important to seek global optimization methods, which act as performance
benchmarks for any local algorithm and provide a way of evaluating the
performance loss encountered by those local methods. Usually, not all the
problems we encounter in wireless communication networks are convex and
exponentially complex (worst case) global optimization methods are needed to
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find the solution. However, in practice, such global approaches are, of course,
not useful; fast computation of at least a suboptimal solution is highly desirable.
Therefore, seeking algorithms based on fast local optimization methods for
nonconvex problems are increasingly important. Sequential convex programming,
alternating convex optimization, and convex-concave procedure are some local
optimization methods that can be adopted for nonconvex optimization problems.
Distributed resource management, in the context of general MIMO wireless
networks, is another important and challenging problem, which has not been
investigated in literature. Due to the explosion of the size of wireless networks
and the network nodes’ limited knowledge of the overall problem data, distributed
resource management strategies are increasingly important from both practical
and theoretical perspectives.

186



References

1. Dahlman E, Parkvall S, Sköld J & Beming P (2007) 3G Evolution HSPA and LTE
for Mobile Broadband. Academic Press is an imprint of Elsevier, San Diego, CA.

2. Lu WW (2002) Broadband Wireless Mobile: 3G and Beyond. John Wiley & Sons
Ltd, West Sussex, England.

3. Boyd S & Vandenberghe L (2004) Convex Optimization. Cambridge University
Press, Cambridge, UK.

4. Boyd S, Parikh N, Chu E, Peleato B & Eckstein J (2010) Distributed optimization
and statistical learning via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning 3(1): 1–122.

5. Boyd S, Kim SJ, Vandenberghe L & Hassibi A (2007) A tutorial on geometric
programming. Optimization and Engineering 8(1): 67–127.

6. Boyd S (2007) Convex optimization I. [Online]. Available: http://www.stanford.
edu/class/ee364a/.

7. Boyd S (2007) Convex optimization II. [Online]. Available: http://www.stanford.
edu/class/ee364b/.

8. Boyd S & Vandenberghe L (2010) Additional exercises for convex optimization. [On-
line]. Available: http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook_extra_
exercises.pdf.

9. Tse D & Viswanath P (2005) Fundamentals of Wireless Communication. Cambridge
University Press, Cambridge, UK.

10. Goldsmith A (2005) Wireless Communications. Cambridge University Press, New
York, USA.

11. Starr T, Sorbara M, Cioffi J & Silverman PJ (2003) DSL Advances. Prentice-Hall,
Upper Saddle River, NJ 07458.

12. Tassiulas L & Ephremides A (1992) Stability properties of constrained queueing
systems and scheduling policies for maximum throughput in multihop radio
networks. IEEE Trans. Automat. Contr. 37(12): 1936–1949.

13. Yu W (2002) Competition and cooperation in multi-user communication environ-
ments. Ph.D. thesis, Department of Electrical Engineering, Stanford University,
CA, USA. [Online]. Available: http://www.comm.utoronto.ca/~weiyu/thesis_
2.pdf.

14. Palomar DP (2003) A unified framework for communications through MIMO
channels. Ph.D. thesis, Department of Signal Theory and Communications,
Technical University of Catalonia, Barcelona, Spain.

15. Codreanu M (2007) Multidimensional Adaptive Radio Links for Broadband
Communications. Ph.D. thesis, Centre for Wireless Communications, University
of Oulu. Acta Universitatis Ouluensis, Oulu, Finland. [Online]. Available: http:
//herkules.oulu.fi/isbn9789514286223.

16. Neely MJ (2003) Dynamic power allocation and routing for satellite and wireless
networks with time varying channels. Ph.D. thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology,
Cambridge, MA.

187



17. Georgiadis L, Neely MJ & Tassiulas L (2006) Resource allocation and cross-layer
control in wireless networks. Found. Trends Net. 1(1): 1–144.

18. Neely MJ (2010) Stochastic Network Optimization with Application to Communi-
cation and Queueing Systems, volume 7 of Synthesis Lectures on Communication
Networks. Morgan & Claypool, San Rafael, CA.

19. Palomar DP & Chiang M (2006) A tutorial on decomposition methods for network
utility maximization. IEEE J. Select. Areas Commun. 24(8): 1439–1451.

20. Hoo LMC, Halder B, Tellado J & Cioffi M (2004) Multi user transmit optimization
for multiuser broadcast channels: Asymptotic FDMA capacity region and
algorithms. IEEE Trans. Commun. 52(6): 922–930.

21. Seong K, Mohseni M & Cioffi M (2006) Optimal resource allocation for OFDMA
downlink systems. In: Proc. IEEE Int. Symp. Inform. Theory, pp. 1394–1398.
Seattle, USA.

22. Luo ZQ & YuW (2006) An introduction to convex optimization for communications
and signal processing. IEEE J. Select. Areas Commun. 24(8): 1426–1438.

23. Luo Z & Zhang S (2008) Dynamic spectrum management: Complexity and duality.
IEEE J. Select. Areas Commun. 2(1): 57–73.

24. Horst R, Pardolos P & Thoai N (2000) Introdiction to Global Optimization,
volume 48. Kluwer Academic Publishers, Dordrecht, Boston, London, second
edition.

25. Audet C, Hansen P & Savard G (2005) Essays and Surveys in Global Optimization.
Springer Science + Business Media, Inc, 233 Spring street, NY 10013, USA.

26. Nelson R & Kleinrock L (1985) Spatial TDMA: Collision-free multihop channel
access protocol. IEEE Trans. Commun. 33(9): 934–944.

27. Kelly FP, Maulloo A & Tan D (1998) Rate control for communication networks:
Shadow prices, proportional fairness, and stability. J. Op. Research Soc. 49:
237–252.

28. Kelly FP (1997) Charging and rate control for elastic traffic. European Trans.
Telecommun. 8: 33–37.

29. Chiang M, Low SH, Calderbank AR & Doyle JC (2006) Layering as optimization
decomposition: Framework and examples. In: Proc. IEEE Inform. Theory
Workshop, pp. 52–56. Punta del Este, Uruguay.

30. Chiang M, Low SH, Calderbank AR & Doyle JC (2006) Layering as optimization
decomposition: Current status and open issues. In: Proc. IEEE Int. Conf. Inf. Sci.
and Sys., pp. 355–362.

31. Chiang M, Low SH, Calderbank AR & Doyle JC (2006) Layering as optimization
decomposition: Questions and answers. In: Proc. IEEE Military Commun. Conf.,
pp. 1–10. Washington, DC, USA.

32. Stolyar AL (2005) Maximizing queueing network utility subject to stability:
Greedy primal-dual algorithm. Que. Sys. 50(4): 401–457.

33. Chiang M & Bell J (2004) Balancing supply and demand of bandwidth in wireless
cellular networks: Utility maximization over powers and rates. In: Proc. IEEE
INFOCOM, volume 4, pp. 2800–2811. Hong Kong.

34. Chiang M (2005) Balancing transport and physical layers in wireless multihop
networks: Jointly optimal congestion control and power control. IEEE J. Select.
Areas Commun. 23(1): 104–116.

