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Abstract

The application of optimization techniques for resource management in wireless communication networks
is considered in this thesis. It is understood that a wide variety of resource management problems of recent
interest, including power/rate control, link scheduling, cross-layer control, network utility maximization,
beamformer design of multiple-input multiple-output networks, and many others are directly or indirectly
reliant on the general weighted sum-rate maximization (WSRMax) problem. Thus, in this dissertation a
greater emphasis is placed on the WSRMax problem, which is known to be NP-hard.

A general method, based on the branch and bound technique, is developed, which solves globally the
nonconvex WSRMax problem with an optimality certificate. Efficient analytic bounding techniques are
derived as well. More broadly, the proposed method is not restricted to WSRMax. It can also be used to
maximize any system performance metric, which is Lipschitz continuous and increasing on signal-to-
interference-plus-noise ratio. The method can be used to find the optimum performance of any network
design method, which relies on WSRMax, and therefore it is also useful for evaluating the performance loss
encountered by any heuristic algorithm. The considered link-interference model is general enough to
accommodate a wide range of network topologies with various node capabilities, such as singlepacket
transmission, multipacket transmission, simultaneous transmission and reception, and many others.

Since global methods become slow in large-scale problems, fast local optimization methods for the
WSRMax problem are also developed. First, a general multicommodity, multichannel wireless multihop
network where all receivers perform singleuser detection is considered. Algorithms based on homotopy
methods and complementary geometric programming are developed for WSRMax. They are able to exploit
efficiently the available multichannel diversity. The proposed algorithm, based on homotopy methods,
handles efficiently the self interference problem that arises when a node transmits and receives
simultaneously in the same frequency band. This is very important, since the use of supplementary
combinatorial constraints to prevent simultaneous transmissions and receptions of any node is
circumvented. In addition, the algorithm together with the considered interference model, provide a
mechanism for evaluating the gains when the network nodes employ self interference cancelation
techniques with different degrees of accuracy. Next, a similar multicommodity wireless multihop network
is considered, but all receivers perform multiuser detection. Solutions for the WSRMax problem are
obtained by imposing additional constraints, such as that only one node can transmit to others at a time or
that only one node can receive from others at a time. The WSRMax problem of downlink OFDMA systems
is also considered. A fast algorithm based on primal decomposition techniques is developed to jointly
optimize the multiuser subcarrier assignment and power allocation to maximize the weighted sum-rate
(WSR). Numerical results show that the proposed algorithm converges faster than Lagrange relaxation
based methods.

Finally, a distributed algorithm for WSRMax is derived in multiple-input single-output multicell
downlink systems. The proposed method is based on classical primal decomposition methods and
subgradient methods. It does not rely on zero forcing beamforming or high signal-to-interference-plus-noise
ratio approximation like many other distributed variants. The algorithm essentially involves coordinating
many local subproblems (one for each base station) to resolve the inter-cell interference such that the WSR
is maximized. The numerical results show that significant gains can be achieved by only a small amount of
message passing between the coordinating base stations, though the global optimality of the solution cannot
be guaranteed.

Keywords: distributed optimization methods, global (nonconvex) optimization methods, mathematical
optimization, radio resource management, weighted sum-rate maximization
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Tiivistelma

Téssé tydssa tutkitaan optimointimenetelmien kayttdd resurssienhallintaan langattomissa tiedonsiirtover-
koissa. Monet ajankohtaiset resurssienhallintaongelmat, kuten esimerkiksi tehonsaatd, datanopeuden séato,
radiolinkkien ajastus, protokollakerrosten valinen optimointi, verkon hyétyfunktion maksimointi ja keilan-
muodostus moniantenniverkoissa, liittyvat joko suoraan tai epasuorasti painotetun summadatanopeuden
maksimointiongelmaan (weighted sum-rate maximization, WSRMax). Tasté syysté tama tyd keskittyy eri-
tyisesti WSRMax-ongelmaan, joka on tunnetusti NP-kova.

Tydssa kehitetédan yleinen branch and bound -tekniikkaan perustuva menetelmd, joka ratkaisee epékon-
veksin WSRMax-ongelman globaalisti ja tuottaa todistuksen ratkaisun optimaalisuudesta. Tydssa johdetaan
myds tehokkaita analyyttisid suorituskykyrajojen laskentatekniikoita. Ehdotetun menetelman kaytto ei
rajoitu vain WSRMax-ongelmaan, vaan sité voidaan soveltaa minkéa tahansa suorituskykymetriikan maksi-
mointiin, kunhan se on Lipschitz-jatkuva ja kasvava signaali-hairio-plus-kohinasuhteen funktiona. Mene-
telm&a voidaan kdyttdd minka tahansa WSRMax-ongelmaan perustuvan verkkosuunnittelumenetelmén
optimaalisen suorituskyvyn maérittdmiseen, ja siksi sitd voidaan hyddyntadd myods minka tahansa heuristi-
sen algoritmin aiheuttaman suorituskykytappion arvioimiseen. Tutkittava linkki-hairiomalli on riittdvan
yleinen monien erilaisten verkkotopologioiden ja verkkosolmujen kyvykkyyksien mallintamiseen, kuten
esimerkiksi yhden tai useamman datapaketin siirtoon seka yhtaaikaiseen lahetykseen ja vastaanottoon.

Koska globaalit menetelmét ovat hitaita suurien ongelmien ratkaisussa, tydssa kehitetddn WSRMax-
ongelmalle myds nopeita paikallisia optimointimenetelmid. Ensiksi késitellaén yleista useaa eri yhteyspal-
velua tukevaa monikanavaista langatonta monihyppyverkkoa, jossa kaikki vastaanottimet suorittavat yhden
kéyttdjan ilmaisun, ja kehitetaan algoritmeja, joiden perustana ovat homotopiamenetelmét ja komplemen-
taarinen geometrinen optimointi. Ne hyddyntévét tehokkaasti saatavilla olevan monikanavadiversiteetin.
Esitetty homotopiamenetelmiin perustuva algoritmi késittelee tehokkaasti itsehdiridongelman, joka syntyy,
kun laite ldhett&d ja vastaanottaa samanaikaisesti samalla taajuuskaistalla. Tdméa on tarke&d, koska ndin voi-
daan valttaa lisdehtojen kdyttd yhtéaikaisen lahetyksen ja vastaanoton estdmiseksi. Liséksi algoritmi yhdes-
s& tutkittavan hairiomallin kanssa auttaa arvioimaan, paljonko etua saadaan, kun laitteet kayttavat itsehiri-
on poistomenetelmié erilaisilla tarkkuuksilla. Seuraavaksi tutkitaan vastaavaa langatonta monihyppyverk-
koa, jossa kaikki vastaanottimet suorittavat monen kayttdjan ilmaisun. Ratkaisuja WSRMax-ongelmalle
saadaan asettamalla lisdehtoja, kuten ettd vain yksi lahetin kerrallaan voi l&hettaa tai etta vain yksi vastaan-
otin kerrallaan voi vastaanottaa. Edelleen tutkitaan WSRMax-ongelmaa laskevalla siirtotiella OFDMA-jar-
jestelmassa, ja johdetaan primaalihajotelmaan perustuva nopea algoritmi, joka yhteisoptimoi monen kayt-
t4jan alikantoaalto- ja tehoallokaation maksimoiden painotetun summadatanopeuden. Numeeriset tulokset
osoittavat, etté esitetty algoritmi suppenee nopeammin kuin Lagrangen relaksaatioon perustuvat menetel-
mat.

Lopuksi johdetaan hajautettu algoritmi WSRMax-ongelmalle monisoluisissa moniantennil&hetysta
kayttavissa jarjestelmissé laskevaa siirtotietd varten. Esitetty menetelmd perustuu klassisiin primaalihajo-
telma- ja aligradienttimenetelmiin. Se ei turvaudu nollaanpakotus-keilanmuodostukseen tai korkean signaa-
li-hdiri6-plus-kohinasuhteen approksimaatioon, kuten monet muut hajautetut muunnelmat. Algoritmi koor-
dinoi monta paikallista aliongelmaa (yhden kutakin tukiasemaa kohti) ratkaistakseen solujen vélisen hdiri-
On siten, ettd WSR maksimoituu. Numeeriset tulokset osoittavat, ettd merkittdvad etua saadaan jo vahaisel-
14 yhdessa toimivien tukiasemien véliselld viestinvaihdolla, vaikka globaalisti optimaalista ratkaisua ei voi-
dakaan taata.

Asiasanat:globaalit (epdkonveksit) optimointimenetelmét, hajautetut optimointimenetelmat, matemaattinen
optimointi, painotetun summadatanopeuden maksimointi, radioresurssien hallinta
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Abbreviations

Roman-letter notations

ajc

a;

le

C1

Channel gain from the BS to the jth user in subcarrier ¢ in a
single cell OFDMA downlink system

Closest vertex to v,,;, (in the ith dimension) of the axis aligned
rectangle Q

Closest vertex to v,,;, (in the ith dimension) of the axis aligned
rectangle Q*

Square matrix obtained by using B(v) and G, i.e., A(y) =
1-B(y)G

Set of link pairs (4, j) for which the transmitter of the ¢th link and
the receiver of the jth link coincide

Normalized power gain from the BS to the jth user in subcarrier ¢
in a single cell OFDMA downlink system

Vector obtained by using B(y) and 02, i.e., b(y) = 02B(v)1
Dynamic cross-layer control algorithm parameter used to charac-
terize the performance of the algorithm

Diagonal matric containing the normalized SINR, values

Square matrix obtained from B(«) by eliminating the ith row and
the ¢th column

Set of axis-aligned rectangles at the kth iteration of the BB
algorithm for WSRMax

Small-scale fading coefficient between the transmitter of link ¢ to
the receiver of link j; an argument ¢ can be used to indicate the
time slot or the fading realization index

Vector of small-scale fading coefficients between the transmitter
of data stream j and the receiver of data stream [ in a multicell
MIMO Downlink system

Number of orthogonal channels or subcarriers

Condition 1 requited to ensure the convergence of the BB algorithm
for WSRMax

11



C2

H
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Condition 2 requited to ensure the convergence of the BB algorithm
for WSRMax

Set of orthogonal channels or subcarriers

Set of subcarriers allocated to the jth user

Single fading realization, which is a set of arbitrarily generated
fading coefficients; an argument ¢ can be used to indicate the time
slot or the fading realization index

Far field reference distance used in modeling the power gain
between distinct nodes in general wireless networks

Distance from the transmitter of the ith link (data stream) to the
receiver of the jth link (data stream)

Destination node of commodity s

Lipschitz constant of function fy

A common distance used in modeling the SNR operating point in
a wireless network

Node distance matrix

Any subset of L—dimensional nonnegative orthant

Set of links which are decoded at node n

Function used to represent the (—) WSR in the case of singlecast
networks

Function used to represent the solution of the nth subproblem
(or BS optimization problem) in the algorithm for WSRMax in a
multicell downlink system

Function used to represent the solution of cth subproblem in the
algorithm for WSRMax in the OFDMA downlink

Function used to establish an upper bound on f,(-)

Extended value extension of function fo(-)

Function used to represent the (—) WSR in the case of multicast
networks

Residual self-interference gain after a certain self interference
cancelation technique was employed at the network’s nodes
Interference coefficient from the transmitter of ith link (data
stream) to the receiver of jth link (data stream) in channel c
during time slot ¢ if ¢ # j; the power gain of ith link (data stream)

in channel ¢ during time slot ¢ if i = j; the time slot index t is



QO Qc Q

>
—~
~

hije(t)

&

X

NS
ERS

=~ <

dropped sometimes for simplicity; in the single-channel case the
channel index ¢ is dropped

Objective function of the optimization problem, which is used to
compute the improved lower bound function of the BB algorithm
for WSRMax in singlecast networks

Objective function of the auxiliary optimization problem, which is
used to compute the improved lower bound function of the BB
algorithm for WSRMax in singlecast networks

Cross-coupling matrix

Interference coefficient and power gain matrix; in a single-channel
case [G(1)]i; = gi;(t)

Square matrix obtained from G by eliminating the ith row and
the ith column

Set of achievable SINR vectors in a singlecast network

Set obtained from G by eliminating certain dimensions of G

Set of achievable SINR vectors in a multicast network

Function used to illustrate the behavior of the algorithm for
WSRMax in the OFDMA downlink

Channel gain from the transmitter of link ¢ to the receiver of link
7 in channel ¢ during time slot ¢; the time slot index t is dropped
sometimes for simplicity; in a single-channel case the channel index
c is dropped

Channel matrix between transmitter of data stream j and the
receiver of data stream [ in a multicell MIMO downlink system
Set used in the derivation of an upper bound on f,(+)

Set used in the derivation of an upper bound on f, ()

Ordered pair of distinct nodes ¢ and j

Set of links incoming to the nth node

Number of users

Number of links or data streams

Lower bound for (—) WSR at the kth iteration of the BB algorithm
for WSRMax

Set of links or data streams

Set of data streams transmitted by nth BS
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['int

‘Cint (n)

Liocal (Tl)

TNrand

-/\/int (l)

o()
O(n)
OnL(n)

plc(t)

max

Po

m

Pn

max

Dy,

o
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Set of data streams that are subject to out-of-cell interference in a
multicell MIMO downlink system

Set of data streams for which base station n acts as an out-of-cell
interferer in a multicell MIMO downlink system

Subset of data streams transmitted by nth BS, which are not
interfered by any out-of-cell interference in a multicell MIMO
downlink system

Number of multicast transmissions from the nth node

Number of arbitrarily chosen initialization points in the parallel
version of the algorithm for WSRMax in the OFDMA downlink
Number of nodes (in the case of general networks) or base stations
(in the case of cellular networks)

Power spectral density of the noise at the receiver of link [

Set of nodes (in the case of general networks) or base stations (in
the case of cellular networks)

Set of out-of-cell interfering BSs of the receiver node of the Ith
data stream in a multicell MIMO downlink system; the set is
determined by the distance between BSs and the receiver node [
Big O notation

Set of links outgoing from the nth node

Set of links associated with the mth multicast transmission of the
nth node

Power allocated to the Ith link (data stream) in channel ¢ during
time slot ¢ in the case of multichannel singlecast networks; the time
slot index t is dropped sometimes for simplicity; in a single-channel
case the channel index c is dropped

Transmit sum power constraint common to all nodes

Power allocated to the mth multicast transmission of the nth node
in the case of multicast networks

Transmit sum power constraint of the nth node

Vector of p; or p”', i.e., p = (p1,...,pr) for singlecast networks
and p = (P )neT,m=1,...,m, for multicast networks; an argument
t is used sometimes to indicate the time index

Vector obtained from p by eliminating the ith component

Probability of missing the global optimum; a performance metric



Gjc
qn(t)

Oinit

Qinit

o'

r

Rmax

R
RAVE—M(‘(.)
RAVE—SC(_)
RIstMC(,)
RIstsC(,)

used to compare different algorithms for WSRMax in the OFDMA
downlink

Overall power allocation matrix during time slot ¢ in the case of
multichannel singlecast networks; [P(t)]; . = pic(?)

Feasible set of the subproblems of the general WSRMax in the
OFDMA downlink

Feasible set of the master problem of the general WSRMax in the
OFDMA downlink

Power allocated at the BS to the jth user in subcarrier ¢
Backlog of commodity s data stored at the nth node during time
slot ¢

Power allocated at the BS for subcarrier ¢

L—dimensional axis-aligned rectangle inside Qjpit

Axis-aligned rectangle inside Oinit

L—dimensional axis-aligned rectangle, which is used in the initial-
ization of the BB algorithm for WSRMax in singlecast networks
Axis-aligned rectangle, which is used in the initialization of the
BB algorithm for WSRMax in multicast networks

Smallest L—dimensional axis-aligned rectangle, which is used to
compute the improved lower bound function of the BB algorithm
for WSRMax in singlecast networks

Achievable rate of the [th link (data stream) during time slot ¢;
the time index t is dropped sometimes for simplicity

Maximum achievable rate of all links in the mth multicast trans-
mission of the nth node

Vector of r; or 7" used in the generic formulation of WSRMax
problem; in the case of singlecast networks, r = (r1,...,7r) and
in the case of multicast networks, r = (77" )ne7 m=1,....M,
Dynamic cross-layer control algorithm parameter used to control
the burstiness of data delivered to the network layer at node n
Set of receiver nodes

Average rate region in the case of multicast networks

Average rate region in the case of singlecast networks
Instantaneous rate region in the case of multicast networks

Instantaneous rate region in the case of singlecast networks

15



RDIR—MC(.)
RDIR—SC(_)
RSIC(.)

R

Vic

<.

Wn
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Directly achievable rate region in the case of multicast networks
Directly achievable rate region in the case of singlecast networks
Achievable rate region in a network with multiuser detectors at
nodes

Set used to represent a set of achievable link rates in the generic
formulation of the WSRMax problem

Information symbol associated with the /th data stream

Number of commodities

Set of commodities which arrives exogenously at the nth node
Number of fading realizations or time slots considered in averaging
Set of transmitter nodes

Constraint function used in the convex reformulation of the
WSRMax problem over the capacity region of scalar broadcast
channel

Nondecreasing utility function representing the “reward" received
by sending data commodity s from node n to the destination node
of commodity s at a given long term average rate

Upper bound for (—) WSR at the kth iteration of BB algorithm
for WSRMax

Upper triangular matrix used in the convex reformulation of the
WSRMax problem over the capacity region of scalar broadcast
channel

Auxiliary variable used to reformulate the WSRMax problem as a
CGP

Transmit beamformer associated to the Ith data stream

ith component of %

Dynamic cross-layer control algorithm parameter used to charac-
terize the performance of the algorithm

Set of vertices of the outer polyblock approximation that can be
used to further improve ¢ (-)

Out-of-cell interference power from nth BS to the receiver of data
stream [ in a multicell MIMO downlink system

Vector of wy; in a multicell MIMO downlink system, i.e., w =

(wnl)nEN,leﬁint(n)
Bandwidth of channel ¢



Yjc

Ui

2l

Transmitted signal from the BS to the jth user in subcarrier ¢ in
a single cell OFDMA downlink system

Transmitted signal vector from nth BS in a multicell MIMO
downlink system

Amount of data commodity s admitted in the network at the nth
node during time slot ¢

long term average rate of data commodity s admitted in the
network at the nth node

Received signal by the jth user in subcarrier ¢ in a single cell
OFDMA downlink system

Received signal by the receiver node of data stream [ in a multicell
MIMO downlink system

Received noise by the jth user in subcarrier ¢ in a single cell
OFDMA downlink system

Received noise by the receiver node of data stream [ in a multicell
MIMO downlink system

Greek-letter notations

Bi(t)

Vie

Yi,max

Yi,min
m

Tn

Positive weight associated with the [th link (data stream, user)
during time slot ¢ in the case of singlecast networks; the time slot
index t is dropped sometimes for simplicity

Positive weight associated with the mth multicast transmission of
the nth node in the case of multicast networks

Vector of §; or 5] used in the generic formulation of the WSRMax
problem; in the case of singlecast networks, 8 = (f1,...,51) and
in the case of multicast networks, 8 = (8" )neT m=1,..., M,
(Auxiliary) variable associated to the SINR of the /th link (data
stream) in channel c in the case of multichannel singlecast networks;
in single-channel case the channel index ¢ is dropped

lth component of v,,..

lth component of 7y,

Auxiliary variable associated to the SINRs of links belonging to
the mth multicast transmission of the nth node in a multicast

network
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:ch

~*

Y
v

’Ymax

Y min

o
Y min

’anin,i
Sk

~

’A}/

ADwsr

)\max

A1'nin

TTn

18

Component at the Ith row the cth column of ¥, i.e., [¥]i¢; in a
single-channel case the channel index c is dropped; a superscript
is used sometimes to indicate the algorithm iteration index

lth component of 4*

Vector of v; or 47, i.e., vy = (71,...,7L) for singlecast networks

m

and v = (7
Maximum element of the axis-aligned rectangle Q w.r.t the gener-

JneT m=1,....m, for multicast networks

alized inequality =R?