188



35. Johansson B, Soldati P & Johansson M (2006) Mathematical decomposition
techniques for distributed cross-layer optimization of data networks. IEEE J.
Select. Areas Commun. 24(8): 1535–1547.

36. Palomar DP & Chiang M (2007) Alternative distributed algorithms for network
utility maximization: Framework and applications. IEEE Trans. Automat. Contr.
52(12): 2254–2269.

37. Chiang M, Low SH, Calderbank AR & Doyle JC (2007) Layering as optimization
decomposition: A mathematical theory of network architectures. Proceedings of
the IEEE 95(1): 255–312.

38. Lin X & Shroff NB (2004) Joint rate control and scheduling in multihop wireless
networks. Tech. rep., Purdue University. [Online]. Available: http://cobweb.ecn.
purdue.edu/~linx/papers.html.

39. Lin X & Shroff NB (2004) Joint rate control and scheduling in multihop wireless
networks. In: Proc. IEEE Int. Conf. Dec. and Cont., volume 5, pp. 1484–1489.
Atlantis, Paradise Island, Bahamas.

40. Lin X & Shroff NB (2005) The impact of imperfect scheduling on cross-layer
rate control in wireless networks. In: Proc. IEEE INFOCOM, volume 3, pp.
1804–1814. Miami, USA.

41. Neely MJ, Modiano E & Rohrs CE (2005) Dynamic power allocation and routing
for time varying wireless networks. IEEE J. Select. Areas Commun. 23(1): 89–103.

42. Neely MJ (2006) Super-fast delay tradeoffs for utility optimal fair scheduling in
wireless networks. IEEE J. Select. Areas Commun. 24(8): 1–12.

43. Lin X, Shroff NB & Srikant R (2006) A tutorial on cross-layer optimization in
wireless networks. IEEE J. Select. Areas Commun. 24(8): 1452–1463.

44. Neely MJ, Modiano E & Li C (2008) Fairness and optimal stochastic control for
heterogeneous networks. IEEE/ACM Trans. Networking 16(2): 396–409.

45. Yi Y & Chiang M (2008) Stochastic network utility maximization: A tribute to
Kelly’s paper published in this journal a decade ago. European Trans. Telecommun.
19(4): 421–442.

46. Eryilmaz A & Srikant R (2006) Joint congestion control, routing and MAC for
stability and fairness in wireless networks. IEEE J. Select. Areas Commun. 24(8):
1514–1524.

47. Eryilmaz A & Srikant R (2007) Fair resource allocation in wireless networks
using queue-length-based scheduling and congestion control. IEEE/ACM Trans.
Networking 15(6): 1333–1344.

48. Pantelidou A & Ephremides A (2009) A cross-layer view of wireless multicasting
under uncertainty. In: Proc. IEEE Inform. Theory Workshop, pp. 110–114. Volos,
Greece.

49. Tassiulas L & Ephremides A (1993) Dynamic server allocation to parallel queues
with randomly varying connectivity. IEEE Trans. Inform. Theory 39(2): 466–478.

50. Eryilmaz A, Srikant R & Perkins JR (2005) Stable scheduling policies for fading
wireless channels. IEEE/ACM Trans. Networking 13(2): 411–424.

51. Wu X & Srikant R (2005) Regulated maximal matching: A distributed scheduling
algorithm for multi-hop wireless networkswith node-exclusive spectrum sharing.
In: Proc. IEEE Conf. on Decision and Cont., and the Europ. Cont. Conf., pp.
5342–5347. Seville, Spain.

189



52. Neely MJ, Modiano E & Rohrs CE (2003) Power allocation and routing in
multibeam satellites with time-varying channels. IEEE/ACM Trans. Networking
11(1): 138–152.

53. Sharma G, Mazumdar RR & Shroff NB (2006) On the complexity of scheduling
in wireless networks. In: Proc. ACM int. conf. on Mobile comp. and net., pp.
227–238. Los Angeles, CA, USA.

54. Papadimitriou CH & Steiglitz K (1982) Combinatorial Optimization: Algorithms
and Complexity. Prentice-Hall, Englewood Cliffs New Jersey.

55. Cendrillon R, Yu W, Moonen M, Verlinden J & Bostoen T (2006) Optimal
multiuser spectrum balancing for digital subscriber lines. IEEE Trans. Commun.
54(5): 922–933.

56. Xu Y, Panigrahi S & Le-Ngoc T (2006) A concave minimization approach to
dynamic spectrum management for digital subscriber lines. In: Proc. IEEE Int.
Conf. Commun., pp. 84–89. Istanbul, Turkey.

57. Xu Y, Le-Ngoc T & Panigrahi S (2008) Global concave minimization for optimal
spectrum balancing in multi-user DSL networks. IEEE Trans. Signal Processing
56(7): 2875–2885.

58. Eriksson K (2010). Dynamic resource allocation in wireless networks. Exam-
ensarbete utfört i Kommunikationssystem vid Tekniska högskolan i Linköping.
[Online]. Available: http://liu.diva-portal.org/smash/get/diva2:326290/
FULLTEXT01.

59. Al-Shatri H & Weber T (2010) Optimizing power allocation in interference
channels using D.C. programming. In: Proc. Workshop on Resource Alloc. in
Wireless Net., pp. 367–373. Avignon, France.

60. Tsiaflakis P, Vangorp J, Moonen M & Verlinden J (2007) A low complexity optimal
spectrum balancing algorithm for digital subscriber lines. Els. Sig. Processing
87(7).

61. Tsiaflakis P, Tan W, Yi Y, Chiang M & Moonen M (2008) Optimality certificate
of dynamic spectrum management in multi-carrier interference channels. In: Proc.
IEEE Int. Symp. Inform. Theory, pp. 1298–1302. Toronto, Canada.

62. Qian L, Zhang YJA & Huang J (2009) MAPEL: Achieving global optimality for a
non-convex wireless power control problem. IEEE Trans. Wireless Commun. 8(3):
1553–1563.

63. Cendrillon R, Huang J, Chiang M & Moonen M (2007) Autonomous spectrum
balancing for digital subscriber lines. IEEE Trans. Signal Processing 55(8):
4241–4257.

64. Tsiaflakis P, Diehl M & Moonen M (2008) Distributed spectrum management
algorithms for multiuser DSL networks. IEEE Trans. Signal Processing 56(10):
4825–4843.

65. Lui R & Yu W (2005) Low-complexity near-optimal spectrum balancing for digital
subscriber lines. In: Proc. IEEE Int. Conf. Commun., pp. 1947–1951. Seoul,
Korea.

66. Papandriopoulos J & Evans S (2006) Low-complexity distributed algorithms
for spectrum balancing in multi-user DSL networks. In: Proc. IEEE Int. Conf.
Commun., pp. 3270–3275. Istanbul, Turkey.

67. Li G & Liu H (2005) On the optimality of the OFDMA networks. IEEE Commun.

190



Lett. 9(5): 438–440.
68. Jang J & Lee KB (2003) Transmit power adaptation for multiuser OFDM systems.