Minimum element of the axis-aligned rectangle Q (as well as Q*)
w.r.t the generalized inequality =R%

Vector obtained from =,,;, by eliminating certain components of
Y min

Vector obtained from -y, ;, by eliminating the ith component
Maximum element of the axis-aligned rectangle O* w.r.t the
generalized inequality =R2

Initial SINR guess for GP, CGP, or SP based algorithms; a
superscript is used sometimes to indicate the algorithm iteration
index

Average normalized weighted-sum-rate deviation; a performance
metric used to compare different algorithms for WSRMax in the
OFDMA downlink

Accuracy required for the BB method for WSRMax

Accuracy required for CGP based algorithms

Path loss exponent used in modeling the power gain between
distinct nodes in general wireless networks

Scalar used in the dual decomposition based algorithm for WSR-
Max in the OFDMA downlink

Scalar used in the dual decomposition based algorithm for WSR-
Max in the OFDMA downlink

Network layer capacity region

Interference coupling index used in modeling the power gain
between distinct nodes in simple bipartite networks

Accuracy used in the definition of P

Arbitrary permutation of links in D(n), which determines the

decoding and the cancellation order of signals received at node n



of
o (-)
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1 Introduction

During the past few years, there has been an explosive growth of the wireless
mobile community and its accelerated demand for additional functionalities
and services, including multimedia applications, real-time-gaming applications,
wireless internet access for realtime video and music, mobile social networks, and
many others [1, 2]. Unfortunately, realizing such a growth in demand is indeed
challenging in the presence of scarce/expensive radio resources, such as spectrum,
and inescapable constraints, such as channel capacity, delay requirements, quality
of service requirements, interference requirements, and many others. Therefore,
sophisticated radio resource management strategies for wireless communication
networks are of paramount importance and are to be designed carefully. To
handle such problems, mathematical optimization is an increasingly important
tool, which provides general frameworks and systematic guidelines.

Many resource management problems of recent interest in wireless commu-
nication can be posed in the framework of mathematical optimization [3-8§].
The focus of this dissertation is to apply optimization techniques for resource
management in wireless communication networks. In particular, a greater
emphasis is placed on the general weighted sum-rate maximization (WSRMax)

problem for a set of interfering links. The generic WSRMax problem is

maximize B'r

subject to re R,

with the variable r, i.e., the vector of achievable rates, where 3 is the vector of
positive weights and R is a set of achievable link rates, which depends on factors
such as transmission strategy, reception strategy, available radio resources, noise,

and many others. In general, the WSRMax problem above is NP-hard.

1.1 Motivation

Among various resource management policies, the WSRMax for an arbitrary
set of interfering links plays a central role in many network control and op-
timization methods. For example, the problem is encountered in power/rate

allocation in wireless, as well as in wireline networks [9-11], MaxWeight link
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scheduling in multihop wireless networks [12], finding achievable rate regions of
singlecast /multicast wireless networks [13, 14], joint optimization of transmit
beamforming patterns, transmit powers, and link activations in multiple-input
multiple-output (MIMO) networks [15], the resource allocation (RA) subproblem
in various cross-layer control policies [16-18] and network utility maximization
(NUM) [19], and dynamic power and subcarrier assignment in orthogonal fre-
quency division multiple access (OFDMA) networks [20, 21], among others.
Thus, WSRMax appears to be a central component in many network design
problems.

Unfortunately, the general WSRMax problem is not yet amendable to a
convex formulation [22]. In fact, it is NP-hard [23]. Therefore, we must rely on
global optimization approaches [24, 25| for computing an exact solution of the
WSRMax problem. Such global solution methods are increasingly important
since they can be used to provide performance benchmarks by back-substituting
them into any network design method, which relies on WSRMax. They are also
very useful for evaluating the performance loss encountered by any heuristic
algorithm for the WSRMax problem.

Though global methods find the solution of the WSRMax problem, they are
typically slow. Even small problems, with a few tens of variables, can take a
very long time to solve WSRMax. Therefore, it is natural to seek suboptimal
algorithms for WSRMax that are efficient enough, and still close to optimal; the
compromise is optimality [3]. Such algorithms for the WSRMax problem are of
central importance since they can be fast and widely applicable in large-scale
network control and optimization methods.

Due to the explosion of problem size and the signal overhead required in
centralized network control and optimization methods, it is highly desirable to
develop decentralized variants of those algorithms. Therefore, finding distributed
methods for the WSRMax problem is of crucial importance from a theoretical,
as well as from a practical perspective for decentralized implementation of many

network control and optimization methods, such as [12, 18§].

1.2 Review of earlier and parallel work

Interference is inherent in wireless networks when multiple transmitters and

receivers operate over a shared medium, e.g., in spatial- TDMA networks [26]
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or code division multiple access networks [9]. A similar kind of interference
also arises in wireline networks due to electromagnetic coupling between the
transmitted signals over wires which are closely bundled, e.g., in digital subscriber
lines (DSL) [11]. Due to interference, the achievable rates on different links
are interdependent, i.e., the achievable rate of a particular link depends on the
powers allocated to all other links. In general, this coupling makes many network
control and optimization problems extremely difficult to solve [22, 23|. In many
such problems, we see that the WSRMax problem holds an essential role. In the
sequel, we first discuss diverse application domains where the WSRMax problem

arises directly or indirectly.

1.2.1 Diverse application domains of WSRMax

Network utility maximization (NUM)

In the late nineties, Kelly et. al. [27, 28] introduced the concept of NUM for
fairness control in wireline networks. It was shown therein that maximizing
the sum-rate under the fairness constraint is equivalent to maximizing certain
network utility functions and different network utility functions can be mapped
to different fairness criteria. Many aspects of the NUM concept in the case
of wireless networks have been substantially discussed in [19, 29-32]. In this
context, the WSRMax problem appears as a part of the Lagrange dual problem
of the overall NUM problem [33-37].

Cross-layer control policies for wireless networks

A number of papers discuss variants of cross-layer control policies, such as [16—
18, 38-48]. Many of these policies are essentially identical. It has been shown
that an optimal cross-layer control policy, which achieves data rates arbitrarily
close to the optimal operating point, can be decomposed into three subproblems
that are normally associated with different network layers. Specifically, flow
control resides at the transport layer, routing and in-node scheduling ' resides at

the network layer, and resource allocation (or RA) is usually associated with the

Lin-node scheduling refers to selecting the appropriate commodity and it is not to be confused

with the links scheduling mechanism which is handled by the resource allocation subproblem [17].
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medium access control and physical layers [44]. The first two subproblems are
convex optimization problems and can be solved relatively easily. It turns out
that under reasonably mild assumptions, the RA subproblem can be cast as a
general WSRMax problem over the instantaneous achievable rate region [16, 17].
The weights of the links are given by the differential backlogs and the policy
resembles the well known backpressure algorithm introduced by Tassiulas and
Ephremides in [12, 49] and further extended in [16] to dynamic networks with

power control.

MaxWeight link scheduling for wireless networks

Maximum weighted link scheduling for wireless networks [12, 38—41, 49-53] is
a place, in which the problem of WSRMax is directly used. Note that, for
networks with fixed link capacities, the maximum weighted link scheduling
problem reduces to the classical maximum weighted matching problem and can
be solved in polynomial time [38, 53, 54|. However, no solution is known for the

general case when the link rates depend on the power allocation of all other links.

Power/rate control policies for wireless networks

We see sometimes that the WSRMax problem is directly used as the basis for the
power/rate control policy in wireless, as well as in wireline networks [9-11]. For
example, in DSL networks, there is considerable research on resource management
policies, which rely directly on the WSRMax problem for multiuser spectrum
balancing [55-66]. Direct application of WSRMax as an optimization criterion
can also been seen extensively in joint power control and subcarrier assignment
algorithms for OFDMA networks [20, 21, 67-71].

Resource management in MIMO networks

There are also a number of resource management algorithms in multiuser MIMO
networks, which rely on the problem of WSRMax. For example, the methods
proposed in [15, 72-74] rely on WSRMax for joint design of linear transmit and
receive beamformers. In addition, many other references have applied WSRMax

directly as an optimization criterion for beamformer design in MIMO networks,
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including [74-80].

Finding achievable rate regions in wireless networks

In multiuser systems many users share the same network resources, e.g., time,
frequency, codes, space, etc. Thus, there is naturally a tradeoff between the
achievable rates of the users. In other words, one may require to reduce its rate if
another user wants a higher rate. In such multiuser systems, the achievable rate
regions are, of course, important since they characterize the tradeoff achievable
by any resource management policy [9, 10]. As noted in [81], the rate regions are
convex; by invoking a time sharing argument, one can always assume that the
rate region is convex [9]. Therefore, any boundary point of the rate region can

be obtained by using the solution of an WSRMax problem for some weights.

1.2.2 Global methods for WSRMax in wireless networks

Since the general WSRMax problem is NP-hard [23], it is natural to rely
on global optimization approaches [24, 25] for computing an exact solution.
One straightforward approach is based on exhaustive search in the variable
space [55]. The main disadvantage of this approach is the prohibitively expensive
computational complexity, even in the case of very small problems. A better
approach is to apply branch and bound techniques [24, 25, 82|, which essentially
implement the exhaustive search in an intelligent manner; see [57-60, 62| and the
author’s contributions [83-88]. Branch and bound methods based on difference
of convex functions (DC) programming [24] have been proposed in [57-59] to
solve (a subclass of) WSRMax. Although DC programming is the core of their
algorithms, it also limits the generality of their method to the problems, in which
the objective function cannot easily be expressed as a DC [24]. For example,
in the case of multicast wireless networks, expressing the objective function
as a DC cannot be easily accomplished, even when Shannon’s formula is used
to express the achievable link rates. Another branch and bound method has
been used in [60] in the context of DSL bit loading, where the search space is
discretized in advance. As a result of discretization, this method does not allow a
complete control of the accuracy of the solution. An alternative optimal method

was proposed in [62], where the WSRMax problem is cast as a generalized linear
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fractional program [89] and solved via a polyblock algorithm [48]. The method
works well for small scale problems, but as pointed out in [25, Ch. 2, pp. 40-41]
and [89, Sec. 6.3], it may show much slower convergence than branch and bound
methods as the problem size increases. A special form of the WSRMax problem
is presented in [8, p. 78][61], where the problem data and the constraints must
obey certain properties and, consequently, the problem can be reduced to a
convex formulation. However, these required properties correspond to very
unlikely events in wireless/wireline networks, and therefore the method has a

very limited applicability.

1.2.3 Local methods for WSRMax in wireless networks

Indeed, the worst case computational complexity for solving the general WSRMax
problem by applying global optimization approaches [24, 25, 82| can increase
more than polynomially with the number of variables. As a result, these methods
are prohibitively expensive, even for off line optimization of moderate size
networks. Therefore, certainly, the problem of WSRMax deserves efficient
algorithms, which even though suboptimal, perform well in practice.

Several approximations have been proposed for the case when all links in
the network operate in certain signal-to-interference-plus-noise ratio (SINR)
regions. For example, the assumption that the achievable rate is a linear function
of the SINR (i.e., low SINR region) is widely used in the ultra-wide-band
systems [90-92]. Other references, which provide solutions for the power and
rate control in low SINR regions include [39, 93, 94]. The high SINR region is
treated in [34, 95, 96]. However, at the optimal operating point different links
correspond to different SINR regions, which is usually the case with multihop
networks. Therefore, all methods mentioned above that are based on either the
low or the high SINR assumption can fail to solve the general problem.

One promising method is to cast the WSRMax problem into a signomial
program (SP) formulation [5, Sec. 9] or into a complementary geometric program
(CGP) [97, 98], where a suboptimal solution can be obtained quite efficiently; we
can readily convert an SP to a CGP and vice versa [98, Sec. 2.2.5]. Applications
of SP and CGP, or closely related solution methods, have been demonstrated in
various signal processing and digital communications problems, e.g., [15, 64, 66,
72, 73, 98-100] and the author’s contributions [101, 102]. There are a number of
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other important papers proposing suboptimal solution methods for the WSRMax
problem, such as [103] proposed by the author and [38, 40, 53, 63, 65, 74-80],
among others.

Though the suboptimal methods mentioned above, including SP/CGP based
algorithms, can perform reasonably well in many cases 2, it is worth pointing out
that not all of them can handle the general WSRMax problem. The reason is
the self-interference problem, which arises when a node transmits and receives
simultaneously in the same frequency band. Since there is a huge imbalance
between the transmitted signal power and the received signal power of nodes,
the transmitted signal strength is typically few orders of magnitude larger
than the received signal strength. Thus, when a node transmits and receives
simultaneously in the same channel, the useful signal at the receiver of the
incoming link is overwhelmed by the transmitted signal of the node itself. As
a result, the SINR values at the incoming link of a node that simultaneously
transmits in the same channel is very small. Therefore, the self-interference
problem plays a central role in WSRMax in general wireless networks; see, e.g.,
the author’s papers [104, 105].

Thus, in the case of general multihop wireless networks, the WSRMax problem
must also cope with the self-interference problem. Under such circumstances
SP/CGP cannot be directly applicable even to obtain a better suboptimal
solution, since initialization of the algorithms is critical. One approach to dealing
with self interference consists of adding supplementary combinatorial constraints,
which prevent any node in the network from transmitting and receiving si-
multaneously [43, 51, 106-111]. This is sometimes called the node-exclusive
interference model; only subsets of mutually exclusive links can simultaneously
be activated in order to avoid the large self interference encountered if a node
transmits and receives in the same frequency band. Of course, such approaches
based on the node-exclusive interference model induce a combinatorial nature for
the WSRMax problem in general. The combinatorial nature is circumvented in
the authors contributions [112, 113], where homotopy methods (or continuation
methods) [114] together with complementary geometric programming [97] are
adopted to derive efficient algorithms for the general WSRMax problem. Here,

the term “efficient" can mean faster convergence, or convergence to a point with

2e.g., when a node does not transmits and receives simultaneously in the same frequency band
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better objective value.

Along with the emergence of future wireless technologies (e.g., 3G-LTE,
WIMAX, IMT-A) [115-118], which rely heavily on OFDMA based physical
layer specifications, there has also been a lot of research on designing resource
management algorithms for OFDMA networks; see, e.g., [20, 21, 6771, 119—
121, 121-132]. In general, this process requires solving combinatorial optimization
problems and the complexity of the problem increases exponentially with the
number of subcarriers. Nevertheless, specific algorithms designed to power
control and dynamic subcarriers assignment to the users, based on WSRMax,
include the author’s contributions [129-133] and [20, 21, 67-71], among others.

The general WSRMax problem has been addressed in [20] to characterize
the frequency division multiple access (FDMA) capacity region for a broadcast
channel. Due to the nontractability of the original problem, a modified convex
problem formulation, FDMA-TDMA (time division multiple access), was pro-
posed. The authors of [20] also considered algorithms to obtain optimal and
suboptimal solutions to a particular variation of the original problem, where the
total power is evenly divided among the used set of subcarriers. A Lagrangian
relaxation based method has been proposed in [21]. Here, a bisection search
method was used to update the dual variable until the algorithm converges.
Due to the nonconvexity of the optimization problem the optimality of the
algorithm is, of course, not guaranteed. Computationally efficient algorithms
for maximizing the sum-rate have been developed in [67, 68]. Although these
algorithms are optimal for sum-rate maximization, they are not applicable to
solving the WSRMax problem. The reason is that the properties exploited
for solving the sum-rate maximization problem are destroyed when there are
arbitrary weights. A suboptimal method for characterizing the achievable rate
region of the two-user FDMA channel have been presented in [69]. A number of
papers also proposed suboptimal methods for variants on the WSRMax problem,
such as [70, 71].

1.2.4 Distributed WSRMax in wireless networks

The emergence of large scale communication networks, as well as accompanying
network control and optimization methods with huge signalling overheads

triggered a considerable body of recent research on developing distributed
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algorithms for resource management, see [4, 134, 135] and the references therein.
Such distributed algorithms rely only on local observations and are carried
out with limited access to global information. These algorithms essentially
involve coordinating many local subproblems to find a solution to a large global
problem. It is worth emphasizing that the convexity of the problems is crucial in
determining the behavior of the distributed algorithms [4, Ch. 9]. For example,
in the case of nonconvex problems such algorithms need not converge, and
if it does converge, it need not converge to an optimal point, which is the
case with the WSRMax problem. Nevertheless, finding even a suboptimal but
distributed method for WSRMax is crucial for deploying distributively many
network control and optimization methods, e.g., [12, 18, 32, 38, 41, 50-53], which
rely on WSRMax.

Distributed implementation of the WSRMax problem has been investigated
in [63, 64, 66, 136] in the context of DSL networks. However, in the case of
cellular systems with multiple transmit antennas, the decision variables space
is, of course, larger, e.g., joint optimization of transmit beamforming patterns,
transmit powers, and link activations is required. Therefore, designing efficient
distributed methods for WSRMax is a more challenging task, due to the extensive
amount of message passing required to resolve the coupling between decision
variables. In the sequel, we limit ourselves to basic, but still very important,
results that develop distributed coordinated algorithms for resource management
in networks with multiple antennas.

Several distributed methods for WSRMax in multiple-input and single-output
(MISO) cellular networks have been proposed in [137-141] and in the author’s
contributions [142, 143]. Specifically, in [137] a two-user MISO interference
channel (IC) is considered and a distributed algorithm is derived by using the
commonly used high SINR approximation [34]. Moreover, another approximation,
which relies on zero forcing (ZF) beamforming is introduced in [137] to handle
networks with many MISO ICs. The methods proposed in [138-140] derived the
necessary (but not sufficient) solution structure of the WSRMax problem and
used it as the basis for their distributed solution. However, many parameters must
be selected heuristically to construct a potential distributed solution and there
is, in general no systematic method for finding those parameters. In particular,
the algorithms in [138, 139] are designed for systems with limited backhaul

signaling resources. Thus, [138, 139] do not consider any iterative base station
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(BS) coordination mechanism to resolve the out-of-cell interference coupling.
Even though the method proposed in [140] relies on stringent requirements on
the message passing between BSs during each iteration of the algorithm, their
results show that BS coordination can provide considerable gains compared to
uncoordinated methods. An inexact cooperate descent algorithm for the case
where each BS is serving only one cell edge user has been proposed in [141]. The
method proposed in [144] is designed for sum-rate maximization and uses high
SINR approximation. The method is very similar to the one proposed in [137] for
WSRMax problem. A cooperative beamforming algorithm is proposed in [145]
for MISO IC, where each BS can transmit only to a single user. Their proposed
method employs an iterative BS coordination mechanism to resolve the out-of-cell
interference coupling. However, the convexity properties exploited for distribution
of the problem are destroyed when more than one user is served by any BS.
Thus, their proposed method is not directly applicable to the WSRMax problem.

Algorithms based on game theory are found in [146-151]. Their proposed
methods are restricted to interference channels, e.g., MISO IC, MIMO IC. In
addition, the methods often require the coordination between receiver nodes
and the transmitter nodes during algorithm’s iterations. Therefore, even in a
infrastructure based network (e.g., cellular network), communication overhead
may be significantly noticeable.

Many optimization criteria other than the weighted sum-rate have been
considered in the references [144, 145, 152-158| to distributively optimize the
system resources (e.g., beamforming patterns, transmit powers, etc.) in mul-
tiantenna cellular networks. In particular, the references [152-155] used the
characterization of the Pareto boundary of the MISO interference channel [159]
as the basis for their distributed methods. The proposed methods do not employ
any BS coordination mechanism to resolve the out-of-cell interference coupling.
The simple power control methods considered can be unreliable, especially
when the degree of freedom at the transmitters is not sufficient to perform
ZF. In [156-158] distributed algorithms have been derived to minimize a total
(weighted) transmitted power, or the maximum per antenna power across the
BSs, subject to SINR constraints at the user terminals. Many related solution
methodologies, though not distributed, can be found in [160-162] and references

therein.
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1.3 Aims and the outline of the thesis

The aim of this thesis is to apply optimization theory and techniques for
developing global, fast local, as well as distributed solution methods to important
and challenging problems that arise in radio resource management in wireless
communication networks. Specifically, a greater emphasis is placed on the general
WSRMax problem, which plays a central role in diverse application domains,
such as NUM, cross-layer design, link scheduling, power /rate control, MIMO
beamformer design, and finding achievable rate regions, among others.

Chapter 2, the results of which have been documented in [83, 85-87], proposes
a solution method, based on the branch and bound technique, which solves
globally the nonconvex WSRMax problem with an optimality certificate. Efficient
analytic bounding techniques are introduced and their impact on convergence is
numerically evaluated. The considered link-interference model is general enough
to model a wide range of network topologies with various node capabilities, e.g.
single- or multipacket transmission (or reception), simultaneous transmission
and reception. Diverse application domains of WSRMax are considered in
the numerical results, including cross-layer network utility maximization and
maximum weighted link scheduling for multihop wireless networks, as well as
finding achievable rate regions for singlecast/multicast wireless networks.

Chapter 3, the results of which have been presented in [101-105, 112, 113],
proposes fast suboptimal algorithms for the WSRMax problem in multicommodity,
multichannel wireless networks. First, the case where all receivers perform
singleuser detection 3 is considered and algorithms are derived by applying
complementary geometric programming and homotopy methods. Here we analyze
the quantitative impact of gains that can be achieved at the network layer in
terms of end-to-end rates and network congestion, by incorporating the proposed
algorithms within a general cross-layer utility maximization framework. In
addition, we apply them in evaluating the gains achievable at the network layer
when the network nodes employ self interference cancelation techniques with
different degrees of accuracy. Finally, a case where all receivers perform multiuser
detection is considered and solutions are obtained by imposing additional

constraints, such as that only one node can transmit to others at a time or that

3i.e., a receiver decodes each of its intended signals by treating all other interfering signals as

noise.
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only one node can receive from others at a time.

Chapter 4 is devoted to developing algorithms for the WSRMax problem in
downlink OFDMA systems; the results are presented in [129, 130, 132, 133]. A
low-complexity suboptimal power control and subcarrier assignment algorithm is
proposed for the WSRMax problem. The algorithm is based on an a primal
decomposition based method. The original, nonconvex optimization problem
is split into a number of subproblems (one subproblem for each subcarrier)
and a master problem. The subproblems, which can be solved independently
are coordinated to compute an approximate solution for the master problem.
Numerical results are provided to compare the performance of the proposed
algorithm to Lagrange relaxation based suboptimal methods as well as to the
optimal exhaustive search based method.

Chapter 5, the results of which have been documented in [142, 143], considers
the WSRMax problem in a multicell downlink system. We derive a distributed
algorithm based on primal decomposition and subgradient methods. The key
idea is to break the original, nonconvex problem into a number of subproblems
(one for each BS) and a master problem. Each BS optimizes locally its own
decision variables (i.e., beamformers’ directions and power allocation) by using
an iterative ascent algorithm. The BS optimizations are coordinated to find
an approximate solution for the master problem, which resolves the out-of-cell
interference. Numerical results are provided to observe the the behavior of the
algorithm under different degrees of coordination between the cooperating BS.

Chapter 6 concludes the thesis. The main results are summarized and some

open problems for future research are pointed out.

1.4 The author’s contribution to the publications

The thesis is based, in part, on five journal papers [83, 104, 112, 129, 142] and
thirteen conference papers [85-87, 101-103, 105, 113, 130-133, 143]. The first
four journal papers [83, 104, 112, 129] have already been published and the last
one [142] is under revision. Nevertheless, a short conference version of [142] has
been published recently; see [143].

The author had the main responsibility for carrying out the analysis, develop-
ing the simulation software, generating the numerical results, and writing all
the journal papers [83, 104, 112, 129, 142]. Other authors provided invaluable
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comments, criticism, and support during the process. The support from Dr.
Marian Codreanu was priceless; he was involved in deep technical discussions,
helped discussing the structures of the papers and rephrasing certain parts of the
papers, which were, indeed, important in improving the clarity of the articles.

The conference papers [85-87, 101-103, 105, 113, 130-133, 143] are mainly
based on the journal articles [83, 104, 112, 129, 142]. The author had the main
responsibility for preparing all the conference papers, except [87, 102] for which
Dr. Marian Codreanu took the responsibility of manuscript preparation.

In addition to the papers above, the author contributed to one other journal
paper [84] and a conference paper [88]. The articles [84, 88] extended the BB
algorithm for WSRMax developed in [83] further to handle MISO wireless
networks. The author was actively involved in the discussions during the process.
Moreover, the author provided the main simulation software developed in [83] on
which the additional software components to handle the MISO case could be
coded.
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2 A branch and bound method for WSRMax

The main contribution of this chapter is to provide a branch and bound method
for solving globally the general WSRMax problem for a set of interfering links.
At each step, the algorithm computes upper and lower bounds for the optimal
value. The algorithm terminates when the difference between the upper and
the lower bounds is within a pre-specified accuracy level. Efficient analytic
bounding techniques are introduced and their impact on the convergence is
numerically evaluated. The considered link-interference model is general enough
to model a wide range of network topologies with various node capabilities, e.g.,
single- or multipacket transmission (or reception), simultaneous transmission
and reception. In contrast to the previously proposed branch and bound based
techniques [57-59], our method does not rely on the convertibility of the problem
into a DC problem. Therefore, our proposed method applies to a broader class
of WSRMax problems (e.g., WSRMax in multicast wireless networks). Moreover,
the method proposed here is not restricted to WSRMax; it can also be used to
maximize any system performance metric that can be expressed as a Lipschitz
continuous and increasing function of SINR values.

Our proposed branch and bound method shows some analogy to the one
proposed in [60] in terms of the initial search domain and the basic bounding
techniques. However, the two methods are fundamentally different in terms of
branching techniques, as the algorithm proposed in [60] is designed specifically
to search over a discrete space whilst our method is optimized for a continuous
search space. We also provide improved bounding techniques which substantially
improve the convergence speed of the algorithm.

Given its generality, the proposed algorithm can be adapted to address a wide
range of network control and optimization problems. Performance benchmarks
for various network topologies can be obtained by back-substituting it into
any network design method which relies on WSRMax. Several applications,
including cross-layer network utility maximization and maximum weighted link
scheduling for multihop wireless networks, as well as finding achievable rate
regions for singlecast/multicast wireless networks, are presented. As suboptimal

but low-complex algorithms are typically used in practice, our algorithm can
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also be used for evaluating their performance loss.

2.1 System model and problem formulation

The network considered consists of a collection of nodes which can send, receive,
and relay data across a set of links. The set of all nodes is denoted by N and we
label the nodes with the integer values n = 1,..., N. A link is represented as an
ordered pair (%, ) of distinct nodes. The set of all links is denoted by £ and
we label the links with the integer values | = 1,..., L. We define tran(l) as the
transmitter node of link I, and rec(l) as the receiver node of link I. The existence
of a link [ € £ implies that a direct transmission is possible from node tran(l) to
node rec(l). Note that, in the most general case, £ may consist of a combination
of wireless and wireline links, e.g., in the case of hybrid networks. We define
O(n) as the set of links that are outgoing from node n, and Z(n) as the set of
links that are incoming to node n. Furthermore, we denote the set of transmitter
nodes by 7 and the set of receiver nodes by R, i.e., T = {n € N1O(n) # 0} and
R ={n e N|Z(n) # 0}.

The model above covers a wide range of network topologies from very
simple ones to more complicated ones, as shown in Figure 2.1. A particular
class of network topologies is the one for which the set of transmitters 7 and
the set of receivers R are disjoint and we refer to these networks as bipartite
networks. Figures 2.1(a) and 2.1(b) show two examples of bipartite networks.
In Figure 2.1(a) each transmitter node has only one outgoing link and each
receiving node has only one incoming link, i.e., |O(n)] =1 for all n € T and
|Z(n)| =1 for all n € R. Borrowing terminology from graph theory, we say this
network has degree one 4. In contrast, the network shown in Figure 2.1(b) has
degree three, since all nodes n € {3,7,9} have degree 3. A network for which
T NR # ( is referred to as a nonbipartite network. Examples of nonbipartite
networks are shown in Figures 2.1(c) and 2.1(d). Note that all bipartite networks
are necessarily singlehop networks whilst the nonbipartite networks can be

either singlehop [e.g., Figure 2.1(c)] or multihop [e.g., Figure 2.1(d)] networks.

4In graph theory, the degree of a vertex is the number of edges incident on it and the degree of
a graph is the maximum degree of any vertex. By associating the network’s nodes with vertices
and the network’s links with (oriented) edges, we say that the degree of node n is given by

deg(n) = |Z(n)| + |O(n)| and the degree of the network is given by max,car deg(n).
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(a) (b) (c)

Fig 2.1. Various network topologies: (a) Bipartite network, 7 = {1,2,3,4}, R =
{5,6,7,8}, degree 1; (b) Bipartite network, 7 = {1,2,3,4,5}, R = {6,7, 8,9}, degree
3; (c) Nonbipartite singlehop network, 7 = R = N = {1,2,3,4,5,6}, degree 3;
(d) Nonbipartite multihop network, 7 = {1,2,...,9}, R = {2,3,...,10},, TN R =
{2,3,...,9}, degree 4, [83] © 2011, IEEE.

Furthermore, all networks with degree one are necessarily bipartite and all
nonbipartite networks have degrees larger than one.

In general, depending on the complexity limitations and the transceiver
techniques employed at different nodes of the network, some nodes may have
restricted transmit and receive capabilities. For example, certain nodes may
have only singlepacket receive and/or transmit capabilities ® and some nodes
may not be able to transmit and receive simultaneously. These limitations create
subsets of mutually exclusive links and induce a combinatorial nature for the
power and rate optimization in the case of networks with degree larger than
one [38, 51, 163-167]. An example is the maximum weighted link scheduling for
multihop wireless networks [12].

We assume that all links share a common channel and the interference is
controlled via power allocation. We denote the channel gain from the transmitter
of link 7 to the receiver of link j by h;;. For any pair of distinct links ¢ # j, we
denote the interference coefficient from link ¢ to link j by g;;. In the case of
nonadjacent links (i.e., links ¢ and j do not have common nodes), g;; represents
the power of the interference signal at the receiver node of link j when one
unit of power is allocated to the transmitter node of link i, i.e., g;; = |hi;|?.
When links ¢ and j are adjacent, the value of g;; also depends on the transmit

and receive capabilities of the common node. Specifically, we set g;; = oo

5We say that a node has singlepacket receive capability if it can only receive from a single
incoming link at a time. Similarly, we say that a node has singlepacket transmit capability if it

can transmit only through a single outgoing link at a time.
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1
(b) (c)

Fig 2.2. Choosing the value of interference coefficient in the case of adjacent
links: (a) i,7 € Z(n), gi; = g;: = oo if node n has singlepacket receive capability
or gi; = |hiil? g« = |hj;|* if node n has multipacket receive capability; (b) 4,5 ¢
O(n), gij = gj: = oo if node n has singlepacket transmit capability or g;; = |h;;|?,
gji = |hi|? if node n has multipacket transmit capability; (c) i € O(n), j € Z(n),
gi; = gji = oo if node n can not transmit and receive simultaneously or g;; = |h;;|?
and g;; = |h;:|? if node n can transmit and receive simultaneously, [83] © 2011,
IEEE.

if links ¢ and j are mutually exclusive and g;; = |hij|2 if links ¢ and j can
be simultaneously activated. Thus, g;; = g;; = oo for any pair of mutually
exclusive links. Figure 2.2 illustrates three examples of choosing the value of the
interference coefficient in the case of adjacent links. Note that in the case of
nonbipartite networks, when ¢ € O(n) and j € Z(n), the term g;; represents the
power gain within the same node from its transmitter to its receiver, and is
referred to as the self-interference coefficient [see Figure 2.2(c)|. In the case of
wireless networks, these gains can be several orders of magnitude larger than the
power gains between distinct nodes. References [168-171] discuss various self
interference cancelations techniques that provide different degrees of accuracy.
When such schemes are employed, g;; models the residual self-interference
coefficient after a certain (imperfect) self interference cancelation technique was
performed.

It is worth noting that the interference model described previously can
easily be extended to accommodate different multiple access techniques by
appropriately reinterpreting the interference coefficients. For example, in the
case of wireless CDMA networks, the interference coefficient g;; would model the
residual interference at the output of the despreading filter of node rec(j) [9].
Similarly, in the case of wireless SDMA networks, where nodes are equipped
with multiple antennas, g;; represents the equivalent interference coefficient
measured at the output of the antenna combiner of node rec(j) [9]. Extensions
to a multichannel scenario (e.g., FDMA or FDMA-SDMA networks) are also
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possible by introducing multiple links between nodes, one link for each available
spectral channel, and by setting g;; = 0 if links ¢ and j correspond to orthogonal
channels. However, many such extensions are beyond the main scope of this
thesis.

We consider the case where all receiver nodes are using singleuser detection
(i.e., a receiver decodes each of its intended signals by treating all other interfering

signals as noise) and assume that the achievable rate of link [ is given by

qupi

rp=log |1+ 5—=—"——
o? + Zj;él 9;1P;j

(2.1)
where p; is the power allocated to link [, o2 represents the power of the thermal
noise at the receiver, and g;; represents the power gain of link [, i.e. , gy = |hy|?.
The use of the Shannon formula ¢ for the achievable rate in (2.1) is common
practice (see, e.g., [9, 11]) but it must be noted that this is not strictly correct in
the case of finite length packets. However, as the packet length increases, it is
asymptotically correct.

Let us first consider the case of singlecast networks, where all links carry
different information. Let ; denote an arbitrary nonnegative number which
represents the weight associated with link [. Assuming that the power allocation
is subject to a maximum power constraint } .o,y o1 < pp ™ for each transmitter
node n € T 7, the problem of weighted sum-rate maximization can be expressed

as

. gupt
maximize 5 log <1 + )
leL o2+ E il 91Dj

subject to 3 icom P S PR, nE€T
y4i Z 07 le L )

(2.2)

where the variable is (p;)icc-
In the case of multicast networks, a transmitter can simultaneously send

common information to multiple receiver nodes. We consider the general

6The algorithm proposed in this section can be used for any other rate vs. SINR dependence.
The only restriction is that the rate must be a nondecreasing and Lipschitz continuous function

of SINR.
"For the sake of clarity we only consider the case of sum-power constraints for each transmitter

node. However, supplementary sum-power constraints can be also handled by the proposed
algorithm. For example, in the case of a cellular downlink employing the cooperation of several
multiantenna base stations, sum-power constraints per subsets of nodes (one subset of nodes

corresponds to a base station) should be also considered [73].
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Fig 2.3. Multicast network: Different colors represents different multicast trans-
missions. 7 = {1,2}, M; = 2, M> = 1, O'(1) = {1,2}, ©O*(1) = {3,4}, and
0'(2) = {5,6}, [83] © 2011, IEEE.

case where each transmitter node can have several multicast transmissions.
Thus, for each n € T we partition O(n) into M,, disjoint subsets of links, i.e.,
O(n) = UMr, 0™ (n), where M, is the number of multicast transmissions from
node n and the set O™ (n) contains all links associated with the mth multicast
transmission of node n (see Figure 2.3). Let pI” and 8" be the power and
the nonnegative weight allocated to the mth multicast transmission of node
n. Moreover, let p = (pI")neT.m=1,... m, and denote the SINR of the Ith link
belongs to the mth multicast transmission of the nth node by SIN R?l(p), where

m
SINR”™(p) = - guPn
o2 + ZjeT,j;én Zk:ﬁ pj Hé%’(( )gzz + Zk 1ktm pn rg%z{ )gzz

forallne T, m=1,...,M, . (2.3)

Clearly, for any link in the mth multicast transmission of node n, i.e., I € O™(n),
interference at rec(l) is created by the other multicast transmissions of node n
itself and by multicast transmissions of other nodes. The max(-) operator in the
denominator of SINR expressions is used to impose mutually exclusive multicast
transmissions, e.g., if node 6 in Figure 2.3 has singlepacket reception capability,
then O?(1) and O!(2) are mutually exclusive.

Thus, by noting that the maximum rate achievable by all links in O™ (n) is
given by ;' = minjcom () 11, the weighted sum-rate maximization problem can
be expressed as

maximize ZneTZ%L leegmz log (1+SINle( ))

subject to ZZ”lpn prex ne T (2.4)
bn 207 TLGT, mzla"'aMna

where the variable is (p) )neT m=1,...,M,.-
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2.2 Algorithm derivation

For the sake of clarity, let us first address the case of singlecast networks.
Extension to multicast case is presented separately in Section 2.4. We start
by equivalently reformulating the original problem (2.2) as minimization of a
nonconvex function over an L-dimensional rectangle. Then, we describe our
proposed algorithm based on a branch and bound technique [82] to minimize the
nonconvex function over the L-dimensional rectangle.

By introducing auxiliary variables v;, | € £ we first reformulate problem (2.2)

in the following equivalent form:

minimize )., —B log(1 4 )

subject to 7y < ZL, le L
0%+ 22541 9i1P; (2.5)
Zzeo(n) <P, neT
b > Oa lel )

where the variables are (p;)ics and (v;)iez. The equivalence between prob-
lems (2.2) and (2.5) follows from the monotone increasing property of the
log(+) function. Clearly, any feasible v;, € L in problem (2.5) represents an
achievable SINR value for link /. Let us denote the objective function of prob-
lem (2.5) by fo(v) = > e, —Bilog(l + ) and the feasible set for the variables
~¥ = (71,...,75) (or the achievable SINR values) by G, i.e.,

qupi

N 5, lel

0%+ >4 9P ve

=17 2icom) P < PR, neT (- (2.6)
p >0, lel

The optimal value of problem (2.5) can be expressed compactly as t* = infg foly)-
Y€

For clarity, let us define a new function f : ]Ri — R as

x folv) v€6
= 2.7
el { 0 otherwise 27)
and note that for any D C ]Ri such that G C D, we have
inf f(y) = inf = ¢*
Jnf) f) inf fo(¥) : (2.8)



where the first equality follows from the fact that for any v € ]Ri we have
fo() <0. It is also worth noting that the function f is nonconvex over D and
fo is a global lower bound on f, i.e., fo(v) < f(v) for all 4 € D.

Let us now define the L-dimensional rectangle
Qinit = {’Y|O < M < U_lelpg}:::(l)a le ‘C} ’

which encloses the set of all achievable SINR values, i.e., G C Qinit. By using (2.8),

it follows that t* = iIQlf f(). Thus, we have reformulated problem (2.2)
Y€ Linit

equivalently as a minimization of the nonconvex function f over the rectangle
Qinit- In what follows we show how the branch and bound technique is used to
minimize f over Qipit.