IEEE J. Select. Areas Commun. 21(2): 171–178.
69. Yu W & Cioffi M (2002) FDMA capacity of gaussian multiple-access channels

with ISI. IEEE Trans. Commun. 50(1): 102–111.
70. Bae C & Cho D (2007) Fairness-aware adaptive resource allocation scheme in

multihop OFDMA systems. IEEE Commun. Lett. 11(2): 134–136.
71. Shen Z, Andrews JG & Evans BL (2005) Adaptive resource allocation in multiuser

OFDM systems with proportional rate constraints. IEEE Trans. Wireless Commun.
4(6): 2726–2737.

72. Codreanu M, Tölli A, Juntti M & Latva-aho M (2007) Joint design of Tx-Rx
beamformers in MIMO downlink channel. IEEE Trans. Signal Processing 55(9):
4639–4655.

73. Tölli A, Codreanu M & Juntti M (2008) Cooperative MIMO-OFDM cellular
system with soft handover between distributed base station antennas. IEEE
Trans. Wireless Commun. 7(4): 1428–1440.

74. Shi S, Schubert M & Boche H (2007) Weighted sum-rate optimization for multiuser
MIMO systems. In: Proc. Conf. Inform. Sciences Syst. (CISS), pp. 425–430.
Baltimore, MD, USA.

75. Agarwal R & Cioffi JM (2008) Beamforming design for the MIMO downlink for
maximizing weighted sum-rate. In: Proc. IEEE Int. Symp. Inform. Theory and
its Applications, pp. 1–6. Auckland, New Zealand.

76. Zhang L, Xin Y, Liang YC & Poor HV (2009) Cognitive multiple access channels:
optimal power allocation for weighted sum rate maximization. IEEE Trans.
Commun. 57(9): 2754–2762.

77. Guthy C, Utschick W, Hunger R & Joham M (2010) Efficient weighted sum
rate maximization with linear precoding. IEEE Trans. Signal Processing 58(4):
2284–2297.

78. Christensen SS, Agarwal R, Carvalho E & Cioffi J (2008) Weighted sum-rate
maximization using weighted MMSE for MIMO-BC beamforming design. IEEE
Trans. Wireless Commun. 7(12): 4792–4799.

79. Vucic N, Shi S & Schubert M (2010) DC programming approach for resource
allocation in wireless networks. In: Proc. Workshop on Resource Alloc. in Wireless
Net., pp. 360–366. Avignon, France.

80. Stojnic M, Vikalo H & Hassibi B (2006) Rate maximization in multi-antenna
broadcast channels with linear preprocessing. IEEE Trans. Wireless Commun.
5(9): 2338 –2342.

81. Hanly SV & Tse DNC (1998) Multiaccess fading channels–Part II: Delay-limited
capacities. IEEE Trans. Inform. Theory 44(7): 2816–2831.

82. Boyd S (2007) Branch-and-bound methods. [Online]. Available: http://www.
stanford.edu/class/ee364b/lectures/bb_slides.pdf.

83. Weeraddana PC, Codreanu M, Latva-aho M & Ephremides A (2011) Weighted
sum-rate maximization for a set of interfering links via branch and bound. IEEE
Trans. Signal Processing 59(8): 3977–3996.

84. Joshi S, Weeraddana PC, Codreanu M & Latva-aho M (2011) Weighted sum-rate
maximization for MISO downlink cellular networks via branch and bound. IEEE

191



Trans. Signal Processing, submitted .
85. Weeraddana PC, Codreanu M, Latva-aho M & Ephremides A (2011) Optimal

maxweight scheduling in a multihop wireless network via branch and bound. In:
Proc. IEEE Int. Symp. Inform. Theory, pp. 2787–2791. Saint Petersburg, Russia.

86. Weeraddana PC, Codreanu M, Latva-aho M & Ephremides A (2010) Weighted
sum-rate maximization for a set of interfering links via branch and bound. In:
Proc. Annual Asilomar Conf. Signals, Syst., Comp. Pacific Grove, CA, USA.

87. Codreanu M, Weeraddana PC, Latva-Aho M & Ephremides A (2011) Weighted
sum-rate maximization in singlecast and multicast wireless networks - global
optimum via branch and bound. In: Proc. IEEE Int. Symp. Pers., Indoor, Mobile
Radio Commun., to appear. Toronto, Canada.

88. Joshi S, Weeraddana PC, Codreanu M & Latva-Aho M (2011) Weighted sum-rate
maximization for MISO downlink cellular networks via branch and bound. In:
Proc. Annual Asilomar Conf. Signals, Syst., Comp., to appear. Pacific Grove, CA,
USA. [Online]. Available: http://www.ee.oulu.fi/~chathu/Asilomar_Joshi_
2011.pdf.

89. Phuong NTH & Tuy H (2003) A unified monotonic approach to generalized linear
fractional programming pp. 229–259. Kluwer Academic Publishers.

90. Win MZ & Scholtz RA (2000) Ultra-wide bandwidth time-hopping spread-
spectrum impulse radio for wireless multiple-access communications. IEEE Trans.
Commun. 48(4): 679–691.

91. Radunovic B & Boudec JL (2004) Optimal power control, scheduling, and routing
in UWB networks. IEEE J. Select. Areas Commun. 22(7): 1252–1270.

92. Souilmi Y, Knopp R & Caire G (2003) Coding strategies for UWB interference-
limited peer-to-peer networks. In: Proc. Int. Symp. on Modelling and Opt. in
Mobile, Ad-hoc and Wireless Networks. INRIA Sophia-Antipolis, France.

93. Radunovic B & Boudec JL (2005) Power control is not required for wireless
networks in the linear regime. In: Proc. IEEE Int. Symp. World of Wireless,
Mobile and Mult. Networks, volume 5, pp. 417–427. Taormina, Giardini Naxos,
Italy.

94. Cruz RL & Santhanam AV (2003) Optimal routing, link scheduling and power
control in multi-hop wireless networks. In: Proc. IEEE INFOCOM, volume 1, pp.
702–711. San Diego, CA.

95. Oneill DC, Julian D & Boyd S (2004) Optimal routes and flows in congestion
constrained ad-hoc networks. In: Proc. IEEE Veh. Technol. Conf., pp. 702–711.
Los Angeles, CA.

96. Julian D, Chiang M, OŠNeil D, & Boyd S (2002) Qos and fairness constrained
convex optimization of resource allocation for wireless cellular and ad-hoc networks.
In: Proc. IEEE INFOCOM, volume 2, pp. 477–486. New York, USA.

97. Avriel M & Williams AC (1970) Complementary geometric programming. SIAM
J. Appl. Math. 19(1): 125–141.

98. Chiang M (2005) Geometric programming for communication systems 2(1-2):
1–154.

99. Chiang M, Tan CW, Palomar DP, O’Neill D & Julian D (2007) Power control by
geometric programming. IEEE Trans. Wireless Commun. 6(7): 2640–2651.

100. Matskani E, Sidiropoulos ND & Tassiulas L (2011) Convex approximation

192



algorithms for back-pressure power control of wireless multi-hop networks. In:
Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, pp. 3032–3035. Prague,
Czech Republic.

101. Weeraddana PC, Codreanu M & Latva-aho M (2009) Cross-layer resource
allocation for wireless networks via signomial programming. In: Proc. IEEE
Global Telecommun. Conf., pp. 1–6. Honolulu, Hawaii, USA.