Let Q be a L-dimensional rectangle defined as

Q - {7 |’7l,min S M S Yi,max; le ‘C} 5

where ¥ min and ¥, max are real numbers such that v min < Yi,max for all { € L.
For any L-dimensional rectangle Q C Qjnit, let us now define the following

function:
Pmin(Q) = Jof f) - (2.9)

It can be easily observed that

Gmin(Qinit) = _Inf  fy) == (2.10)

YE Qinit

The key idea of the branch and bound method is to generate a sequence of
asymptotically tight upper and lower bounds for ¢uin(Qinit). At each iteration
k, the lower bound L; and the upper bound Uy are updated by partitioning
Oinit into smaller rectangles. To ensure convergence, the bounds should become
tight as the number of rectangles in the partition of Qj,i; grows. To do this, the
branch and bound method uses two functions ¢, (Q) and ¢, (Q), defined for
any rectangle @ C Qj,i such that the following conditions are satisfied [82].

C1 : The functions ¢,(Q) and ¢,1,(Q) compute a lower bound and an upper

bound respectively on ¢nin(Q), i.e.,
VQ C Qiniy we have ¢1,(Q) < dmin(Q) < dun(Q) - (2.11)

48



C2 : As the maximum half length of the sides of Q (i.e., size(Q)=4 I}lacx{%max -
€

’yhmin}) goes to zero, the difference between the upper and lower bounds

uniformly converges to zero, i.e.,

Ve>036 >0 st. VQ C Qinir,size(Q) <5 = dup(Q) — o1,(Q) <e. (2.12)

For the sake of clarity, the definition and computation of ¢, and ¢y, are
described in Section 2.3. In the remainder of this section we will present the
proposed branch and bound method in more detail.

Let € be an a priori specified tolerance. The algorithm starts by computing
Gub(Qinit) and ¢ip(Qinit)- If Pub(Qinit) — P1b(Qinit) < €, the algorithm terminates
and C1 in (2.11) confirms that we have an upper bound ¢, (Qinit), which is
at most e-away from the optimal value t*. Otherwise, we start partitioning
Oinit into smaller rectangles. At the kth partitioning step, Qinit is split into
k rectangles such that Qi = Q1 U Qo U ... U Qf and ¢un(Qk) and ¢1p(Qk)
are computed. Then the lower bound L and upper bound Uy are updated as
follows:

_ ; ) < . L) =t < i i) = . .
Lk ie{{n,;}}.,k} ¢lb(Qz) = ¢m1n(Q1n1t) t >~ le{gl;,an} ¢ub(Qz) Uk (2 ]-3)

Note that the lower bound Lj and the upper bound Uy are refined at each
step and they represent the best lower and upper bounds obtained so far. If
the difference between new bounds become smaller than ¢, then the algorithm
terminates. Otherwise, further partitioning of Qi is required until the difference
between Uy, and Ly, is less than e. The condition C2 in (2.12) ensures that, the
difference Uy — Ly eventually becomes smaller than e for some finite k. The
proposed algorithm based on the branch and bound method can be summarized

as follows:

Algorithm 2.1. Branch and bound method for WSRMax

1. Initialization; given tolerance € > 0. Set k = 1, By = {Qinit} , U1 = dup(Qinit),
and L1 = ¢1p(Qinit)-
2. Stopping criterion; if U, — Li > € go to step 3, otherwise STOP.

3. Branching;

(a) pick Q € By, for which ¢1,(Q) = Lj and set Qp = Q.
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(b) split Qf along one of its longest edge into Q; and Q.
(¢) form By, from By by removing Qy and adding Q; and Q.

4. Bounding;

(a) set Ugt1 = minQeBk+1{¢ub(Q)}'
(b) set Lk+1 = minQEBk+1 {¢1b(Q)}

5. Pruning;

(a) pick all @ € By for which ¢1,(Q) > Ugy1.
(b) update Biy1 by removing all Q obtained in the above step 5-(a).

6. Set k =k + 1 and go to step 2.

The first step initializes the algorithm and the upper and lower bounds are
computed over the initial rectangle Q;nit. The second step checks the difference
between the best upper and lower bounds found so far [bounds Uy and Lj, are
given by (2.13)]. The algorithm repeats steps 3 to 6 until Uy, — Ly < €.

Step 3 is the branching mechanism of the algorithm. Here we adopt the
following branching rule: select from the current partition of Qj,i (i-e., By) the
rectangle with the smallest lower bound and split it in two smaller rectangles
along its longest edge. Splitting the chosen rectangle along its longest edge
ensures the convergence of the algorithm [82]. At step 4 the best upper bound
Uy and the best lower bound Ly, are updated according to (2.13).

Step 5 is used to eliminate (or prune) rectangles for which the lower bound is
larger than the best upper bound found so far, since those rectangles can never
contain a minimizer of the function f . Note that pruning does not affect the
speed of the main algorithm since none of the rectangles that were pruned will
be selected later in the branching step 3 for further splitting. The advantage of
pruning is the release of the memory otherwise used for storing unnecessary

rectangles.

2.2.1 Convergence of the branch and bound algorithm

In this section we show the convergence of the proposed branch and bound
method for WSRMax (i.e., Algorithm 2.1) within a finite number of iterations.

Algorithm convergence is established by the following theorem.
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Theorem 2.1. If for any Q C Qiniy with Q = {¥|Vi,min <V < Vimax, | € L},
the functions ¢un(Q) and ¢1,(Q) satisfy the conditions C1 and C2, then Algo-
rithm 2.1 converges in a finite number of iterations to a value arbitrarily close to

t*, de, Ye>0, 3K > 0 s.t. Ug — t* < e.

Proof. The proof is similar to that provided in [82, 172] and it is provided here
for the sake of completeness.

First note that there are k rectangles in the set By without pruning. Let the
volume of rectangle Qjyi¢, denoted by vol(Qinit). Thus, we have

min vol(Q) < M .

2.14
QEBy k ( )

Therefore, as k increases at least one rectangle in the partition become small.

Then it is required to show that the smaller vol(Q) the smaller size(Q). To

do this, we first define the condition number of the rectangle

Q= {v|Mmin €M < Vimax: € L}
as
max ('yl,max - ’yl,min)
Ininl ('Yl,max - 'Yl,min) '

Note that the splitting rule we use, i.e., splitting the rectangle along its longest

cond(Q) = (2.15)

edge, always ensures that for any k and any rectangle Q € By [172, Lem. 1]

cond(Q) < max{cond(Qjnit), 2} . (2.16)
Moreover, we have,
L
VOI(Q) = H(Vl,max - Vl,min) (217)
=1
L—1
2 mlax(’yl,max - ’Yl,min) <Inlin('7l,max - '-Yl,min)) (218)
. L—-1
L mlln(’yl,max - 'yl,min)
= | max max min 2.19
( l (’YL ’YL )> mlax(fyl,max - ryl,min) ( )
. L
_ (2size(Q)) " (2.20)

(cond(Q))* !

> (ijﬁ’((QQ)))L , (2.21)
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where (2.17)-(2.20) clearly followed by using straightforward manipulations and
(2.21) follows by noting that cond(Q) > 1. Thus, from (2.21) we have

size(Q) < %cond(Q)vol(Q)l/L . (2.22)

By using (2.14), (2.16), and (2.22) we obtain the following relation:

min size(Q) < %max{cond(Qinit)ﬂ} <V°1(]€Q“)> . (2.23)

We are now ready to show that there exists a positive integer K such that for
any € > 0, Ug — t* < e. To see this, we select K as the maximum number of

iterations such that

1 N vol(Qinit)
§max{cond(let),2} (K) <9d. (2.24)

Thus from (2.23), for some Q denoted as Q , size(Q) < § and from C2 [see (2.12)],

we have

dun(Q) — d1n(Q) < e . (2.25)

However, note that Ug < ¢up(Q) [since Ux = mingeqi2,... x} $ub(Qr)] and

t* > ¢1p(Q). Thus, Ux — t* < e and the result follows. O

2.3 Computation of upper and lower bounds

Note that the main challenge in designing a global optimization algorithm based
on the branch and bound method is to find cheaply computable functions ¢, (Q)
and ¢),(Q) such that the conditions given in (2.11) and (2.12) are satisfied.
Basically, the essence of the branch and bound method is based on the fact that
for any Q C Qjyit, the bounds ¢, (Q) and ¢, (Q) are substantially easier to
compute than the true minimum @i, (Q) [82].

In this section we propose several candidates for ¢p,(Q) and ¢u,(Q) in
Algorithm 2.1. First, we describe two basic lower and upper bound functions,
prove that they satisfy the conditions C1 and C2 [see (2.11) and (2.12)] and
present efficient methods for computing them. Computationally efficient better

bounds are presented later in this section.
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2.3.1 Basic lower and upper bounds

Recall that Q = {¥ [Vimin <V < Vi,max; | € L}. We now define the functions

(bﬁ’)asic( ) and ¢B'1§IC( ) as

(bﬁ)asic(g) — { fO(’Ymax) Ymin € g (226)

0 otherwise ;

fo (’Ymin) Ymin € g

) (2.27)
0 otherwise ,

QSEI?SiC(Q) = f(’Ymin) - {

where ¥y, = (V1,max; - - - » YL, max)s Ymin = (Y1,mins - - - » YL,min), and G is defined
n (2.6). Note that the most computationally expensive part of evaluating
Bic(Q) and ¢B251¢(Q) is to check the condition v,,;, € G. An efficient method
for checking this condition is provided soon after the following important

properties of functions ¢Ba“° and (i)EﬁSic are established.
Lemma 2.1. The functions ¢525°(Q) and ¢E251°(Q) satisfy the condition C1.

Proof. In the case of v,,;, € G we can easily see that ¢5*¢(Q) = ¢in(Q) =
qSE’ﬁ‘“C(Q) = 0, and therefore the inequalities in C1 hold with equalities. In the

case of v,,;, € G we notice that

d)min( ) = inf f( ) f(PYmin) = fo(’Ymin) - (ZSEI?SE(Q) . (228)

~yeQ

The first equality follows from (2.9), the inequality follows since v,,;, € Q, and

the second equality follows from (2.7). Moreover, we have

¢min(Q) = inf f~( ) > inf fO( ) fO(’YmaX) ﬁablc(g) ’ (229)
~YEQ

~YeQ

where the inequality follows from the fact that f(v) > fo(v) and the second
equality is from the fact that Q is a rectangle and fy(7) is monotonically

decreasing in each variable ;, | € £. From (2.28) and (2.29) we conclude that
(bﬁaSiC(Q) < ¢min(Q) < E§SiC(Q)~ [

Lemma 2.2. The functions ¢525°(Q) and qﬁE{jSiC(Q) satisfy the condition C2.

Proof. We first show that the function fo(v) = >, —filog(1 + ;) is Lipschitz
continuous on IR_%_ with the constant D = ’/Zleﬁ B?, ie.,
lfolw) = fo(w)| < Dllp —vl], (2.30)
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for all p,v € ]Ri We start by noting that fo(v) is convex. Therefore, for all
p,v € RY we have [3, Sec. 3.1.3]

folw) = fo(v) < Vo(u)" (n—v). (2.31)

Without loss of generality, we can assume that fo(p) — fo(v) > 0. Otherwise, we
can obtain exactly the same results by interchanging g and v in (2.31), i.e.,
fo(v) — fo(p) < Vfo(v)T (v — ). Thus, we have that

[fo(k) = fow)| < [V o) (1 —v)] (2.32)
<19 o)l et — )1, (2.3)
< mascyep IV oMl N1t = )1l (230
N ) S A T (235)
very \| =7 (14m)? 2
Dl ll, . (2.36)

where (2.32) follows from (2.31), (2.33) follows from the Cauchy-Schwarz
inequality, (2.34) follows from the maximization operation, (2.35) follows by
noting that [V fo(y)]; = (1_?7’71), I € L, and (2.36) follows by setting v; = 0 for all
leLl.

Now we can write the following relations:

Pe(Q) = A1 (Q) < fo(Yamin) = fo(Vinax) (2.37)
S D[Vmin = Ymaxll2 (2.38)
= D] 3 (Vimax — Vimin)eu| |, (2.39)
lel
< D3 (Vimax = V,min) (2.40)
< 2DL size(Q) . (2.41)

The first inequality (2.37) follows from (2.26) and (2.27) by noting that fj is
nonincreasing, (2.38) follows from (2.30), (2.39) follows clearly by noting that e,
is the /th standard unit vector, (2.40) follows from triangle inequality, and (2.41)
follows from the definition of size(Q) (see C2). Thus, for any given € > 0, we
can select ¢ such that 6 < e/2DL, which in turns implies that condition C2 is
satisfied. O
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In the sequel, we present a computationally efficient method of checking
the condition ~,,;, € G which is central in computing ¢55°(Q) and ¢33i¢(Q)
efficiently. Without loss of generality, we can assume that ~,;, > 0. Note
that the method can be extended to the case, where there are links [ for which
Yi,min = 0 in a straightforward manner; then, checking the original condition
Ymin € G is equivalent to checking a modified condition v,,;, € G, where Y min
and G are obtained by eliminating the dimensions (or link indexes) for which
Yi,min = 0 and thus, we have v, ;, > 0.

Let us first consider the first set of inequalities in the description of G, i.e.,

gupt
< ma lel. (2.42)
Let p = (p1,...,p1). By rearranging the terms, (2.42) can be equivalently
expressed as [72, 173]

(I-B(¥)G)p > ¢’B(v)1, (2.43)

where the matrices B(y) € RY*" and G € RY*" are defined by
B(y) = diag (71%) I (2.44)
g11 gLL ’ 0  otherwise .

For the notational simplicity, let
A(v) =1-B(7)G and b(v) =’B(y)1 . (2.45)

Thus, (2.42) can be compactly expressed as A(y)p > b(v). Let us denote
the spectral radius [174, p. 5] of matrix B()G by p (B(v)G). The following
theorem helps us to check if v € G.

Theorem 2.2. For any v > 0, the following implications hold:

1. p(B(v)G) =1 = v¢G.

2. p(B(v)G) <1 and 3 jcompi < PR for alln € T, where p = A=1(¥)b(y)
=~€g.

8. pB)G)<land3In €T s.t. Y jcom Pt > pr, wherep = A 1(v)b(y) =
YEG.

Proof. See Appendix 1. O

55



Based on Theorem 2.2, the condition ~,,;,, € G can be checked as follows:

Algorithm 2.2. Checking for condition v,;, € G

1. Construct B(7v,,;,) and G according to (2.44).

2. If p(B(Yin)G) > 1, then v,,;, € G and STOP. Otherwise, let
P = A" (Vi) P(Vinin)-

3. If Zleo(n) pr < ppa* for all n € T, then ~,;, € ¢ and STOP. Otherwise,
Ymin € G and STOP.

2.3.2 Improved lower and upper bounds

Finding tighter bounds is very important as they can substantially increase
the convergence speed of Algorithm 2.1. By exploiting the monotonically
nonincreasing property of fo [i.e., v; < v5 = fo(v1) = fo(72)], one improved
lower bound and two improved upper bounds are proposed in this subsection.
Efficient methods of computing them are provided as well.

Note that, in the case of v, € G [i.e., QNG = 0, see Figure 2.4(a)], f(y) =0
for any v € Q. Thus, both the basic lower bound (2.26) and the basic upper
bound (2.27) are trivially zero and no further improvement is possible since they
are tight. Consequently, tighter bounds can be found only in the case v,,;, € G
li.e., @NG # 0, see Figure 2.4(b)]. Thus, we consider only this case in the sequel,

unless otherwise specified.

Improved lower bound

Roughly speaking, a tighter lower bound can be obtained as follows. We first
construct the smallest rectangle o* C Q, which encloses the intersection QNG [see
Figure 2.4(b)]. Let us denote this rectangle as Q* = { [Yimin <7 < 77, L € L}.
The improved lower bound is given by fo(5,...,75) 8.

8Further improvement can be obtained by constructing an outer polyblock approximation [89]
for O* NG that lies inside O*. If {‘I'i}iel'} are the proper vertices of the polyblock, it is easy to
see that an improved bound is given by min,y, fo(¥;). Though interesting, in this thesis we do
not consider these possible extensions, which can be carried out in a straightforward manner.
But we refer the reader to [25, Ch. 2, Sec. 7|, where similar bound improving techniques are

discussed in the context of (difference of) monotonic optimization problems.
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Fig 2.4. lllustration of the sets G, Qi.it, Q, and O in a 2—dimensional space, [83]
© 2011, IEEE.

Recall that Q = {’Y|’7l,min S i S Yi,max; le »C} For any Q g Qinitv the

improved lower bound can be formally expressed as

. o
0 otherwise ,
where, ¥* = (3%, ...,7}) and 4 is the optimal value of the following optimization
problem:
maximize L A—
o2+ i 95iPj
subject to QL < Yi,max
7 Lz e 2.47
Ymin = L e o {4) (2.47)

o? + Zﬁgl 9;1Dj
Zzeom) p<py*, neT
DL 2 Oa lel )

where the variable is (p;);e. The first inequality constraint ensures that Q* C Q,
and it is active if and only if the corner point a; = v, + (Vi,max — Vi, min)€; lies
inside G, i.e., a; € G [see a3 in Figure 2.4(c)]. Therefore, when a; € G, ¥ = i max-
Otherwise (i.e., a; ¢ G ), 47 is limited by the power constraints. In this case, the
first constraint of problem (2.47) can be safely dropped and the resulting problem
can be readily converted into a standard geometric program (GP) [3] so that
the solution can be obtained numerically by using a GP solver, e.g., GGPLAB,
GPPOSY, GPCVX [175]. However, it turns out that the particular structure of
problem (2.47) allows us to analytically find the optimal value. This provides a
more computationally efficient way to compute hr)n P(Q) without relying on a
GP solver. This method is described soon after the following important property
of ¢"P(Q) is established.
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Lemma 2.3. For any Q C Qinit, the lower bound qﬁfﬁnp(Q) (2.46) is better than
the basic lower bound ¢B*5(Q) (2.26), i.e., pmin(Q) > G (Q) > $125¢(Q).

Proof. If v, € G, we have ¢nin(Q) = ﬁanp(Q) = ¢B®ic(Q) = 0. Otherwise,

i.e., when ~v,;, € G we obtain

YEGNQ YEGNQ

> fo3") = ¢ (Q) = fo(Yamax) = OE(Q) ,  (2:48)

Omin(Q) = inf f(y) = _inf f(v)=_inf fo()

where the first equality is from (2.9), the second equality follows from the
fact that G N Q is nonempty and f(y) = 0 for all v € Q\ (G N Q), the third
equality follows from f (v) = fo(y) for all vy € GN Q, the first inequality follows
by noting that ¥* > ~ for all v € @ NG and fy is monotonically decreasing
in each dimension, and the last inequality follows since 7, > 4* and fy is

monotonically decreasing. O

We describe now an efficient method to find 4 by solving problem (2.47)
when v,;, € G and a; ¢ G. We can assume without loss of generality that
Ymin > 0 for all I € £\ {i}; the proposed method can be extended to the case
where there are links for which 7 min = 0 for some [ € £\ {¢}. In such cases
the original problem (2.47) is equivalent to a modified problem obtained by
eliminating the dimensions [ € £\ {i} (i.e., link indexes) for which 7; min = 0.

The proposed method can be summarized as follows. By using the equality
constraints we eliminate the L — 1 variables (p;);es\(s} and transform prob-
lem (2.47) into a single variable optimization problem (with the variable p;).
This facilitates finding the optimal power p; (and implicitly 47), in an efficient
and straightforward manner.

For a detailed description of the above method it is useful to introduce a
virtual network obtained from the original network by removing the ith link.
Such a network is referred to as reduced network. For notational convenience let
us define the following vectors and matrices associated to the reduced network:
Pi and v,,;,, ; are obtained from p and 7,,;, by removing the ith entries, i.e., p; =
(P1y -+ Pi-1,Pit1, - PL) a0 Yy ;= (V1,min, - - - » Yi—1,mins Vit 1min, - - - » YL, min);

B ) and G, are obtained from B(~,,,) and G [see (2.44)] by

removing the ith rows and the ith columns. It is important to note that if SINR

similarly, B;(

’7min,i
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vector 7,y;, is achievable in the original network then 4,,;,, ; is also achievable in
the reduced network.
Now we turn to problem (2.47). By rearranging the terms, the equality

constraints can be expressed compactly as

[I - Bi(’?min,i)éi]ﬁi + di(’_)’min,i)pi = UQBi('?min,i)l ; (249)
where
_ gi1 Gii—1 Gii+1 giL
di(’)’min,i)z—< s - -+ s i Lminy — Vit T mins -« 5 WL,min) :
g11 9i—1i—1 Ji+1i+1 grLrL

Similarly to (2.45), let us denote

Ai(;Ymin,i) =I- Bi(;)/min,i)éi ) Bi(;Ymin,i) = UzBi(;)/min,i)l (250)
and rewrite (2.49) equivalently as
Ai (:}/min,i)pi + dl (;Ymin,i)pi = BZ (:Ymin,i) . (251)

Since ¥, € G it follows that the SINR vector 4,,;, ; > 0 is achievable in
the reduced network. Thus, Theorem 2.2 (applied to the reduced network)
implies that the spectral radius of the matrix Bz‘(;)’min,i)éi is strictly smaller
than one, i.e., p(B;(¥pin)Gi) < 1. This, in turn, ensures that matrix A; (i, ;)
is invertible and its inverse has nonnegative entries, i.e., A; 1(’S/min’i) >0 [174,
Th. 2.5.3, items 2 and 17]. Therefore, we can parameterize all solutions of (2.49),

using p; as a free parameter [3, Sec. C.5, p. 681]. Thus, we obtain

A’L_ ' (:Ymin,i ) BZ (:Ymin,i)

131' _ _Ai_l(:)/min,i)di(:ymin,i) ; 4
Y23 1 0
Qi S;
B l o ) (2.52)
q; S;

where ¢;=1, $;=0, q;= — Ai_l(:ymin,i)d’i(:ymin,i)’ and gi:Ai_l(;/min,i)lsi(:ymin,i)'
The vectors q; and §; are introduced for notational simplicity and they have the

following structure:

(i’i = (q17"'7qi—17(h+17'"7qL) 5 S; = (817"'75i—175i+17"'a8L) .

Furthermore, since A;l(ﬁlmin’i) > 0 and by noting that d;(¥,;,,;) < 0 and

b; (Ymin i) = 0 [see (2.50)], we can see that all entries in vectors q; and §; are
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nonnegative, @; > 0 and §; > 0. Finally, we can rewrite parametrization (2.52)
as

pj =q;pi+sj, €L, (2.53)
where ¢; >0, s; >0forall j€ £, and ¢; =1, s; =0.

Next we use parametrization (2.53) to convert problem (2.47) (with L power
variables) into an equivalent one with a single power variable p;. To do this, we
first express the objective function of problem (2.47) g;(p) as a function of single
variable p;, i.e.,

GiiDi GiiPi _
P =y Givs 00+ 5 i (@pit5) 9:pi) (254

j#i jFi
The sum-power constraints of problem (2.47) (i.e., >2jco(y Pt < pp™, n € T)
can be expressed as
PR = Dicom) St
Zleo(n) q

Furthermore, since ¢; > 0, s; > 0, all L nonnegativity power constraints of

pi < ,meT . (2.55)

problem (2.47) can be replaced by p; > 0, i.e., p; > 0 in parametrization (2.53)

implies that p; > 0 for all j € £. Recall that we consider the nontrivial case

a; ¢ G, and therefore the first inequality constraint of problem (2.47) can be

safely dropped, and therefore problem (2.47) can be expressed equivalently as
maximize  g;(p;)

Pr™ = 2ieom) S

subject to p; <
Zle@(n) aQ

,neT (2.56)

Dbi Z 0 )
where the variable is p;. By recalling that s; > 0 for all € L, it is easy to see
that the first derivative of the objective function g;(p;) is strictly positive. Hence,
the maximum g;(p;) can be found by increasing p; until one power constraint

become active. Thus, in the case of a; ¢ G, we have

P — n) S
pf = min 2icom) (2.57)
n€T  Dcom) €

and we can express the optimal 7} as 77 = g;(p}). Hence, the general solution of

problem (2.47) can be expressed as

,7* — Yi,max A S g (2 58)
' gi(pf) otherwise . )
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Note that, the proposed method for checking ~v,.;, € G (i.e., Algorithm 2.2) can
be readily applied to check the condition a; € G in (2.58) as well.

Improved upper bound

Based on monotonicity of fy, L tighter upper bounds can be easily obtained by
evaluating fo at the vertices of Q* adjacent to ,,;,. Specifically, they are given
by fo(a:), ! € L, where a; = 7,5, + (] —Y1,min )€1 [see a; and a, in Figures 2.4(b)
and 2.4(c)|. Note that the values 7, € £ have already been found for computing
the improved lower bound ¢;/""(Q) (2.46). Let I* be the index of the vertex
which provide the best (smallest) upper bound, i.e., I* = argmin;e, fo(a;). Thus,

our first improved upper bound is given by

0 otherwise .

QJ)IUIEP(Q) _ { fO(al*) Ymin € g (2.59)

The following lemma ensures that (b‘Ilelp(Q) is tighter than the basic upper bound

PLe(Q).-
Lemma 2.4. For any Q C Qs and ¥ € G N Q we have dmin(Q) < fo(F) <
fo(Ymin) = O(Q).-

Proof. First note from (2.48) that, ¢min(Q) = irglrij fo(7). Moreover, by noting
~e

that ¥ € G N Q, we have igfgfo('y) < fo(%) and since v,,;, < ¥ and fy is
€GN
monotonically decreasing in each dimension, we have fo(¥) < fo(Vmpin)- Thus,

we can combine these relations together and the result follows. O

We can further improve the previously obtained bound by using efficient
local optimization techniques. Specifically, we can use as an initial point v = a;«

and (locally) minimize fo(7y) subject to v € GN Q, i.e.,

minimize  fo(7)

) (2.60)
subject to ye€GNQ,

where the variable is v. Let us denote the obtained local optimum by vy, ,cap-

Thus, our second improved upper bound is given by

b .
v 0 otherwise .

d)ImPCGP(Q) _ { fO(’YImpCGP) Ymin € g (261)
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One simple approach to efficiently compute ~y,,,cgp via complementary geomet-
ric programming (or CGP) [97] is presented in Appendix 2.

Since all improved bounds are tighter than the basic ones (see Lemma 2.3
and Lemma 2.4), any possible combination of a lower and an upper bound pair
must also satisfy the conditions C1 and C2. This ensures the convergence of the

proposed Algorithm 2.1.

2.4 Extensions to multicast networks

In this section we consider the problem of WSRMax in multicast networks [i.e.,
problem (2.4)] and show how Algorithm 2.1 can be adapted to find the solution
of problem (2.4). By noting the monotonically increasing property of log(-)

function, problem (2.4) can be expressed in the following equivalent form:

maximize ) Zf\fil B log (1+ leglirén) SINRZU(D))
subject to Zn]\fil Py <P, neT (2.62)

n

szZ()’ nET’ m:17"'7Mn7

where the variable is (p)')ne7 m=1,...m, . By introducing auxiliary variables

Yo oneT,m=1,...,M,, we can equivalently express problem (2.62) as

minimize ZneT Zn]\fll =B log(1+77")

nel, m=1,..., M,,

e O0™(n) (2.63)
S P < X e T

pm>0,neT, m=1,...,M, ,

subject to 4™ < SINR!™(p),

where the variables are (pI")ne7 m=1,...0m, and (V" )nerT m=1,...:m,- A close
comparison of problems (2.63) and (2.5) reveals that they have a very similar
structure. Therefore, the proposed branch and bound method (i.e., Algorithm 2.1)
can be directly applied to solve problem (2.63) by redefining appropriately the

following sets and functions.

1. v=(m,...,7c) is replaced by v = (V" )neT m=1,..., M, -
2. fo(7) is replaced by fo(v), where fo(v) = 32, cr S0 —Bm log(1 + 7).
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3. G is replaced by G, where

=1 M,

o < SINRp(p), "ET M=l

g~ —{~ l e Om(n)
S P <pR e T
ppt >0, neT, m=1,...,M,
4. Qs is replaced by Qimt, where
ean
Qit = 37| 0< " < %p?a’(, nel, m=1,..., M,

5. Q is replaced by Q, where
Q = {’7| ’Y»mein S ,7’,7,’Ln S ’Y:Z:Lrnaxa ne Ta m = la .. 'aMn} .

Note that the definitions of the lower and upper bound functions provided in the
case of singlecast networks |[i.e., (2.26), (2.27), (2.46), and (2.59)] are applicable
in the case of multicast networks as well. However, instead of the proposed
efficient methods based on M-matrix theory [174, p. 112] for checking v € G
(see Algorithm 2.2) and for evaluating 7} [see (2.58)], in the case of multicast

networks, we have to rely on a linear programming (LP) or a GP solver.

2.5 Numerical examples

In this section we first compare the impact of the proposed lower bounds and
upper bounds (Section 2.3) on the convergence of the proposed branch and bound
method (Algorithm 2.1 in Section 2.2). Next, we provide various applications
of Algorithm 2.1 and numerical examples for the considered applications. In
summary, those applications include: sum-rate maximization in singlecast
wireless networks, the problem of maximum weighted link scheduling for wireless
multihop networks [12, Sec. II1I-B,V-A],[38, Sec. 4], cross-layer control policies for
network utility maximization (NUM) in multihop wireless networks [17, Sec. 5],
finding achievable rate regions in singlecast, as well as in multicast, wireless
networks.

To simplify the presentation we use the abbreviations: LBgagic for the basic

lower bound given in (2.26), UBpaic for the basic upper bound given in (2.27),
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Fig 2.5. (a) Bipartite network, degree 1, N = 8, L = 4; (b) Bipartite network,
degree 1, N =4, L = 2,[83] © 2011, IEEE.

LB for the improved lower bound given in (2.46), UBpy,p, for the improved
upper bound given in (2.59), and UBimpcap for the improved upper bound given
in (2.61).

2.5.1 Impact of different lower bounds and upper bounds
on BB

To gain insight into the impact of the proposed lower and upper bounds on
the convergence of Algorithm 2.1, we focus first on the problem of sum-rate
maximization in a simple bipartite network of degree 1 [see Figure 2.5(a)]. The

channel power gain between distinct nodes are modeled as
|h”‘2 = Mli_jlcijv Z7j el ’ (264)

where ¢;;s are small-scale fading coefficients and the scalar p € [0, 1] is referred to
as the interference coupling index, which parameterizes the interference between
direct links. The fading coefficients are assumed to be exponentially distributed
independent random variables to model Rayleigh fading. An arbitrarily generated
set C of fading coefficients, where € = {cij | i,j € L} is referred to as a single
fading realization; we use a discrete argument ¢ sometimes, to indicate the fading
realization index. For example ¢ (t) represents the tth fading realization. We

max

define the signal-to-noise ratio (SNR) operating point as (p
neT)

= pp'®* for all

max

SNR = 20

g

- (2.65)

We consider first the nonfading case, i.e., ¢;; = 1,4,j € £, and the proposed
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Fig 2.6. Evolution of lower and upper bounds: (a) Basic lower bound in conjunc-
tion with all upper bounds; (b) Improved lower bound in conjunction with all upper
bounds, [83] © 2011, IEEE.
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Algorithm 2.1 was run with all possible combinations of the proposed lower
and upper bound pairs. Figure 2.6 shows the evolution of the upper and lower
bounds for the optimal value of problem (2.5) ? for SNR = 15dB, p = 0.25,
and B, = 0.25 for all [ € L. Specifically in Figure 2.6(a), we used the basic
lower bound LBpgasie in conjunction with all proposed upper bounds and in
Figure 2.6(b) we used the improved lower bound LBy, in conjunction with
all proposed upper bounds. The results show that the convergence speed of
Algorithm 2.1 can be substantially increased by improving the lower bound whilst
the tightness of the upper bound has a much reduced impact. Note that this is
in general the behavior of a branch and bound method, where an approximative
solution can be found relatively fast but certifying it typically takes a much larger
number of iterations [82]. Note that in both Figure 2.6(a) and Figure 2.6(b) the
evolution of lower bounds is independent of the upper bound used. This is due
to the fact that in each iteration the branching mechanism depends only on the
lower bound.

In order to provide a statistical description of the speed of convergence
we turn to the fading case and run Algorithm 2.1 for a large number of
fading realizations. For each one we store the number of iterations and the
total CPU time required to find the optimal value of problem (2.5) within
an accuracy of € = 107! for SNR = 15dB, x = 0.25, and 8; = 0.25 for all
l € L. Figure 2.7 shows the empirical cumulative distribution function (CDF)
plots of the total number of iterations [Figure 2.7(a)] and the total CPU
time [Figure 2.7(b)] for all possible combinations of lower and upper bounds pairs.
Figure 2.7(a) shows that, irrespective of the upper bound we use, the improved
lower bound LBy, provides a remarkable reduction in the total number of
iterations when compared to LBgasic. Results further show that, even though
the improved upper bound UBiypcqp makes use of advanced optimization
techniques, such as complementary geometric programming (see Algorithm 2.0.1,
Appendix 2), the benefits from UBjypcap over the improved upper bound
UBimp is marginal in terms of the total number of iterations. In terms of the
total CPU time [Figure 2.7(b)], significant improvements are often achieved by
using the lower and upper bound pairs (LBmp, UBimp) and (LBimp, UBBasic)-

Interestingly, the lower and upper bound pair (LBmp, UBmpcap) performs very

9The optimal value of problem (2.5) is the negative of the optimal value of problem (2.2).
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Fig 2.7. Empirical CDF plots of: (a) Total number of iterations; (b) Total CPU time,
[83] © 2011, IEEE.
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Fig 2.8. Bipartite network, degree 3, N =5, . = 5, [83] © 2011, IEEE.

poorly. This behavior is due to the complexity of step 2 of Algorithm 2.0.1,
where we have to rely on a GP solver.
Therefore, in all of the following numerical examples, Algorithm 2.1 is run

with the lower and upper bound pair (LBimp, UBimp), unless otherwise specified.

2.5.2 Sum-rate maximization in singlecast wireless
networks

Let us now consider the problem of sum-rate maximization in a bipartite
singlecast network. To evaluate the benefits from multipacket transmit/receive
capabilities of nodes, we chose a network setup with degree 3, as shown in
Figure 2.8. The network is symmetric and the distances between nodes are
chosen as shown in the figure. We assume an exponential path loss model, where

the channel power gains between distinct nodes are given by

di\ "
|hij|? = (dé) Cij » (2.66)

where d;; is the distance from the transmitter of link ¢ to the receiver of link j,
dy is the far field reference distance [176], n is the path loss exponent, and c¢;;
are defined similarly to their use in (2.64). Note that the interference coefficients
gij s are chosen as we discussed in Section 2.1. The first term of (2.66) represents
the path loss factor and the second term models Rayleigh small-scale fading.
The SNR operating point is defined as (p** = pi®* for alln € T)

pglax DO -n
NR = — . 2.
———ey )

In the following simulations we set Dg/dg = 10 and n = 4.
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Fig 2.9. (a) Dependence of the average sum-rate on SNR; (b) Empirical CDF of the
total number of iterations, [83] ©) 2011, IEEE.
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Figure 2.9(a) shows the dependence of average sum-rate (i.e., 5; = 1 for alll €
L) on the SNR. Results show that the average sum-rate, in the case of multipacket
transmission /reception, is always better than, or equal to, the case of singlepacket
transmission /reception and the performance gap increases as SNR decreases.
However, as expected for practical SNR values, the benefits of multipacket
transmission /reception are negligible when the receivers perform singleuser
detection [9]. For comparison, we also plot the result obtained from a suboptimal
solution method based on complementary geometric programming [5, 97, 98|.
We refer to this suboptimal method as CGP algorithm for the rest of the
section. Note that, CGP algorithm is equivalent to running Algorithm 2.0.1
(Appendix 2) with Q = Qin;x and a proper initialization 4. Specifically, we
found the initial 4;, | € £ according to (2.42) by using a uniform feasible power
allocation, which will be referred to as uniform initialization in the rest of the
section. Let us first focus on CGP performance in the case of multipacket
transmission /reception. Results show that there is a significant performance
loss due to the suboptimality of CGP algorithm, especially for SNR > 0dB.
In the case of singlepacket transmission/reception, the average sum-rate that
is obtained by using CGP algorithm is almost zero, irrespective of the SINR
and not plotted in Figure 2.9(a) to preserve clarity. Results confirm that CGP
algorithm cannot handle the huge imbalance between interference coefficient
values 10,

Figure 2.9(b) shows the empirical CDF plots of the total number of iterations
required to find the sum-rate by using Algorithm 2.1, which gives insight into
the complexity of Algorithm 2.1. The plots are for the case of SNR = 10dB and
e = 1073. Roughly speaking, results show that the total number of iterations
required in the case of singlepacket transmission/reception is smaller compared

to the case of multipacket transmission/reception.

2.5.3 Maxweight scheduling in multihop wireless networks

Next, we consider a multihop wireless network, where the nodes have only
singlepacket transmit /receive capability and no node can transmit and receive

simultaneously. In such setups the WSRMax problem is equivalent to the maxi-

10Recall from Figure 2.2(a) and 2.2(b) that, if nodes have singlepacket transmitter/receiver

capabilities, then some of the interference coefficients are infinite.

70



——SNR=0dB
---SNR=5dB ||

0 : 2000 4000 6000 8000 10000
Number of iterations, x

(b)

Fig 2.10. (a) Multihop network, N = 8, L = 12; (b) Empirical CDF of the total
number of iterations, [83] ©) 2011, IEEE.

mum weighted matching ' (MWM) problem [54]. Polynomial time algorithms
are available for the problem in the case of fixed link rates [54],[38, Sec. 4.2]. To
the best of our knowledge, there are no known solution methods for the MWM
problem when the link rates depend on the power allocation of all other links. In
such cases, it is worth noting that our proposed algorithm is able to find the
MWM.

To show this, we use the symmetric multihop wireless network shown in

Figure 2.10(a). The channel power gains, between nodes are given by (2.66) and

HBorrowing terminology from graph theory, a matching is a set of links, no two of which share
a node [54].
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Table 2.1. Maximum weighted matchings, [83] © 2011, IEEE.
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the SNR operating point is given by (2.67). In the following simulations we set
Dy/dy =10 and n = 4.

Table 2.1 shows MWMs obtained for different link weights (see the left most
column) and the SNR combinations. Here we consider a nonfading scenario (i.e.,
cij =1, 4,7 € £) and an accuracy of € = 1071%. Results show that the smaller
the SNR, the larger the number of links that are activated simultaneously in
the maximum weighted matching. This is intuitively expected since, at low
SNR values, node transmission power is small, and therefore the interference
generated is very small so that many links are activated simultaneously.

To gain some insight into the computational complexity of the algorithm we
plot the CDF of the total number of iterations by running the algorithm for a
large number of fading realizations.