102. Codreanu M, Weeraddana PC & Latva-aho M (2009) Cross-layer utility maxi-
mization subject to stability constraints for multi-channel wireless networks. In:
Proc. Annual Asilomar Conf. Signals, Syst., Comp., pp. 776–780. Pacific Grove,
CA, USA.

103. Weeraddana PC, Codreanu M & Latva-aho M (2009) On the advantages of using
multiuser receivers in wireless ad-hoc networks. In: Proc. IEEE Veh. Technol.
Conf., pp. 1–6. Anchorage, Alaska, USA.

104. Weeraddana PC, Codreanu M, Latva-aho M & Ephremides A (2010) On the effect
of self-interference cancelation in multihop wireless networks. EURASIP J. Wireless
Comm. and Netw. 2010, Article ID 513952, 10 pages. Doi:10.1155/2010/513952.

105. Weeraddana PC, Codreanu M, Latva-aho M & Ephremides A (2010) The benefits
from simultaneous transmission and reception in wireless networks. In: Proc.
IEEE Inform. Theory Workshop, pp. 1–5. Dublin, Ireland.

106. Hajek B & Sasaki G (1988) Link scheduling in polynomial time. IEEE Trans.
Inform. Theory 34(5): 910–917.

107. Borbash SA & Ephremides A (2006) The feasibility of matchings in a wireless
network. IEEE Trans. Inform. Theory 52(6): 2749 – 2755.

108. ElBatt T & Ephremides A (2004) Joint scheduling and power control for wireless
ad hoc networks. IEEE Trans. Wireless Commun. 3(1): 74 – 85.

109. Borbash SA & Ephremides A (2006) Wireless link scheduling with power control
and SINR constraints. IEEE Trans. Inform. Theory 52(11): 5106–5111.

110. Bui L, Eryilmaz A, Srikant R & Wu X (2008) Asynchronous congestion control in
multi-hop wireless networks with maximal matching-based scheduling. IEEE/ACM
Trans. Networking 16(4): 826–839.

111. Kim TS, Yang Y, Hou JC & Krishnamurthy SV (2009) Joint resource allocation
and admission control in wireless mesh networks. In: Proc. Int. Symp. on
Modelling and Opt. in Mobile, Ad-hoc and Wireless Networks, pp. 1–10. Seoul,
Korea.

112. Weeraddana PC, Codreanu M, Latva-aho M & Ephremides A (2011) Resource
allocation for cross-layer utility maximization in wireless networks. IEEE Trans.
Veh. Technol. 60(6): 2790–2809.

113. Weeraddana PC, Codreanu M, Latva-aho M & Ephremides A (2010) Resource
allocation for cross-layer utility maximization in multi-hop wireless networks in
the presence of self interference. In: Proc. Int. Symp. on Modelling and Opt. in
Mobile, Ad-hoc and Wireless Networks, pp. 70–75. Avignon, France.

114. Allgower EL & Georg K (2003) Introduction to Numerical Continuation Methods.
SIAM, Philadelphia, PA.

115. Sesia S, Toufik I & Baker M (2009) LTE - the UMTS long term evolution: From
Theory to Practice. A John Wiley & Sons publication, UK.

116. Ali SH, Lee K & Leung VCM (2007) Dynamic resource allocation in OFDMA

193



wireless metropolitan area networks [Radio Resource Management and Protocol
Engineering for IEEE 802.16]. IEEE Trans. Wireless Commun. 14(1): 6–13.

117. Kwon T, Lee H, Choi S, Kim J, Cho D, Cho S, Yun S, Park W & Kim K (2005)
Design and implementation of a simulator based on a cross-layer protocol between
MAC and PHY layers in a WiBro compatible.IEEE 802.16e OFDMA system.
IEEE Commun. Mag. 43(12): 136–146.

118. Huang C, Juan H, Lin M & Chang C (2007) Radio resource management of
heterogeneous services in mobile WiMAX systems [Radio Resource Management
and Protocol Engineering for IEEE 802.16]. IEEE Trans. Wireless Commun.
14(1): 20–26.

119. Rhee W & Cioffi M (2000) Increase in capacity of multiuser OFDM system using
dynamic subchannel allocation. In: Proc. IEEE Veh. Technol. Conf., volume 2,
pp. 1085–1089. Tokyo, Japan.

120. Mao Z & Wang X (2006) Branch-and-bound approach to OFDMA radio resource
allocation. In: Proc. IEEE Veh. Technol. Conf., pp. 1–5. Montréal, Canada.

121. Wong CY, Cheng RS, Letaief KB & Murch RD (1999) Multiuser OFDM with
adaptive subcarrier, bit, and power allocation. IEEE J. Select. Areas Commun.
17(10): 1747–1758.

122. Zhang G (2004) Subcarrier and bit allocation for real-time services in multiuser
OFDM systems. In: Proc. IEEE Int. Conf. Commun., volume 5, pp. 2985– 298.
Paris, France.

123. Kivanc D, Li G & Liu H (2003) Computationally efficient bandwidth allocation
and power control for OFDMA. IEEE Trans. Wireless Commun. 2(6): 1150Ű1158.

124. Ho WWL & Liang YC (2009) Optimal resource allocation for multiuser MIMO-
OFDM systems with user rate constraints. IEEE Trans. Veh. Technol. 58(3):
1190–1203.

125. Ergen M, Coleri S & Varaiya P (2003) QoS aware adaptive resource allocation
techniques for fair schesuling in OFDMA based broadband wireless access systems.
IEEE Trans. Broadcast. 49(4): 362–370.

126. Li G & Liu H (2006) Downlink radio resource allocation for multi-cell OFDMA
system. IEEE Trans. Wireless Commun. 5(12): 3451–3459.

127. Li G & Liu H (2006) Resource allocation for OFDMA relay networks with fairness
constraints. IEEE J. Select. Areas Commun. 24(11): 2061–2069.

128. Kim I, Park I & Lee YH (2006) Use of linear programming for dynamic subcarrier
and bit allocation in multiuser OFDM. IEEE Trans. Veh. Technol. 55(4):
1195–1207.

129. Weeraddana PC, Codreanu M, Wei L & Latva-aho M (2010) Primal decomposition-
based method for weighted sum-rate maximization in downlink OFDMA systems.
EURASIP J. Wireless Comm. and Netw. 2010, Article ID 324780, 9 pages.
Doi:10.1155/2010/324780.

130. Weeraddana PC, Wei L, Codreanu M & Latva-aho M (2008) Weighted sum-rate
maximization for downlink OFDMA systems. In: Proc. Annual Asilomar Conf.
Signals, Syst., Comp., pp. 990–994. Pacific Grove, CA, USA.

131. Weeraddana PC, Wei L, Codreanu M & Latva-aho M (2008) Adaptive subcarrier
and power allocation for OFDMA systems. In: Proc. of the IFIP Wireless Days
Conf., pp. 1–5. Dubai, UAE.

194



132. Weeraddana PC, Codreanu M & Latva-aho M (2010) An efficient close to optimal
radio resource allocation mechanism towards LTE downlink transmission. In:
Proc. URSI/IEEE Convention Radio Science, pp. 71–74. Oulu, Finland.