Figure 2.10(b) shows the empirical CDF plots of the total number of iterations
required to terminate Algorithm 2.1 (or to find the MWM). Plots are drawn
for the cases of SNR = 0, 5, 10, and 15dB, 3; =1 for all [ € £, and € = 1072,
Results show that the smaller the SNR, the smaller the total number of iterations
required to find the MWM. For example, in the case of SNR = 0dB, with
probability 0.9, the MWM is found in less than 1500 iterations. However, in the
case of SNR = 5dB, with the same probability 0.9, the MWM is found in less
than 4000 iterations.

2.5.4 Cross-layer control policies for NUM

In this section we specifically consider the problem of network utility maximization
subject to stability constraints [17, Sec. 5]. Let us first revisit briefly the
commodity description of the network. Exogenous data arrives at the source
nodes and they are delivered to the destination nodes over several, possibly
multihop, paths. The data is identified by their destinations, i.e., all data with
the same destination are considered as a single commodity, regardless of their
source. We label the commodities with integers s = 1,...,5 (S < N). For
every node, we define S,, C {1,...,S} as the set of commodities, which can
arrive exogenously at node n. The network is time slotted and at each source
node, a set of flow controllers decides the amount of each commodity data
admitted in every time slot in the network. Let z£ (¢) denote the amount of

data commodity s admitted in the network at node n during time slot ¢. It is
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Fig 2.11. (a) Multihop network 1, N = 4, fully connected, S = 2; (b) Multihop
network 2, N = 4, fully connected, S = 2, [83] ©) 2011, IEEE.

assumed that the data that is successfully delivered to its destination exits the
network layer. Associated with each node-commodity pair (n, s)ses, we define
a concave and nondecreasing utility function u (y), representing the “reward”
received by sending data of commodity s from node n to node ds at a long term
average rate of y [bits/slot]. Thus, the NUM problem under stability constraints

can be formulated as [17, Sec. 5]

maximize Zne/\/ Zsesn us (y2)

. (2.68)
subject to (Y3 )nen ses, € A,

where the variable is (y:)nen ses, and A represents the network layer capacity
region [17, Def. 3.7].

An arbitrarily close to optimal solutions for problem (2.68) is achieved by a
cross-layer control policy, which consists of solving three subproblems: 1) flow
control, 2) next-hop routing and in-node scheduling, and 3) RA, during each time
slot [17]. The RA subproblem exactly resembles the WSRMax problem (2.2),
where the weights are given by the maximum differential backlogs of network
links [17]. Here, we implement the cross-layer control algorithm in [17] and, in
the third step, we use our proposed Algorithm 2.1 to solve the RA subproblem.
The cross-layer control algorithm is simulated for at least T = 10000 time slots,
and the average rates Iy, are computed by averaging the last {5 = 3000 time
slots, i.e., T8 = 1/t ZZ;T'%O x8 (t). We assume that the rates corresponding
to all node-commodity pairs (n,s)scs,,n € N are subject to proportional
fairness, and therefore we select the utility functions uf (y) = log.(y). For a
detailed description of the cross-layer control policy [17] the reader may refer to
Section 3.1.2.

Two fully connected multihop wireless network setups, as shown in Figure 2.11
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are considered, where all nodes have multipacket transmit/receieve capability and
no node can transmit and receive simultaneously. Each of the networks consist of
four nodes (i.e., N = 4) and two commodities, which arrive exogenously at source
nodes. In the case of the first network setup, shown in Figure 2.11(a), commodity 1
arrives exogenously at node 1, and is intended for node 4; commodity 2 arrives
exogenously at node 4, and is intended for node 1. Nodes are located in a
square grid such that the horizontal and the vertical distance between adjacent
nodes are Dy meters [m]. In the case of the second network setup, shown in
Figure 2.11(b), commodity 1 arrives exogenously at node 1, and is intended
for node 2; commodity 2 arrives exogenously at node 2, and is intended for
node 3. Nodes are located such that three of them form an equilateral triangle
and the fourth one is located at its center [see Figure 2.11(b)]. It is assumed that
the distance from the middle node to any other is Dy m. The channel power
gains are given by (2.66) and SNR operating point is given by (2.67). We set
Dy/dy =10 and n = 4 in the following simulation.

Figure 2.12 shows the dependence of the average network layer sum-rate on
the SNR for the considered network setups. As a reference, we first consider a
suboptimal and more restrictive RA policy, where only one link can be activated
during each time slot. This policy is called base line single link activation
(BLSLA); BLSLA policy can be easily found and it consists of activating, during
each time slot, only the link which achieves the maximum weighted rate. Other
suboptimal RA policy is based on CGP algorithm (see Section 2.5.2). Specifically,
we use two initialization methods for CGP algorithm: 1) the initial 4;, I € L is
found according to (2.42) by using BLSLA power allocation, 2) the uniform
initialization, as discussed in Section 2.5.2.

Results show that the gains obtained by using Algorithm 2.1 are always
larger compared to other suboptimal methods. The relative gains achieved by
Algorithm 2.1 in the case of network setup 1 [Figure 2.12(a)] are more significant
than in the case of network setup 2 [Figure 2.12(b)]. Results further show that,
the suboptimal CGP algorithm is very sensitive to initialization. For example, in
the case of uniform initialization, CGP algorithm performs extremely poorly
compared to the case of BLSLA based initialization. Moreover, in the case of
BLSLA based initialization, the suboptimal CGP algorithm can not perform
beyond the limits that are achieved by simple BLSLA RA policy.
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2.5.5 Achievable rate regions in singlecast wireless
networks

In this section we illustrate how Algorithm 2.1 can be used to find the achievable
rate region in singlecast wireless networks. Recall that we consider the case where
all receiver nodes perform singleuser detection, and therefore the achievable rate
regions we are referring to are different from the information theoretic capacity
regions [177-179]. Note that the information theoretic capacity region is not
known, even in the simple case of two interfering links [180].

To facilitate the graphical illustration, we consider a simple bipartite singlecast
network of degree 1, as shown in Figure 2.5(b). The channel power gains are
given by (2.64) and the SNR operating point is given by (2.65).

We start by defining the directly achievable rate region, the instantaneous
rate region, and the average rate region for singlecast wireless networks. Let
RPIR=SC (1, C(t), pi@*, p*@x) denote the directly achievable rate region for a

given interference coupling index p, a given fading realization '2

C(t) = {c11(t), cra(t), caz(t), car ()} (2.69)

and maximum node transmission power pj*** and pg*®*, i.e.,

RPIB=SC (1, C (1), po>, pye) (2.70)

c11(t)p1
02 + pcar (t)pe
c22(t)p2
02 + pcia(t)pr
0<p <pi"™, 0<py<py™

Ry <log |1+

= { (R1,Ry) Ry <log |1+

By invoking a time sharing argument, one can obtain the instantaneous rate region
RINS=SC (), C(t), piax, pax): the convex hull of RPTR=SC(y, (1), pnax, pmax),
That is,

’

RINS=SC (3, €(0), i, ) = conv { RPISC (0, 6(0), o, i) b

where conv{R} denotes the convex hull of the set R. As noted in [81], since the

max max

instantaneous rate region RINS=SC(y, ¢ (t), p"®*, p2@*) is convex, any boundary

12The argument ¢ is used to indicate the fading realization index.
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point of the rate region can be obtained by using the solution of an optimization

problem in the form of (2.2) with 8; = a, 82 = (1 — ) for some «a € [0, 1].
RAVE-SC(

max max

My Py y P2
interference coupling index p and a maximum node transmission power p*** and

p

Finally, we define the average rate region ) for a given
max g RAVE=SC(), pmax pmax) _ %thzl RINS=SC(;, ¢ (1), piax, pmax)  where
addition and scalar multiplication of sets is used **. The nonnegative integer
T is the total number of fading realizations we used in averaging. Note that,
any boundary point (R?, R}) of RAVE=SC(y, pax pmax) ig obtained by using
the following steps for some « € [0, 1]: 1) solve problem (2.2) with 81 = o and
By =1 — a for T fading realizations, 2) for each fading realization ¢ € {1, ... ,T},
evaluate the rate of link 1 and 2 denoted by r1(¢), r2(t) according to (2.1), and 3)
average 71(t) and 75(t) over all T fading realizations to obtain RY = % ZZ;I r1(t)
and Ry = LY mo(0).

Figure 2.13(a) shows RINS=SC(;, ((t), piax pmax) | the instantaneous rate
regions for different values of p and for an arbitrary chosen fading realization in
the case of SNR = 15dB. Specifically, the fading coefficients are c;1(¢) = 0.4185,
c12(t) = 0.3421, c92(t) = 0.3700, and co1 () = 1.299. As a reference, we also
plot the directly achievable rate regions RP™R=5C (1, C(t), pi@*, pi#x) for all the
scenarios considered. Note that the problem of finding any boundary point
of RPIR-SC (N,C’(t),pﬁna",p‘z‘lax) can be easily cast as a GP, or as a problem
of the form (2.47). Results show that the smaller the yu, the larger the rate
regions. This is intuitively explained by noting that the smaller the u, the
smaller the interference coefficients, g;; between links, and therefore the higher
the rates. Results further show that, when p > 0.2, the directly achievable rate
regions become nonconvex, whereas the instantaneous rate region is a triangle
referred to as time division multiple access (TDMA) rate region, obtained
by time sharing between the maximum rates of R; and R;. Moreover, when
1 < 0.2, the instantaneous rate region expands beyond the TDMA rate region
and for p < 0.01, the directly achievable rate region almost overlaps with the
instantaneous rate region.

Figure 2.13(b) shows the average rate region RAVE=SC(y, pimax pmax) for
different values of p in the case of SNR = 15dB. As a reference, we also plot the
region obtained by using CGP algorithm to problem (2.2). Results show that

13For vector sets A; and Az and scalars oy, asz, the set a1 A1 + a2 Ao is defined as {a1a1 +
azag |ay € Aj,az € A2} |3, p. 38].
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Fig 2.13. Rate regions: (a) Directly achievable and instantaneous rate regions;

(b) Average rate regions, [83] © 2011, IEEE.
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the region obtained by CGP algorithm is always worse than the average rate
region. The gap in performance is more pronounced in the case of larger values
of u. Note that, even in the case of u = 1, the average rate region is bounded
by a concave function with end points C; and Cs, although the corresponding
instantaneous rate regions used in the averaging are triangles [see Figure 2.13(a)]
in general. This phenomenon is due to the property of the set addition used in
the definition of RAVE=SC(y, pax pmax)  Results also show that the smaller the

1, the larger the average rate region.

2.5.6 Achievable rate regions in multicast wireless
networks

We finally show the applicability of Algorithm 2.1 for finding the rate regions in
a multicast wireless networks. A multicast with only two multicast transmis-
sions [see Figure 2.14(a)] is considered for the sake of graphical illustration of
the rate regions. Node 1 has common information to be sent to node 3 and 4,
whereas node 2 has common information to be sent to node 3 and 5. We assume
that node 3 has multipacket receiver capability. The channel power gains are
given by (2.66) and SNR operating point is given by (2.67). Moreover, we set
Dy/dy =10 and n = 4.

As in the case of singlecast wireless networks, we first define the directly
achievable rate region, instantaneous rate region, and the average rate region for
multicast wireless networks. Particularized to the network setup in Figure 2.14(a),

for a given set of interference coefficients / power gains

G(t) = {g11(t), g22(t), g33(t), gaa(t), g1a(t), g32(t)} (2.71)

and maximum node transmission power pi*** and p5***, the instantaneous rate

region RINS=MC(((¢), pnax pmax) is defined as

,

RINSMC(Ci(t), p, py™) = conv { RPMEG(e), pi,pp™) ) (272)

where RPIR-MC((3(¢), pmax pmax) denotes the directly achievable rate region for
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multicast wireless networks, i.e.,

RPIME(G (1), ™, ™) (2.73)

911 )
o? —i—gss P

g
o? + 932 P g

(1+

( 22
= (Rl, Rz) RQ S log (1 + 933

( 44

R, <log

Ri<log |1+

02+911 P
o)
02+914 )p1

0 <pi<pPex, 0<ps<pyox

Ry <log

Finally, for a given maximum node transmission power p"** and p5***, the
average rate region RAVE-MC (pmax pmaxy ig defined as RAVE—MC (pmax pmax) —
LT RINS-MC(G(t), ppo, ppa).

Figure 2.14(b) shows the average multicast rate region for different SNR
values. Results show that, when the weights associated with rates R, and Ro
are the same, the resulting R; is always greater than Rs. For example, in the
case of SNR = 20dB, we have Ry = 3.71 bits/sec/Hz and Ry = 1.50 bits/sec/Hz.
Roughly speaking, this observation can be explained as follows: R; is determined
by the rate of link 2 (the weakest of link 1 and 2), Ry is determined by the rate
of link 3 (the weakest of link 3 and 4) and rate of link 2 is larger than that of
link 3 due to path losses.

2.6 Summary and discussion

We have considered the general WSRMax problem for a set of interfering links.
In fact, this problem is NP-hard. A solution method, based on the branch
and bound technique, has been proposed for solving the nonconvex WSRMax
problem globally with an optimality certificate. Efficient and analytic bounds
were proposed and their impact on convergence was numerically evaluated. The
convergence speed of the proposed algorithm can be substantially increased
by improving the lower bound, whilst the tightness of the upper bound has a
much reduced impact. Numerical results showed that the proposed algorithm
converged fairly fast in all considered setups. Nevertheless, since the problem

is NP-hard, the worst case complexity can be exponential in the number of
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variables. The considered link-interference model is fairly general so that it can
model a wide range of network topologies with various node capabilities, such as
single- or multipacket transmission (or reception) and simultaneous transmission
and reception. Unlike other branch and bound based solution methods for
WSRMax, our method does not require the problem to be convertible into a DC
(difference of convex functions) problem. Therefore, the proposed method applies
to a broader class of WSRMax problems (e.g., WSRMax in multicast wireless
networks). Moreover, the method proposed can also be used to maximize any
system performance metric that can be expressed as a Lipschitz continuous and
increasing function of SINR values and is not restricted to WSRMax. Given
its generality, the proposed algorithm can be adapted to address a wide range
of network control and optimization problems. Performance benchmarks for
various network topologies can be obtained by back-substituting it into any
network design method which relies on WSRMax. Several applications, including
cross-layer network utility maximization and maximum weighted link scheduling
for multihop wireless networks, as well as finding achievable rate regions for
singlecast /multicast wireless networks, have been presented. Since there are a
number of suboptimal but low-complex algorithms are typically used in practice,

the proposed algorithm can also be used for evaluating their performance loss.
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3 Low-complexity algorithms for WSRMax

In this chapter we first develop efficient, low-complexity algorithms for the
WSRMax problem in multicommodity, multichannel wireless networks by
using homotopy methods [114] and complementary geometric program (or
CGP) [97]. Our problem formulation is fairly general and it allows frequency
reuse by activating multiple links in the same channel simultaneously. Here, the
interference is solely resolved via power control. Furthermore, our formulation
allows the possibility of exploiting multichannel diversity via dynamic power
allocation across the available channels. The gains that can be achieved at upper
layers in terms of end-to-end rates and network congestion are quantitatively
analyzed by incorporating the proposed algorithms within Neely’s cross-layer
utility maximization framework [16, 17].

It is worth pointing out that the proposed algorithm, based on homotopy
methods, also handles the self-interference problem in such a way that the
combinatorial nature of the problem is circumvented. Here the imperfect self
interference cancelation is modeled as a variable power gain from the transmitter
to the receiver at all nodes. This simple model gives insight into the behavior of
different network topologies when self interference cancellation is employed in
network nodes. A similar approach can be used in a straightforward manner to
model a wide range of network topologies with various node capabilities as well,
e.g., singlepacket transmission, singlepacket reception, and many others. The
proposed method can also be used to find the required level of accuracy for the
self interference cancelation such that certain gains are achieved at the network
layer. In addition, it provides a simple mechanism to evaluate the impact of
scaling the distance between network nodes on the accuracy level of the self
interference cancellation. Thus, from a network design perspective, the proposed
method can be very useful.

Recall that WSRMax problem is NP-hard and we have to rely on exponentially
complex global optimization techniques [24, 25, 82] to obtain the optimal
solution. Nevertheless, the numerical results show that the proposed algorithms
in this section perform close to global optimization methods. We further test

our algorithms by carrying them out on large-scale problems, where global
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optimization methods [55, 57, 60, 62, 83] cannot be used, due to prohibitive
computational complexity. Results show that the proposed algorithms can
provide significant gains at the network layer, in terms of end-to-end rates and
network congestion, by exploiting efficiently the available multichannel diversity.
We also evaluate the potential gains achievable at the network layer when the
network nodes employ self interference cancelation techniques with different
degrees of accuracy.

Finally, we consider different receiver capabilities and evaluate the effect of

the use of multiuser detectors.

3.1 System model and problem formulation

3.1.1 Network model

The wireless network consists of a collection of nodes that can send, receive and
relay data across wireless links. The set of all nodes is denoted by A" and we label
the nodes with the integer values n = 1,..., N. A wireless link is represented as
an ordered pair (i,7) of distinct nodes. The set of links is denoted by £ and
we label the links with the integer values | = 1,..., L. We define tran(l) as the
transmitter node of link /, and rec(l) as the receiver node of link {. The existence
of a link I € £ implies that direct transmission is possible from tran(l) to rec(l).
We assume that each node can be equipped with multiple transceivers, i.e., any
node can simultaneously transmit to, or receive from, multiple nodes. We define
O(n) as the set of links that are outgoing from node n, and Z(n) as the set of
links that are incoming to node n. Furthermore, we denote the set of transmitter
nodes by T and the set of receiver nodes by R, i.e., T = {n € N1O(n) # 0} and
R ={n e N|Z(n) # 0}.

The network is assumed to operate in slotted time with slots normalized to
integer values ¢t € {1,2,3,...}. All wireless links are sharing a set C of orthogonal
channels, labeled with integers ¢ = 1,...,C. When there are many channels
which fade independently, at any one time there is a high probability that one of
the channels will be strong. Thus, the main motivation for considering multiple
channels is exploitation of the diversity that results from unequal links’ behavior
across a given wide band.

Let h;jc(t) denote the channel gain from the transmitter of link 4 to the receiver
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Gij=geo.1]

Fig 3.1. Choosing the value of interference coefficients, i.e., g;; for i« # j and
link power gains, i.e., g;; and g,; (channel index c and time index ¢ are omitted for
clarity): A = {(,5)}, gij = 9> 950 = |hyil®, gii = |hail*, and g;; = |hy;|%, [112] © 2011,
IEEE.

of link j in channel ¢ during time slot . We assume that h;;.(t) are constant
for the duration of a time slot and are independent and identically distributed
over the time slots, links as well as over the channels. Let g;;.(t) represent the
power gain of link i in channel ¢ during time slot t, i.e., giic(t) = |hiic(t)|? (see
Figure 3.1). For any pair of distinct links i # j, we denote the interference
coefficient from link ¢ to link j in channel ¢ by g;;.(t). In the case of nonadjacent
links (i.e., links ¢ and j do not have common nodes), g;;. represents the power
of the interference signal at the receiver node of link j in channel ¢ when one
unit of power is allocated to the transmitter node of link 7 in channel ¢, i.e.,
Gije = |hijc|2. When links 7 and j are adjacent, the value of g;;. represents
the power gain in channel ¢ within the same node from its transmitter to its
receiver, and is referred to as the self-interference coefficient (see Figure 3.1).
For notational convenience let A denote the set of all link pairs (i, j) such that
links 7 and j are adjacent. In other words, A represents the set of all link pairs
(i,7) for which the transmitter of link ¢ and the receiver of link j coincide, i.e.,
A ={(4,7)ijec| tran(i) =rec(j)} (see Figure 3.1). Specifically, for all (¢, j) € A,
we set g;jc(t) = g to model the residual self-interference gains after a certain
self interference cancelation technique was employed at the network’s nodes
in channel ¢, where g € [0,1] is a scalar. We refer to g as the self-interference
gain (see Figure 3.1). A value g = 1 means that no self interference cancelation
technique is used and models the very large self interference that would affect
the incoming links of a node if it simultaneously transmitted and received in
the same channel. On the other hand, a value g = 0 corresponds to a perfect
self interference cancelation. Note that, according to relative distances between
network’s nodes, g;;.(t) for all (i,7) € A (i.e., the self-interference coefficients)

can be several orders of magnitude larger than g;;.(t) for all (,5) € A. The
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particular class of network topologies, for which A = ( (i.e., TNR = () is
referred to as bipartite networks. On the other hand, the class of network
topologies, for which A # 0 (i.e., T N'R # 0) is referred to as nonbipartite
networks. Note that all multihop networks are necessarily nonbipartite.