133. Weeraddana PC, Codreanu M, Wei L & Latva-aho M (2008) Low complexity
adaptive subcarrier and power allocation scheme for downlink OFDMA systems.
In: Proc. Int. Symp. Wireless Pers. Multimedia Commun. Lapland, Finland.
CD-Rom.

134. Nedić A & Ozdaglar A (2011) Cooperative distributed multi-agent optimization.
Convex Optimization in Signal Processing and Communications, (D. P. Palomar
and Y. C. Eldar, eds.) , Cambridge University Press. pp. 340–386.

135. Yang B & Johansson M (2011) Distributed optimization and games: A tutorial
overview. Networked Control Systems, Lecture Notes in Control and Information
Sciences, Springer-Verlag London. 406: 109–148.

136. Papandriopoulos J & Evans JS (2009) SCALE: A low-complexity distributed
protocol for spectrum balancing in multiuser DSL networks. IEEE Trans. Inform.
Theory 55(8): 3711–3724.

137. Park SH, Park H & Lee I (2010) Distributed beamforming techniques for weighted
sum-rate maximization in MISO interference channels. IEEE Commun. Lett.
14(12): 1131–1133.

138. Björnson E, Bengtsson M & Ottersten B (2010) Optimality properties and
low-complexity solutions to coordinated multicell transmission. In: Proc. IEEE
Global Telecommun. Conf., pp. 1–6. Miami, Florida, USA.

139. Björnson E, Jaldén N, Bengtsson M & Ottersten B (2010) Optimality properties,
distributed strategies, and measurement-based evaluation of coordinated multicell
OFDMA transmission. IEEE Trans. Signal Processing, submitted .

140. Venturino L, Prasad N & Wang X (2010) Coordinated linear beamforming in
downlink multi-cell wireless networks. IEEE Trans. Wireless Commun. 9(4):
1451–1461.

141. Liu YF, Dai YH & Luo ZQ (2011) Coordinated beamforming for MISO interference
channel: Complexity analysis and efficient algorithms. IEEE Trans. Signal
Processing 59(3): 1142–1157.

142. Weeraddana PC, Codreanu M, Latva-aho M & Ephremides A (2011) Multicell
downlink weighted sum-rate maximization: A distributed approach. IEEE Trans.
Signal Processing, submitted .

143. Weeraddana PC, Codreanu M & Latva-aho M (2011) Multicell downlink weighted
sum-rate maximization: A distributed approach. In: Proc. Annual Asilomar Conf.
Signals, Syst., Comp., to appear. Pacific Grove, CA, USA.

144. Lee BO, Je HW, Sohn I, Shin OS & Lee KB (2008) Interference-aware decentralized
precoding for multicell MIMO TDD systems. In: Proc. IEEE Global Telecommun.
Conf., pp. 1–5. New Orleans, LA, USA.

145. Zhang R & Cui S (2010) Cooperative interference management with MISO
beamforming. IEEE Trans. Signal Processing 58(10): 5450–5458.

146. Larsson EG & Jorswieck EA (2008) Competition versus cooperation on the MISO
interference channel. IEEE J. Select. Areas Commun. 26(7): 1059–1069.

147. Jorswieck EA & Larsson EG (2008) The MISO interference channel from a
game-theoretic perspective: A combination of selfishness and altruism achieves

195



pareto optimality. In: Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing,
pp. 5364–5367. Las Vegas, Nevada, USA.

148. Shi C, Berry RA & Honig ML (2008) Distributed interference pricing with MISO
channels. In: Proc. Annual Allerton Conf. Commun., Cont., Computing, pp.
539–546. Urbana-Champaign, USA.

149. Shi C, Berry RA & Honig ML (2009) Monotonic convergence of distributed
interference pricing in wireless networks. In: Proc. IEEE Int. Symp. Inform.
Theory, pp. 1619–1623. Seoul, Korea.

150. Shi C, Berry RA & Honig ML (2009) Local interference pricing for distributed
beamforming in MIMO networks. In: Proc. IEEE Military Commun. Conf., pp.
1–6. Boston, MA.

151. Ho ZKM & Gesbert D (2010) Balancing egoism and altruism on the MIMO
interference channel. IEEE J. Select. Areas Commun., submitted [Online].
Available: http://arxiv.org/PS_cache/arxiv/pdf/0910/0910.1688v1.pdf.

152. Björnson E, Zakhour R, Gesbert D & Ottersten B (2010) Cooperative multicell pre-
coding: Rate region characterization and distributed strategies with instantaneous
and statistical CSI. IEEE Trans. Signal Processing 58(8): 4298–4310.

153. Zakhour R & Gesbert D (2009) Coordination on the MISO interference channel
using the virtual SINR framework. In: Proc. ITG Workshop Smart Antennas.
Berlin, Germany.

154. Zakhour R & Gesbert D (2010) Distributed multicell-MISO precoding using the
layered virtual SINR framework. IEEE Trans. Wireless Commun. 9(8): 2444–2448.

155. Zakhour R, Ho Z & Gesbert D (2009) Distributed beamforming coordination in
multicell MIMO channels. In: Proc. IEEE Veh. Technol. Conf., pp. 1–5. Barcelona,
Spain.

156. Tölli A, Pennanen H & Komulainen P (2011) Decentralized minimum power
multi-cell beamforming with limited backhaul signaling. IEEE Trans. Wireless
Commun. 10(2): 570–580.

157. Song B, Cruz RL & Rao BD (2004) A simple joint beamforming and power
control algorithm for multi-user MIMO wireless networks. In: Proc. IEEE Veh.
Technol. Conf., pp. 247–251. Los Angeles, CA.

158. Yu HDW (2010) Coordinated beamforming for the multicell multi-antenna wireless
system. IEEE Trans. Wireless Commun. 9(5): 1748–1759.

159. Jorswieck EA, Larsson EG & Danev D (2008) Complete characterization of
the pareto boundary for the MISO interference channel. IEEE Trans. Signal
Processing 56(10): 5292–5296.

160. Matskani E, Sidiropoulos ND, Luo ZQ & Tassiulas L (2008) Convex approximation
techniques for joint multiuser downlink beamforming and admission control. IEEE
Trans. Wireless Commun. 7(7): 2682–2693.

161. Matskani E, Sidiropoulos ND, Luo ZQ & Tassiulas L (2007) A second-order
cone deflation approach to joint multiuser downlink beamforming and admission
control. In: Proc. IEEE Works. on Sign. Proc. Adv. in Wireless. Commun., pp.
1–5. Helsinki, Finland.

162. Matskani E, Sidiropoulos ND, Luo ZQ & Tassiulas L (2007) Joint multiuser
downlink beamforming and admission control: A semidefinite relaxation approach.
In: Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, volume 3, pp.

196



585–588. Honolulu, Hawaii, USA.
163. Cao M, Wang X, Kim S & Madihian M (2007) Multi-hop wireless backhaul

networks: A cross-layer design paradigm. IEEE J. Select. Areas Commun. 25(4):
738–748.

164. Kodialam M & Nandagopal T (2005) Characterizing achievable rates in multi-hop
wireless mesh networks with orthogonal channels. IEEE/ACM Trans. Networking
13(4): 868–880.