In every time slot a network controller decides the power and rates allocated
to each link in every channel. We denote the power allocated to each link [
in channel ¢ during time slot ¢ by p;.(t). The power allocation is subject to a
maximum power constraint > cc > o) Pie(t) < pi'™ for each node n.

We consider first the case where all receivers perform singleuser detection, i.e.,
any receiver decodes each of its intended signals by treating all other interfering
signals as noise. Extensions to more advanced multiuser detection techniques
will be addressed in Section 3.3. Suppose that the achievable rate of link [ during
time slot t is given by

r(t) = i W.log | 1+ Gue(t)pre(t) (3.1)
= e R T NWL Y g Oy ) '

where W, represents the bandwidth of channel ¢ and N; is the power spectral
density of the noise at the receiver of link /. Note that for any link [, interference
at rec(l) (i.e., the term >4l giic(t)pjc(t)) is created by self transmissions
[ie., 2 je0(rec(l)) gi1c(t)pjc(t)], as well as by the other node transmissions [i.e.,
Zjeﬁ\{@(rec(l))u{l}} gjlc(t)pjc(t)}. To simplify the presentation, we assume in
the sequel that all channels have equal bandwidths and that the noise power
density is the same at all receivers (i.e., W, =W for all ¢ € C and N; = Nj for
all [ € £). The extension to the case of unequal bandwidths W, and noise power
spectral densities IV; is straightforward. Let 02 = NoW denote the noise power,
which is constant for all receivers in all channels. Furthermore, we denote by
P(t) € RY*C the overall power allocation matrix, i.e., pie(t) = [P(t)]i,c. The use
of the Shannon formula for the achievable rate in (3.1) is approximate in the
case of finite length packets and is used to avoid the complexity of rate-power
dependence in practical modulation and coding schemes. This is common
practice but it must be noted that this is not strictly correct. However, as the

packet length increases it is asymptotically correct.
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3.1.2 Network utility maximization

Exogenous data arrive at the source nodes and they are delivered to the
destination nodes over several, possibly multihop, paths. We identify the data
by their destinations, i.e., all data with the same destination are considered as
a single commodity, regardless of their source. Actually, our formulation also
permits the anycast case, in which each packet exits the network as soon as any
one of a particular destination set of nodes receives the packet successfully. We
label the commodities with integers s =1,...,5 (S < N) and the destination
node of commodity s is denoted by ds. For every node, we define S,, C {1,...,5}
as the set of commodities that can arrive exogenously at node n.

A network utility maximization, or NUM, framework similar to the one
given in [17, Sec. 5.1] is considered. Specifically, exogenously arriving data is
not directly admitted to the network layer. Instead, the exogenous data is first
placed in the transport layer storage reservoirs. To avoid complications that
may arise that are extraneous to our problem, we assume that all commodities
have infinite demand at the transport layer. Nevertheless, the RA algorithms
proposed in this section are still applicable when this assumption is relaxed. At
each source node, a set of flow controllers decides the amount of each commodity
data admitted during every time slot in the network. Let z?(¢) denote the
amount of data of commodity s admitted in the network at node n during time
slot t. At the network layer, each node maintains a set of S internal queues for
storing the current backlog (or unfinished work) of each commodity. Let ¢Z (¢)
denote the current backlog of commodity s data stored at node n. We formally
let gj (t) =0, i.e., it is assumed that data, which is successfully delivered to
its destination, exits the network layer. Associated with each node-commodity
pair (n, s)scs, we define a concave and nondecreasing utility function us(y),
representing the “reward” received by sending data of commodity s from node n
to node ds at a long term average rate of y [bits/slot].

The NUM problem under stability constraints can be formulated as [17,
Sec. 5]

maximize Y oD cecs. Un(Yn)

. (3.2)
subject to (ny)nE/\/’,SESH €A,

where the variable is (Y )nen ses, and A represents the network layer capacity

region. In particular, the network layer capacity region A is the closure of the
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set of all admissible arrival rate vectors that can be stably supported by the
network, considering all possible strategies for choosing the control variables
that affect routing, scheduling, and resource allocation (including those with
perfect knowledge of future events) [17, p. 28].

A dynamic cross-layer control algorithm, which achieves a utility that is
arbitrarily close to the optimal value of problem (3.2), has been introduced in [17,

Sec. 5]. Specifically, the algorithm’s performance can be characterized as follows:

£ T e - it £ ¥ w(p $ EEO)) < p . 63

neEN s€S, T—00 peN s€S,

where (y*} )nenr ses, is the optimal solution of problem (3.2), B > 0 is a well
defined constant, and V > 0 is an algorithm parameter that can be used to
control the tightness of the achieved utility to the optimal value [17, Sec. 5.2.1].
The details are extraneous to the central objective of this section. Particularized
to our network model, in every time slot ¢, the algorithm performs the following

steps:

Algorithm 3.1. Dynamic cross-layer control algorithm [17, Sec. 5.2].

1. Flow control; each node n € N solves the following problem:

maximize Y g Vup(z3) — 25,g5,(t)

3.4
subject to Y s T < R, xp, >0, 34)

where the variable is (22)ses, . Set (25 (t) = x8)scs, . The parameter V > 0
is a chosen parameter that affects the algorithm performance [see (3.3)] and
R > 0 is used to control the burstiness of data delivered to the network
layer.

2. Routing and in-node scheduling; for each link [, let

IBI (t) = maxXs {qfran(l) (t) Qrec l) O}
C?(t) = argmax {qfran(l)( ) Qrec l)

0.0} (3.5)

If 5;(t) > 0, the commodity that maximizes the differential backlog, i.e., ¢ (¢),
is selected for potential routing over link . This is the well known rule of

next-hop transmission under the backpressure algorithm [12].
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3. Resource allocation; the power allocation P(¢) is given by P whose entries p;.

solve the following problem

maximize > £i(t) > log (H— gue(t)prc )

leL cec 0%+ 3 gjic(t)pje
J#l (3.6)
subject to >0 > p <P, neN ‘
c€C1eO(n)

pe>0,1€eL, ceC.

Once the optimal power allocation P(t) is determined, compute rate allocation
r(t) for all I € £ by using (3.1). The resulting rate r;(t) is offered to the data

of commodity ¢ (t).

In the first step, each node n determines the amount of data of commodity s
(ie., z3(t) for all s € S,) that are admitted in the network, based on the
current backlogs (i.e., ¢5(t) for all s € S,,). In the second step, each node n
computes ; and the corresponding commodity ¢j(t) for all I € O(n). The
commodity cf (t) is selected for potential routing over link ! during time slot ¢.
Recall that in-node scheduling refers to selecting the appropriate commodity
and it is not to be confused with the links scheduling mechanism, which is
handled by the RA subproblem, i.e., step 3. The third step is the most difficult
part of Algorithm 3.1, which computes the power allocation P(¢) in each link
l. Of course, the RA subproblem maximizes the sum of weighted rates, i.e.,
WSRMax. The solution P(t) determines implicitly the links/channels that
should be activated in every time slot ¢t. The power allocation P(t) is used to
determine r;(¢) [see (3.1)] and the resulting link rate r;(t) is offered to the data of
commodity ¢ (¢). Since our main contribution resides in problem (3.6), extensive
explanations of Algorithm 3.1 are avoided. However, we refer the reader to [17,

Sec. 5] for more details.

3.2 Algorithm derivation: CGP and homotopy methods

In this section we focus on resource allocation problem (3.6). By using standard
reformulation techniques, we first show that problem (3.6) is equivalent to
a CGP [97]. Then we obtain a successive approximation algorithm for prob-

lem (3.6) in bipartite networks. Next we explain the challenges of the problem in
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nonbipartite networks (e.g., multihop networks), due to the self-interference
problem; when a node simultaneously transmits and receives in the same channel,
its incoming links are affected by very large self interference levels. Finally, we
propose a solution method based on homotopy methods [114], together with

CGP, which circumvents the aforementioned difficulties.

3.2.1 CGP for WSRMax

Let us denote the negative of the objective function of problem (3.6) by fo (P)

It can be expressed as

o
fo(P) =~ 3 log <1 + IHicPle ) (3.7)

2
IeL ceC 0%+ 2 ;41 9jlePie

=log [T IT (1+%) ™", (3.8)
leL ceC

where the time index ¢ was dropped for the sake of notational simplicity, and ;.
represents the SINR of link / in channel ¢, i.e.,

JilcPic
0%+ 3 GjtePie

Vie = ,lel, ceC. (3.9)

Since log() is an increasing function, problem (3.6) can be reformulated equiva-

lently as
minimize [ [, (gl -;’ch) s
. llcPlc
subject to v = ,lel, ceC
© 0+ 3 GitePje (3.10)

Deec ZZEO(n) Pie <P, neN
pie>0,1lel, ceC,

where the variables are (pic)ics,cec and (Vie)iec,cec. Now we consider the related
problem

minimize  [[.cc [Tiep (1+7ic) s

subject to v < — JitePie ,leLl, ceC
02 + 41 9ilePie (3.11)

Ycee 2ieo(m) Ple S PR, neN
plc207 l€£7 C€C7

with the same variables (pic)icz,cec and (Vic)ieg,cec- Note that the equality
constraints of problem (3.10) have been replaced with inequality constraints. We

refer to these inequality constraints as SINR constraints for simplicity. Since the
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objective function of problem (3.11) is decreasing in each ., we can guarantee
that at any optimal solution of problem (3.11), the SINR, constraints must be
active. Therefore we solve problem (3.11) instead of problem (3.10).

Finally, by introducing the auxiliary variables v, < 1 + ;. and rearranging

the terms, problem (3.6) can be further reformulated as

minimize [ cc[lcp vl_cﬂl
subject to v <14y, €L, ceC
TGP e + Xy Gl Giiepiep e < 1, LEL, c€C (3.12)
21
Yece icom) R) me <1, neN
pl0207 l€£7 0667

where the variables are (pic)iec.cec, (Vie)iec,cec, and (vie)ies,cec. Problem (3.12)
can be identified as a CGP [97].

3.2.2 Successive approximation algorithm for WSRMax in
bipartite networks

In this section we consider the case of bipartite networks. Recall from Section 3.1.1
that for such networks we have A = (). By inspecting problem (3.12), we notice
the following: 1) the objective is a monomial function [5, Sec. 2.1], 2) the
right-hand side (RHS) terms of the first inequality constraints (i.e., 1 + ;)
are posynomial functions, and 3) the left-hand side terms of all the inequality
constraints are either monomial or posynomial functions. Note that if the RHS
terms of the first inequality constraints were monomial functions (instead of
posynomial ones), problem (3.12) would become a geometric program (or GP)
in standard form. GPs can be reformulated as convex problems and they can
be solved very efficiently, even for large scale problems [5, Sec. 2.5]. These
observations suggest that by starting from an initial point, one can search for a
close local optimum by solving a sequence of GPs, which locally approximate
the original problem (3.12). At each step, the GP is obtained by replacing the
posynomial functions in the RHS of the first inequality constraints with their best
local monomial approximations near the the solution obtained at the previous
step. The solution methods achieved by monomial approximations [5, 97| can

be considered as a subset of a broader class of mathematical optimization
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problems, known in mathematical literature as inner approzimation algorithms
for nonconvex problems [181]. The monomial approximation for the RHS terms
of the first inequality constraints in problem (3.12) is described in the following

lemma.

Lemma 3.1. For any v > 0, let m(vy) = ky® be a monomial function used to

approzimate s(vy) = 14~ near an arbitrary point 4 > 0. Then,

1. the parameters a and k of the best monomial local approximation are given by
a=91+4%)"" k=5""(1+4). (3.13)
2. s(y) > m(y) for all v > 0.

Proof. To show the first part we note the following: the monomial function m is

the best local approximation of s near the point 7 if

m(§) =s(9), m'(%)=5'(5) . (3.14)

By replacing the expressions of m and s in (3.14) we obtain the following system

of equations:

(3.15)

which has the solution given by (3.13).

The second part follows from (3.14) and noting that s(v) is affine and m(y)
is concave on IR, ; concavity of m(v) follows from the fact that £ > 0 and
0<a<1]3, Sec. 3.1.5]. O

Figure 3.2 illustrates the monomial approximation given in Lemma 3.1 for
different values of 4. Note that the monomial approximation m(+y) is reasonably
close to s(7) for larger values of 4. The approximation given in Lemma 3.1 turns
out to be equivalent to the lower bound approximation used in [66, Sec. III-B|
for dynamic spectrum management in digital subscriber lines.

Let us now turn to the GP obtained by using the local approximation
given by Lemma 3.1. The posynomial functions 1 + ~;. of the first inequality
constraints of problem (3.12) are approximated near the point 4;.. Consequently

the approximate inequality constraints become
Ve < k‘lc"ylaclc, le ﬁ, celC R (316)
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1.8} = = ~monomial approximation at 0.5 o -
----- monomial approximation at 0.05 LT
monomial approximation at 0.005 i
1.6 [{ —e— HSINR approximation P 7

1+y and its monomial approximations

Fig 3.2. Monomial approximation given in Lemma 3.1 for 4 = 0.5, 0.05, and 0.005.

where a;. and k;. have the forms given in (3.13). Since the objective function
of problem (3.12) is a decreasing function of v, | € L,c € C, it can be easily
verified that all of these modified inequality constraints will be active at the
solution of the GP. Therefore, we can eliminate the auxiliary variables v;. and

rewrite the objective function of problem (3.12) as

IT 1T o™ = I T k™ = K I T e 775 (317)

leLl ceC lel ceC lel ceC

where K is a multiplicative constant which does not affect the problem solution.
In the following subsections, we base our development on computationally
efficient algorithms to obtain a suboptimal solution for problem (3.12). For
notational convenience it is useful to define the overall SINR matrices ~,% €
]Rixc as [Y]i.c = vie and [¥]i,c = e, respectively.
A very brief outline of the proposed successive approximation algorithm is as
follows. It solves an approximated version of problem (3.12) in every iteration

and the algorithm consists of repeating this step until convergence.
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Algorithm 3.2. Successive approximation algorithm for WSRMax

1. Initialization; given tolerance ¢ > 0, a feasible power allocation Py. Set i = 1.
The initial SINR guess ‘y(i) is given by (3.9).
2. Solving the GP;

o
(4)

. —A
minimize K® [ [] ye e
leL ceC

subject to a‘l'“yl(é) < e < a’ylc ,leLl, ceC

Uzgﬁclp;cl'}/lc + Z gllc gjlcpjcplc e <1, le ‘Ca ceC
Z Z (Pfax) Dic < ]-7 ne N )

ceCleO(n)

(3.18)

with the variables (pic)ies,cec and (yic)ies,cec. Denote the solution by
(Pie)iec,cec and (V] )iec cec-

3. Stopping criterion; if max( c)erxc |71c 'ylc)| < ¢ STOP; otherwise go to
step 4.

4. Seti=1i+1, ('71(2) =5 and go to step 2.

)le[: ceC

The first step initializes the algorithm and an initial feasible SINR guess ‘y(i)
is computed. For bipartite networks, there is no self-interference problem, and a
simple uniform power allocation can be used.

The second step solves an equivalent GP approximation of problem (3.12)
around the current guess 4 [see problem (3.18)]. Note that the auxiliary
variables (vc)ier,cec of problem (3.12) are eliminated and the objective function
of problem (3.12) is replaced by using the monomial approximation at 'y( 2 given
in (3.17); K@ is a multiplicative constant which does not influence the solution
of problem (3.18). These monomial approximations are sufficiently accurate
only in the closer vicinity of the current guess ’?(i). Therefore, the first set of
inequality constraints are added to confine the domain of variables « to a region
around the current guess ‘y(i) [182]. The first set of inequality constraints of
problem (3.18) are sometimes called trust region constraints [5, 182], which are
not originally introduced in [97]. Therefore, Algorithm 3.2 is a slightly modified
version of the solution method proposed in [97]. The parameter a > 1 controls

the desired approximation accuracy. However, it also influences the convergence
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speed of Algorithm 3.2. At every step, each entry of the current SINR guess ’ym
can be increased or decreased at most by a factor a. Thus, a value of « close to
1 provides good accuracy for the monomial approximations at the cost of slower
convergence speed, while a value much larger than 1 improves the convergence
speed at the cost of reduced accuracy. In most practical cases, a fixed value
a = 1.1 offers a good speed/accuracy tradeoff [5]. Though we have trust region
constraints for problem (3.18), it is not mandatary to include those here and
Algorithm 3.2 can still be carried out.

The third step checks whether the SINRs (7}%)ie,cec obtained from the
solution of problem (3.18) have been significantly changed compared to the entries
of the current guess ‘y(i). If there are no substantial changes, then the algorithm
terminates and the link rate r;(t) = Zle W log(1 +~7.) is offered to the data of
commodity ¢ (t) [given by (3.5)]. Otherwise, the solution (7;,)icz,cec is taken as
the current guess and the algorithm repeats steps 2 to 4 until convergence.

Note that the auxiliary variables (vjc)iec,cec were only used to reformulate
problem (3.11) as a CGP [97] [i.e., problem (3.12)], but they do not appear
in Algorithm 3.2. In fact, an identical algorithm results if, at each step, the
objective function of problem (3.11) is locally approximated by a monomial
function (see [15, Lem. 4.2.2]). This alternative derivation, known in optimization
literature as signomial programming [5], is presented in Appendix 3. Careful
comparisons reveal that the algorithm recently proposed in [100, p. 3034] is
almost identical to our proposed Algorithm 3.2 for single channel case with no
trust region constraints, i.e., C =1 and o = o0.

The convergence of the Algorithm 3.2 to a Kuhn-Tucker solution of the original
nonconvex problem (3.12) is guaranteed [181, Th. 1], since the algorithm falls into
the broader class of mathematical optimization problems, inner approxrimation
algorithms for nonconvex problems [181].

One interesting and important remark is that the objective function of the
approximated problem (3.18) in each iteration 4 yields a upper bound on the

objective function of the original problem (3.11), i.e.,

(4) A —B
KOT [T we e > 1 T1 (14 e) (3.19)
leL ceC leLl ceC

for (¢ > 0)iec, cec, with equality when v = '?(i). This follows directly from the

second statement of Lemma 3.1. By using (3.19), we can show immediately that
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Algorithm 3.2 is monotonically decreasing. The monotonicity of Algorithm 3.2 is

established by the following theorem.

Theorem 3.1. Leti and i+ 1 be any consecutive iterations of Algorithm 3.2 and
‘y(i) and ‘)/(i+1) be the SINR guesses at the beginning of each iteration respectively.
Then

I 11 (1+&}§))_ﬂl > 11 11 (1+ A“*”) . (3.20)

leL ceC leL ceC
Proof. To show this we write the following relations:

( )

A\ —B ) N\ — B
111 (1_|_;yl(é)> P K@ 111 (,Ayl(cl)) 1+wf) (3.21)
leL ceC leL ceC

( )

>KOTILGE) 0 e
leL ceC
~(2+1 B
> 11 E[( e I (3.23)

where (3.21) follows from (3.19), (3.22) follows since 4+ is the solution of
problem (3.18), and (3.23) follows again from (3.19). O

Therefore we see immediately that Algorithm 3.2 always yields a solution,
which is at least as good as the one in the previous iteration. This is important
in the context of practical implementations, since in practice, one can always

stop the algorithm within few iterations, before it terminates.