165. Shi Y & Hou YT (2008) A distributed optimization algorithm for multi-hop
cognitive radio networks. In: Proc. IEEE INFOCOM, pp. 1292 –1300. Phoenix,
AZ, USA.

166. Cao M, Raghunathan V, Hanly S, Sharma V & Kumar PR (2007) Power control
and transmission scheduling for network utility maximization in wireless networks.
In: Proc. IEEE Int. Conf. Dec. and Cont., pp. 5215–5221. New Orleans, LA, USA.

167. Barreto DE & Chiu SS (2007) Decomposition methods for cross-layer optimization
in wireless networks. In: Proc. IEEE Wireless Commun. and Networking Conf.,
pp. 270–275. Kawloon, Hong Kong.

168. Suzuki H, Itoh K, Ebin Y & Sato M (1999) A booster configuration with adaptive
reduction of transmitter-receiver antenna coupling for pager systems. In: Proc.
IEEE Veh. Technol. Conf., volume 3, pp. 1516–1520. Amsterdam, Netherlands.

169. Halperin D, Anderson T & Wetherall D (2008) Taking the sting out of carrier
sense: Interference cancellation for wireless LANs. In: Proc. ACM int. conf. on
Mobile comp. and net., pp. 339–350. San Francisco, California, USA.

170. Radunović B, Gunawardena D, Proutiere A, Singh N, Balan V & Key P
(2009) Efficiency and fairness in distributed wireless networks through self-
interference cancellation and scheduling. Tech. Rep. MSR-TR-2009-27, Microsoft
Research. [Online]. Available: http://research.microsoft.com/apps/pubs/
default.aspx?id=79933.

171. Radunović B, Gunawardena D, Key P, Proutiere A, Singh N, Balan V &
Dejean G (2009) Rethinking indoor wireless: Low power, low frequency, full-
duplex. Tech. Rep. MSR-TR-2009-148, Microsoft Research. [Online]. Available:
http://research.microsoft.com/apps/pubs/default.aspx?id=104950.

172. Balakrishnan V, Boyd S & Balemi S (1991) Branch and bound algorithm for
computing the minimum stability degree of parameter-dependent linear systems.
Int. J. Robust and Nonlinear Con. 1(4): 295–317.

173. Song B, Cruz RL & Rao BD (2005) Network duality and its application to
multi-user MIMO wireless networks with SINR constraints. In: Proc. IEEE Int.
Conf. Commun., volume 4, pp. 2684–2689. Seoul, Korea.

174. Horn R & Johnson C (1994) Topics in Matrix Analysis. Cambridge University
Press, Cambridge, UK.

175. Boyd S (2006) GGPLAB: A simple matlab toolbox for geometric programming.
[Online]. Available: http://www.stanford.edu/~boyd/ggplab/.

176. Kumar A, Manjunath D & Kuri J (2008) Wireless Networking. ELSEVIER Inc.,
Burlington, MA , USA.

177. Abou-Faycal IC, Trott MD & Shamai S (2001) The capacity of discrete-time
memoryless Rayleigh-fading channels. IEEE Trans. Inform. Theory 47(4): 1290
–1301.

197



178. Weingarten H, Steinberg Y & Shamai S (2006) The capacity region of the Gaussian
multiple-input multiple-output broadcast channel. IEEE Trans. Inform. Theory
52(9): 3936 – 3964.

179. Tse DNC & Hanly SV (1998) Multiaccess fading channels. I. polymatroid structure,
optimal resource allocation and throughput capacities. IEEE Trans. Inform.
Theory 44(7): 2796–2815.

180. Cover TM & Thomas JA (2006) Elements of Information Theory. John Wiley,
New York, USA, second edition.

181. Marks BR & Wright GP (1978) A general inner approximation algorithm for
nonconvex mathematical programs. Oper. Research 26(4): 681–683.

182. Boyd S (2007) Sequential convex programming. [Online]. Available: http:
//www.stanford.edu/class/ee364b/lectures/seq_slides.pdf.

183. Kojima M, Megiddo N & Noma T (1989) Homotopy continuation methods for
nonlinear complementarity problems. Math. of Op. Research 16: 754–774.

184. Nesterov Y & Nemirovsky A (1994) Interior-Point Polynomial Algorithms in
Convex Programming. SIAM.

185. Tse DN (1997) Optimal power allocation over parallel gaussian broadcast channels.
Unpublished, a short summary published in Proc. of Int. Symp. Inform. Theory,
Ulm, Germany .

186. Pantelidou A & Ephremides A (2010) A cross-layer view of optimal scheduling.
IEEE Trans. Inform. Theory 56(11): 5568–5580.

187. Radunović B, Gunawardena D, Key P, Proutiere A, Singh N, Balan V & Dejean
G (2010) Rethinking indoor wireless mesh design: Low power, low frequency,
full-duplex. In: Proc. IEEE Works. on Wireless Mesh Networks, pp. 1–6. Boston,
USA.

188. Choi JI, Jain M, Srinivasan K, Levis P & Katti S (2010) Achieving single channel,
full duplex wireless communication. In: Proc. ACM int. conf. on Mobile comp.
and net., pp. 1–12. Chicago, Illinois, USA.

189. Boyd S (2007) Primal and dual decomposition. [Online]. Available: http:
//www.stanford.edu/class/ee364b/lectures/decomposition_slides.pdf.

190. Rockafellar RT (1970) Convex Analysis. Prinston, N.J., Princeton University
Press.

191. Nuaymi L (2007) WiMax Technology for Broadband Wireless Access. John Wiley
& Sons publication, UK.

192. Boyd S (2007) Subgradient methods. [Online]. Available: http://www.stanford.
edu/class/ee364b/lectures/subgrad_method_slides.pdf.

193. Lobo MS, Vandenberghe L, Boyd S & Lebret H (1998) Applications of second-order
cone programming. Linear Algebra and Applications 284: 193–228.

194. Gupta P & Kumar PR (2000) The capacity of wireless networks. IEEE Trans.
Inform. Theory 46(2).

195. Zander J (1992) Performance of optimum transmitter power control in cellular
radio systems. IEEE Trans. Veh. Technol. 41(1): 57–62.

196. Foschini G & ZMiljanic (1993) A simple distributed autonomus power control
algorithm and its covergence. IEEE Trans. Veh. Technol. 42(4): 641–646.

197. Yates RD & Huang C (1995) Integrated power control and base station assignment.
IEEE Trans. Veh. Technol. 44(3): 638 –644.

198



198. Hanly SV (1995) An algorithm for combined cell-site selection and power control
to maximize cellular spread spectrum capacity. IEEE J. Select. Areas Commun.
13(7): 1332 –1340.

199. Seneta E (2006) Non-Negative Matrices and Markov Chains. Springer Science +

Business Media, Inc, 233 Spring street, NY 10013, USA. Revised printing.
200. Yu W, Rhee W, Boyd S & Cioffi J (2004) Iterative water-filling for gaussian

vector multiple-access channels. IEEE Trans. Inform. Theory 50(1): 145–152.
201. Jafar SA (2003) Fundamental capacity limits of multiple antenna wireless systems.

Ph.d. dissertation, Stanford university, CA, USA.

199



200



Appendix 1 : Proof of Theorem 2.2

Theorem 2.2 shows certain similarities to the classical feasibility conditions
derived in [195–198]. These conditions were derived based on the Perron-
Frobenius theory [199] by assuming the primitiveness of B(γ)G. We give a
slightly more general proof based on the theory of M-matrices [174, p. 112],
which circumvent the technical condition of B(γ)G being primitive. Thus they
hold for any nonnegative matrix B(γ)G.

To prove the first statement we show that ρ (B(γ)G) < 1 is necessary for
γ ∈ G. Recall that (2.42) can be expressed as A(γ)p ≥ b(γ). Thus, we can
write the following necessary (but not sufficient) condition for γ ∈ G:

γ ∈ G ⇒ ∃ p ≥ 0 such that A(γ)p ≥ b(γ) . (1.0.1)

The condition above is easily derived by ignoring the second set of inequalities
(i.e., the power constraints) in the description of G in (2.6). Strict positivity
of γ implies that b(γ) > 0 and p > 0. This observation together with the
condition (1.0.1) yield the following necessary conditions for γ ∈ G:

γ ∈ G ⇒ ∃ p > 0 such that A(γ)p > 0 . (1.0.2)

Finally, [174, Th. 2.5.3, items 12 and 2] states that ∃ p > 0 such that A(γ)p > 0

if and only if ρ (B(γ)G) < 1. Consequently, we can rewrite (1.0.2) equivalently
as γ ∈ G ⇒ ρ (B(γ)G) < 1 which, by the contraposition, is equivalent to
ρ (B(γ)G) ≥ 1⇒ γ 6∈ G.

The second part follows directly from the description of G in (2.6), where the
SINR constraints (2.42) are satisfied with equality, i.e., A(γ)p = b(γ). Note
that since the nonnegative matrix B(γ)G has the spectral radius smaller than
one, i.e., ρ (B(γ)G) < 1, the matrix A(γ) = I −B(γ)G is invertible and its
inverse has nonnegative entries, i.e., A−1(γ) ≥ 0 [174, Th. 2.5.3, items 2 and 17].
Thus p = A−1(γ)b(γ) ≥ 0.

We prove the third part by showing that p? = A−1(γ)b(γ) is the minimum
power vector 22 (with respect to generalized inequality �IRL+

) which satisfies the

22A point p ∈ S is the minimum element of set S with respect to generalized inequality �IRL+

if and only if S ⊂ p + IRL+ [3, Sec. 2.4.2].
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SINR constraints in (2.42), i.e., p? is the unique solution of the following vector
optimization problem: 23

minimize (w.r.t. IRL
+) p

subject to A(γ)p ≥ b(γ) ,
(1.0.3)

where the variable is p. Since p? is the minimum power vector that achieves
SINR values γ, if it violates any power constraint then any other power vector p

that achieves γ must also violate those power constraints, because p? ≤ p.
A standard technique for solving vector optimization problems is scalariza-

tion [3, Sec. 4.7.4]. We choose an arbitrary λ > 0 and solve the following scalar
optimization:

minimize λTp

subject to A(γ)p ≥ b(γ) ,
(1.0.4)

where the variable is p. Let us make the change of variable y = A(γ)p and
rewrite problem (1.0.4) as

minimize λTA(γ)−1y

subject to y ≥ b(γ) ,
(1.0.5)

where the variable is y. Recall that A−1(γ) ≥ 0 (since ρ (B(γ)G) < 1), and
therefore the gradient of the objective has positive entries, i.e., (A(γ)−1)Tλ ≥ 0.
Thus, the optimal solution does not depend on λ and it is given by y? = b(γ).
This, in turn, implies that the optimal solution of problem (1.0.4) [and, implicitly
of problem (1.0.3)] is given by p? = A−1(γ)b(γ).

23For a more detailed discussion of vector optimization, see [3, Sec. 4.7].

202



Appendix 2 : Compute γImpCGP via complementary
geometric programming (CGP)

We show in this appendix how to compute efficiently γImpCGP via CGP [97],
when f0(γ) =

∑
l∈L−βl log(1 + γl). Note that this is the only place where the

exact expression of the rate function (2.1) has been explicitly taken into account.
In the derivation of all other bounds only the monotonicity property has been
used. We start by equivalently reformulating problem (2.60) as

minimize
∏
l∈L
(
1 + γl

)−βl
subject to γl,min ≤ γl ≤ γl,max, l ∈ L

γl ≤
gllpl

σ2 +
∑
j 6=l gjlpj

, l ∈ L∑
l∈O(n) pl ≤ pmax

n , n ∈ T
pl ≥ 0, l ∈ L ,

(2.0.1)

where the variables are (pl)l∈L and (γl)l∈L. The equivalence between prob-
lem (2.60) and problem (2.0.1) follows from the monotonically increasing property
of log(·) function and the explicit description of the constraints. To obtain a sub-
optimal solution, we adopt Algorithm 3.2 (see Section 3.2.2) in a straightforward
manner as follows:

Algorithm 2.0.1. CGP based algorithm for finding γImpCGP

1. Given tolerance ε > 0. Let γ̂ = āl? .
2. Solve the following GP:

minimize
∏
l∈L γl

−βl
γ̂l

1+γ̂l

subject to γl,min ≤ γl ≤ γl,max, l ∈ L
γl ≤

gllpl
σ2 +

∑
j 6=l gjlpj

, l ∈ L∑
l∈O(n) pl ≤ pmax

n , n ∈ T ,

(2.0.2)

with the variables (pl)l∈L and (γl)l∈L. Denote the solution by (p?l )l∈L and
(γ?l )l∈L.

3. If maxl∈L |γ?l − γ̂l| > ε set (γ̂l = γ?l )l∈L and go to step 2. Otherwise set
γImpCGP = γ̂ and STOP.
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Appendix 3 : A direct monomial approximation

In this appendix we derive a monomial approximation for the objective function
of problem (3.11), which results in the same successive approximation steps as in
Algorithm 3.2. The derivation is given in [15, Lem. 4.2.2] and outlined here for
completeness. Let us first prove the following lemma.

Lemma 3.0.1. Let m(γ) = d
∏
c∈C
∏
l∈L γ

alc
lc be a monomial function [5] used

to approximate the objective function (3.11), i.e., f(γ) =
∏
c∈C
∏
l∈L(1 + γlc)

−βl ,
near an arbitrary point γ̂ ∈ IRL×C

+ . The parameters d and alc of the best
monomial local approximation are given by

alc = −βlγ̂lc(1 + γ̂lc)
−1, d = f(γ̂)

∏
c∈C

∏
l∈L

γ̂−alclc , (3.0.1)

where γ̂lc = [γ̂]lc.

Proof. The monomial function m is the best local approximation of f near the
point γ̂ if [5],

m(γ̂) = f(γ̂), ∇m(γ̂) = ∇f(γ̂) . (3.0.2)

By replacing the expressions of m and f in (3.0.2) we obtain the following system
of equations: d

∏
c∈C
∏
l∈L γ̂

alc
lc = f(γ̂)

alcγ̂
−1
lc d

∏
c∈C
∏
l∈L γ̂

alc
lc = − βlf(γ̂)

(1 + γ̂lc)
, c ∈ C, l ∈ L ,

which has the solution given by (3.0.1).

By using the local approximation given by Lemma 3.0.1 in the objective
function of problem (3.11), and ignoring the multiplicative constant d which does
not affect the problem solution, we obtain the identical successive approximation
steps as in Algorithm 3.2.
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Appendix 4 : Extension to multichannel SIC

In this appendix we present the multichannel extension of the material presented
in Section 3.3. The assumptions remain the same as in Section 3.3, i.e., at every
node n ∈ N the transmitter performs superposition coding over its outgoing
links O(n) independently in each channel c ∈ C and every receiving node n ∈ N
performs successive interference cancelation to decode the signals of incoming
links l ∈ I(n) in each channel c ∈ C. In every channel c ∈ C, the SIC receiver at
every node n ∈ N has to decode and cancel out the signals of all its incoming
links I(n) and any subset of the remaining links in its complement set L \ I(n)

to obtain the largest set of achievable rates. Let us denote the set of links
which are decoded at the node n, associated with each channel c ∈ C by Dc(n).
Here the set Dc(n) = I(n) ∪ Uc(n) for some Uc(n) ⊆ L \ I(n). Furthermore,
let RSIC

c (Dc(1), . . . ,Dc(N), pmax
1c , . . . , pmax

Nc ) denote the achievable rate region
associated with channel c ∈ C for the given Dc(1), . . . ,Dc(N) and maximum node
transmission power pmax

1c , . . . , pmax
Nc , where pmax

nc is the maximum transmission
power allocated to channel c ∈ C at node n ∈ N . By taking the union of
all possible combinations of sets Dc(1), . . . ,Dc(N), the achievable rate region
associated with channel c ∈ C for a given maximum node transmission power
pmax

1c , . . . , pmax
Nc can be expressed as

RSIC
c (pmax

1c , . . . , pmax
Nc ) =

⋃
D(1),...,D(N)|∀n∈N ∃U(n)⊆L\I(n) s.t. D(n)=I(n)∪U(n)

RSIC
c (D(1), . . . ,D(N), pmax

1c , . . . , pmax
Nc ) . (4.0.1)

Let πnc =
(
πnc(1), . . . , πnc(|Dc(n)|)

)
represent an arbitrary permutations of

the links in Dc(n) which describes the decoding and cancelation order at node n
in channel c. The rate region RSIC

c (Dc(1), . . . ,Dc(N), pmax
1c , . . . , pmax

Nc ) is obtained
by considering all possible combinations of decoding orders for all nodes, i.e., all
possible

∏
n∈N (|Dc(n)| !) combinations πc

∆
= π1c × π2c × . . .× πNc. Thus, the

achievable rate region associated with channel c ∈ C for given Dc(1), . . . ,Dc(N)
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and maximum node transmission power, pmax
1c , . . . , pmax

Nc can be expressed as

RSIC
c (Dc(1), . . . ,Dc(N), pmax

1c , . . . , pmax
Nc )

=
⋃
πc


(r1, . . . , rL)

∣∣∣∣∣∣∣∣∣∣∣∣

rπnc(l) ≤ log

(
1 +

Gπnc(l)nc(t) pπnc(l)c

σ2 +
∑
j>lGπnc(j)nc(t) pπnc(j)c

)
,

∀(n, l) s.t. n ∈ N , l ∈ {1, . . . , |Dc(n)|}∑
l∈O(n) plc ≤ pmax

nc , n ∈ N
plc ≥ 0, l ∈ L


,

where Glnc, l ∈ L, n ∈ N , c ∈ C represents the power gain from the transmitter
of link l to the receiver at node n in channel c and plc represents the power
allocated for link l′s signal in channel c. Note that we assume equal channel
bandwidths for all c ∈ C. By having superposition coding at the transmitters
and SIC at the receivers, the achievable rate region for the interference channel
can be expressed as

RSIC(pmax
1 , . . . , pmax

N )

=

(r1, . . . , rL)

∣∣∣∣∣∣∣∣∣
(r1, . . . , rL)∈

∑
c∈C
RSIC
c (pmax

1c , . . . , pmax
Nc )∑

c∈C
pmax
nc ≤ pmax

n , n ∈ N

pmax
nc ≥ 0, n ∈ N , c ∈ C

 .

The RA subproblem at the third step of Dynamic Cross-Layer Control Algo-
rithm 3.1 is shown in (3.31). Finding the solution of this problem is extremely
difficult, as we have already mentioned in the single-channel case, i.e., C = 1.
However, by limiting the access protocol so that only one node can transmit in
all its outgoing links in each slot, the problem can be identified as weighted
sum-rate maximization over the capacity region of parallel Gaussian broadcast
channels [185]. When only one node can receive from all its incoming links in
each slot, the problem can be cast as weighted sum-rate maximization over the
capacity region of Gaussian vector multiple access channel [200],[201, Sec. 6].
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Appendix 5 : The barrier method

In this appendix we outline the basic steps involved in solving problem (3.33)
using the barrier method [3, Sec. 11.3.1]. For the sake of notational simplicity
let us define σ̄ρn(k) = σ2/gρn(k)ρn(k) for k = 1, . . . , |O(n)| and σ̄ρn(|O(n)|+1) = 0.
Furthermore, let ui be the ith column of the upper triangular matrix U ∈
IR
|O(n)|×|O(n)|
+ with all nonzero entries being equal to 1.
By denoting the feasible set of rate allocation vector rn = (rρn(1) . . . rρn(|O(n)|))

[185, Sec. 3], problem (3.33) can be equivalently expressed as

maximize
∑
l∈O(n) βlrl

subject to ui(rn) ≤ 0, i = 1, . . . , |O(n)|+ 1 ,
(5.0.1)

where the variable is rn. The function ui(rn) can be compactly expressed as

ui(rn) =


−eT

i rn 1 ≤ i ≤ |O(n)|
|O(n)|∑
j=1

bn(j)eu
T
j rn−σ̄ρn(1)−pmax

n i = |O(n)|+ 1 ,

where bn(j) = σ̄ρn(j) − σ̄ρn(j+1). Problem (5.0.1) is a convex optimization
problem [3], and therefore can be solved efficiently. It is worth noting that, given
any feasible rn the corresponding power variables pρn(k), k = 1, . . . , |O(n)| are
given by [185]

pρn(k) =
(
erρn(k) − 1

)∑
i≥k

bn(i)e
∑
k<j≤i rρn(j) .

The barrier method [3, Sec. 11.3.1] can be used to solve problem (5.0.1). The
gradient and the Hessian of the function ui(rn) are given by

∇ui(rn) =

 −ei 1 ≤ i ≤ |O(n)|∑|O(n)|
j=1 bn(j)eu

T
j rnuj i = |O(n)|+ 1

and

∇2ui(rn) =

 0 1 ≤ i ≤ |O(n)|∑|O(n)|
j=1 bn(j)eu

T
j rnuju

T
j i = |O(n)|+ 1 .

The expressions above are used to evaluate the gradient and the Hessian of the
logarithmic barrier function [3, Sec. 11.2.1].
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