3.2.3 The self-interference problem in nonbipartite
networks

Let us now consider the nonbipartite networks; networks for which A # (). In
other words, the set of nodes cannot be divided into two distinct subsets, 7 and
R,ie, TNR#D (e.g., multihop wireless networks). For example see Figure 3.1
and Figure 3.3. For such network topologies, there is the self-interference problem
and, consequently, the WSRMax problem must also cope with the self-interference
problem. The difficulty comes from the fact that the self-interference gains

g ' can typically be a few orders of magnitude larger than the power gains

Recall that g;jc = g for all (4,5) € A.
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Fig 3.3. Two node network (channel index c and time index ¢ are omitted for clarity):
A={(1,2), (2,1} g12 = 1, g1 = 1, g11 = |h11|*, and ga2 = |h22|?, [112] © 2011,
IEEE.

between distinct network nodes {gj;c}jer, e.g., when there is no self interference
cancellation. Therefore there can be a huge imbalance between some entries
of {gijc}ijer, especially when g is large. Roughly speaking, this can destroy
the smoothness of the functions associated with the WSRMax problem [e.g.,
the objective function of problem (3.6)] and can ruin the reliability and the
efficiency of Algorithm 3.2 that solves it, at least suboptimally. In other words,
there can be many highly suboptimal Kuhn-Tucker solutions for problem (3.12)
at which Algorithm 3.2 can terminate by returning an undesirable suboptimal
solution. Moreover, the SINR values at the incoming links of a node that
simultaneously transmits in the same channel are very small and the convergence
of Algorithm 3.2 can be very slow if it starts with an initial SINR guess 4
containing entries with nearly zero values. These behaviors are reflected in
the monomial approximations plotted in Figure 3.2. For example, when 4 is
smaller (% = 0.005), the monomial approximation m(+) shows abrupt changes at
v = 0.005 and remains constant at an undesirable level almost equal to 1 for all
v > 0.005. Therefore, the direct application of Algorithm 3.2 can perform very
poorly and further improvements are necessary.

A standard way to deal with the self-interference problem consists of adding a
supplementary combinatorial constraint into the WSRMax problem that does not
allow any node in the network to transmit and receive simultaneously in the same
channel [106, 107, 109]. We will refer to a power allocation, which satisfies this
constraint as admissible. Note that this approach would require solving a power
optimization problem (by using Algorithm 3.2) for each possible subset of links
that can be simultaneously activated. This results inn a combinatorial nature for
the WSRMax problem in the case of nonbipartite networks [38, 51, 163-167].
Of course, since the complexity of this approach grows exponentially with the

number of links and number of channels, this solution method becomes quickly
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impractical.

3.2.4 Successive approximation algorithm for WSRMax in
nonbipartite networks: A homotopy method

To avoid difficulties pointed out in Section 3.2.3, we propose an algorithm inspired
from homotopy methods [114] that can be traced back to late 80’s; see [183] and
the references therein. In fact, the well known interior-point methods [184],[3,
Sec. 11] for convex optimization problems also fall into this general class of
homotopy methods.

The underlying idea is to first introduce a parameterized problem that approx-
imates the original problem (3.11). Specifically, we construct the parameterized
problem from the original problem (3.11) by setting g;;. = g, for all (¢, j) € A,
where g, € R, is referred to as the homotopy parameter. Indeed, in the original
problem (3.11) we have g;;. = ¢ for all (4, ) € A. Note that the quality of the
approximation improves as g, reaches g; the true self-interference gain. Of course,
when g, is small (e.g., g, and gj;. are roughly in the same order), Algorithm 3.2
can be used reliably to find a suboptimal solution for the parameterized problem.
Thus, a sequence of parameterized problems are solved, starting at a very small
g» and increasing the parameter g, (thus the accuracy of the approximation) at
each step until g, reaches the true self-interference gain g. Moreover, in each
step, when solving the parameterized problem for the current value of g,, the
initial guess for Algorithm 3.2 is obtained by using the solution (power) of the
parameterized problem for the previous value of g,.

The proposed algorithm based on homotopy methods can be summarized as

follows:

Algorithm 3.3. Successive approximation algorithm for WSRMaz in the pres-

ence of self interferers

1. Initialization; given an initial homotopy parameter gy < g, p > 1, a feasible
power allocation Pgy. Let g, = go, P = Py.

2. Set g;jc = gy for all (i,j) € A. Find the SINR guess 4 by using (3.9).

3. Solving parameterized problem; let '?(1) = 4, perform steps 2 to 4 of

Algorithm 3.2 until convergence to obtain the power (p}.)icz,ccc and SINR
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values (V.)iec,cec- Let (pic = pi.)iec,cec-
4. If 3(4,j) € A and ¢ € C such that p;cpj. > 0 (i.e., P is not admissible), then
set g, = min{pg,, g} and go to step 5. Otherwise (i.e., P is admissible) STOP.
5. If g, < g, go to step 2, otherwise STOP.

The first step initializes the algorithm; the homotopy parameter g, is initialized
by go, where gg is chosen in the same range of values as the power gains between
distinct nodes. Specifically, in our simulations we select gy = max ez cec{gjjc}-
Step 2 updates the problem data for the parameterized problem and a feasible
SINR guess is computed. The third step finds a suboptimal solution for the
parameterized problem. The algorithm terminates in step 4 if P is admissible
(thus none of nodes in the network are transmitting and receiving simultaneously
in the same channel). On the other hand, if P is not admissible, then the
homotopy parameter g, is increased. If g, reaches its extreme allowed value (i.e.,
the actual self-interference gain value of g), the algorithm terminates. Otherwise
(i-e., g» < g), it returns to step 2 and continues. Terminating Algorithm 3.3 if
the solution is admissible is intuitively obvious for the following reason. The
data associated with the parameterized problem that is solved in step 3 of
Algorithm 3.3 becomes independent of the homotopy parameter g,,, and therefore
a further increase in g, after having an admissible solution has no effect on the
results. Our computational experience suggests that Algorithm 3.3 yields an
admissible solution way before g, reaches value g (e.g., in the case of no self
interference cancellation, i.e., g = 1, an admissible power allocation is achieved
in about 1 — 4 iterations with p = 2).

Since Algorithm 3.3 runs a finite number of instances of Algorithm 3.2, its
computational complexity does not increase more than polynomially with the
problem size. Clearly, Algorithm 3.3 can converge to a Kuhn-Tucker solution
of the last parameterized problem (the one just before the termination of
Algorithm 3.3).

As a specific example to illustrate self interference, consider the simple
network shown in Figure 3.3 and suppose that no self interference cancellation
technique is employed at the network’s nodes, i.e., g = 1. Here, N =2, L = 2,
and C = 1. Note that A = {(1,2),(2,1)} and let B1, 82 # 0. Suppose that
g12 > goo and go1 > ¢g11, which is often the case due to path losses. Since
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the gains ¢g1o = 1 and go; = 1 are very large compared to go2 and g1, for any
nonzero power allocation pi,ps = po the initial SINR guess 41,42 will have
nearly zero values. This results in difficulties in using Algorithm 3.2 directly. In
Algorithm 3.3 this problem is circumvented by initializing the gains g;5 and
g21 by a parameter gg (e.g., go = max{gi1, ga2}) and executing Algorithm 3.2
repeatedly, increasing incrementally the parameter g, until it reaches 1, the true
values of g12 and go1.

Regarding the complexity of the proposed algorithm we make the following
remarks. The computational complexity of a GP depends on the number of
variables and constraints, as well as on the sparsity pattern of the problem [5].
Unfortunately, it is difficult to quantify precisely the sparsity pattern, and
therefore a general complexity analysis is not available. To give a rough idea, let
us consider a fully connected network with N = 9 nodes and C' = 8 channels.
The number of variables in problem (3.18) is 2LC = 1152 and the number of
constraints is 3LC' + N = 1737, and it was solved in about 12 seconds on desktop
computer. The number of iterations depends on the starting point, p;'** and
channel gains g;;., but typically Algorithm 3.2 required around 100 iterations to
converge.

Nevertheless, with some slight modifications it is possible to dramatically
decrease the average complexity per iteration, which is very important in the

context of practical implementations. Two simple modifications are as follows:

1. Use a large values for the parameter o in Algorithm 3.2: as we discussed in
Section 3.2.2, large o can improve the convergence speed of Algorithm 3.2 at
the cost of reduced accuracy of the monomial approximation.

2. Eliminate (relatively) insignificant variables; we can eliminate the power
variables p;. and the associated SINR variables ;. from problem (3.18) when
they have relatively very small contributions to the overall objective value of

~ (%)
Yle— in the objective of (3.18) is

144

(3.18). Specifically, the exponent term f;
evaluated for all € £, c € C and if

~(2) 2 (8)
Y Y1z
ﬂl ch @ < max ﬂf ch (@) )
1+4 leL,ceC 1+4;
then p;. s and the associated ~;. s are eliminated in successive GPs.
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3.2.5 Impact of scaling the node distances on the accuracy
of self interference cancelation

Based on a simple exponential path loss model, in this section we discuss the
impact of scaling the distance between network nodes on the accuracy level of
the self interference cancellation.

For simplicity, we focus on the single-channel case (i.e., C = 1). Suppose an
exponential path loss model, where the channel power gains |h;;(t)[?, between
distinct nodes are given by

o = (%) "ete) (321)

Here d;; is the distance from the transmitter of link 7 to the receiver of link j, do
is the far field reference distance [176], n is the path loss exponent, and ¢;;(t)
are exponentially distributed random variables with unit mean, independent of
the time slots and links. The first term of (3.24) represents the path loss factor
and the second term models Rayleigh small-scale fading.

Suppose p#* = piax for all n € N. For all [ € £ we define the SNR of link /

max -n
SN, = 2 <‘jllol> . (3.25)

as

It represents the average SNR at rec(l) when tran(l) allocates all its transmission
power to link [ and all the other nodes are silent. Let p(t) € R% denote the
overall power allocation matrix, i.e., p;(t) = [p(¢)]; (note that the channel index
is dropped for simplicity, since C' = 1).

Let us consider a network that is obtained from another one, by scaling the
distance between distinct nodes and the maximum node transmission power
such that all link’s SNRs [see (3.25)] are conserved. In the sequel, we show that,
in order to preserve the achievable rate region, the accuracy level of the self
interference cancelation techniques must also be scaled appropriately.

We start by defining two matrices, which will be useful for later reference.
Let D € ]Rf_XL denote the node distance matrix defined as [D]; ; = d;; and
G(t) € ]RiXL denote the interference coefficient and the power gain matrix
during time slot ¢, defined as [G(t)];; = ¢:;(t). The achievable rate region

with singleuser detection at receivers for a given G(t) and a maximum node
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transmission power pg*®* can be expressed as

gu(t)pi
<log |1+ , lel
e ( o2+ 2 m gjl(t)pj>

R(G(t), py* )=« (r1,...,7L)

2 teom) P < P, neN
=0, lel
(3.26)

From (3.26), it follows that if the matrix G(t) is scaled by a factor of 1/x, and
max

the maximum node transmission power pg*®* is scaled by a factor of x, then the

achievable rate region is unchanged, i.e.,

R(G(t), py™™) = R(G(t) /K, kpy'™™) . (3.27)

Let k = 6". According to the exponential path loss model given in (3.24), the
scaling of G(t) by a factor of 1/k (or 1/6") is equivalent to the scaling of node
distance matrix D by a factor of 6 and the scaling of self-interference gains g by

a factor of 1/6". Therefore, with a slight abuse of notation, we rewrite (3.27) as

R(D, g,p5"™) = R(6D, /0", 6"p5™) - (3.28)

To interpret the relation in (3.28), we consider a network characterized by D, g,
and p*®*. If we construct another network by scaling D by a factor of § and by
scaling pf'®* by a factor of 07, then to preserve the achievable rate region, the
accuracy level of the self interference cancelation should be improved to g/0".
This is intuitively obvious since, the larger the distance between network nodes,
the larger the power levels required to preserve the link SINRs, and therefore the
higher the accuracy level required by the self interference cancelation techniques
to remove the increased transmit power at nodes. Based on (3.28) we can
establish similar equivalences in terms of network layer performance metrics as
well. Roughly speaking, relation (3.28) suggests that in networks where the
nodes are located far apart (e.g., cellular type of wireless networks), the accuracy
of self interference cancellation is more stringent compared to that in networks
where the nodes are located in close vicinity (e.g., a wireless network setup in an
office).
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3.3 Extensions to wireless networks with advanced
transceivers

Until now the receiver structure was basically assumed to be equivalent to a bank
of match filters, each of which attempts to decode one of the signals of interest
at each node while treating the other signals as noise. This is a suboptimal
detector structure that is commonly assumed. In this section, we investigate the
possible gains achievable by using more advanced receiver structures. For clarity,
we discuss first the single-channel case. The extension to the multichannel
case is presented in Appendix 4. We assume that at every node n € N the
transmitter performs superposition coding over its outgoing links O(n), and
the receiver decodes the signals of incoming links Z(n) by using a multiuser
receiver based on successive interference cancelation (SIC) strategy. One may
of course assume other detector structure, including the optimum one that
implements maximum likelihood. The largest set of achievable rates is obtained
when the SIC receiver at every node n € N is allowed to decode and cancel
out the signals of all its incoming links Z(n) and any subset of the remaining
links in its complement set £\ Z(n). Let D(n) denote the set of links, which
are decoded at the node n, i.e., D(n) = Z(n) UU(n) for some U(n) C L\ Z(n).
Furthermore, let R5C(D(1),...,D(N),p, ..., pa*) denote the achievable
rate region for given D(1),...,D(N) and maximum node transmission power
pRax L piax We denote by RSIC(piax ... pWax) the achievable rate region,
which is obtained as a union of all RS€(D(1),...,D(N), pPa*, ..., p&**) over
all possible 22 nex (E=IZ(MD) combinations of sets D(1),...,D(N), i.e.,

RSIC(prlnax, o ,prjl\qfax) — U
D(1),...,D(N)|VReN FU(n)CL\Z(n) s.t. D(n)=Z(n)UU(n)

RYC(D),...,D(N),pi"™, ..., pa*) . (3.29)

The receiver of each node n € N is allowed to perform SIC in its own
order. Let m, = (m,(1),...,m,(|DP(n)])) be an arbitrary permutation of the
links in D(n), which describes the decoding and cancelation order at node
n. Specifically, the signal of link 7, (1) is decoded after all codewords of links
mn(J), j < I have been decoded and their contribution to the signal received
at node n has been canceled. Thus, only the signals of the links 7, (j), j > !
act as interference. The rate region R5IC(D(1),...,D(N),pa, ..., paX) is
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obtained by considering all possible combinations of decoding orders for all
nodes, i.e., all possible [, (|D(n)| !) combinations 7 2 T X Ty X ... X TN.
Thus, RSC(D(1),...,D(N),pia, ..., pi#*) can be expressed as

RYC(D(1),...,D(N), p™, ..., pa™) =

G, (n(t) P, (1) )

T, ) < log (1 +
(l) 02 42251 Grn(n(t) P, ()

S raseomn) V(n,l)st.neN, Le{l,...,[Dm)}} | (3.30)
i Yicom P PR, neN
D 207 le‘c

where Gy, [ € L, n € N represents the power gain from the transmitter of link {
to the receiver at node n, and p; represents the power allocated for the signal of
link [. Clearly, the computational complexity experiences a formidable increase.
Nevertheless, the RA subproblem at the third step of Dynamic Cross-Layer

Control Algorithm 3.1 can be written as °

maximize ), Bi(t)r

3.31
subject to  (1r)ies € RSC(pPx, ... plax) | ( )

where the variable is (1) ..

The combinatorial description of RS (ppax, ... PN

) implies that solving
problem (3.31) requires optimization over all possible combinations of decoding
sets D(1),...,D(N) and decoding orders 7. This is intractable, even for off
line optimization of moderate size networks. Therefore, in the following we
propose two alternatives to find the solution of a more constrained version of
problem (3.31) instead of solving problem (3.31) itself. The first alternative
limits the access protocol so that only one node can transmit in all its outgoing
links in each time slot. The second alternative adopts a similar view by assuming
that only one node can receive from all its incoming links in each time slot.
The main advantage of the alternatives above is their simplicity. As a result, a
cheaply computable lower bound on the optimal value of problem (3.31) can be
obtained. Moreover, these simple access protocols can be useful in practical

applications with more advanced communication systems.

15Note that RSIC (P2, ..., pP'N®) represents the set of directly achievable rates. By invoking
a time sharing argument, one can extend the achievable rate region to the convex hull of
RSIC (P72, ..., p™). However, this would not affect the optimal value of problem (3.31)

because the objective function is linear [39].
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3.3.1 Single node transmission case

By imposing the additional constraint that only one node can transmit during
each slot, problem (3.31) is reduced to a problem where the optimal power
and rate allocation can be computed via convex programming. Specifically,
problem (3.31) is reduced to N WSRMax problems for the scalar broadcast
channel, one for each possible transmitting node.

For any node n € N, let p,, = (pn(1),...,pn(|O(n)|)) be a permutation of
the set of outgoing links O(n) such that

IonWpn () (E) < 9o @)pn@) () < oo < G (0m)D om0 (E) 5

where g;;(t) denotes the power gain from the transmitter of link ¢ to the receiver
of link ¢ during time slot {. Now we consider the case where node n is the
transmitter. This results in a scalar Gaussian broadcast channel with |O(n)|
users. Thus for all i € {1,...,]O(n)|}, the optimal decoding and cancelation
order at the receiver node of links p, (¢) is specified by p,, [9, Sec. 6]. Specifically,
the receiver of the link p,,(¢) decodes its own signal after all the codewords of links
pn(4), 7 < i have been decoded and their contribution to the received signal has
been canceled. Thus, only the signals of the links p,,(j), j > i act as interference
at the receiver of the link p, (7). Now we can rewrite problem (3.31) by using the

capacity region descriptions of the scalar Gaussian broadcast channels [185] as

maximize Zle@(n) Biry
subject to n €N

Tpo (i) < log (l—l-

gpn(i)pn(i) ppn('b)
g o SO )
Ion(D)pn (i) 2uj=i+1 Ppn(j)

ic{l,...,J0m)} (3:32)

X

2icom) P < Pt
y2i 2 07 le O(n)

=0, Z¢O(n)a

where the variables are n, (p;)icz, and (r7);ez. Note that the time index ¢ is
dropped for notational convenience. The solution of problem (3.32) is obtained
in two steps. First, we solve N independent subproblems (one subproblem for
each possible transmitting node n € N'). Then we select the solution of the

subproblem with the largest objective value. The subproblem can be expressed
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as

maximize Zﬂ") | B ()T o (i)

gpn(i)Pn(i) ppn(i)
|O(n)] ’
0-2+gpn(i)pn(i) Zj:ﬁrl Pon(4)

ie{l,...,|0n)}

subject to 7, ;) =log 1+

(3.33)

max

Zle(’)(n) Yz Spn
pr>0,1€0(n),

where the variables are (p;);com) and (r1)ico(n). Problem (3.33) represents the
WSRMax over the capacity region of a scalar Gaussian broadcast channel [185,
Sec. 2] with |O(n)| users. The barrier method [3, Sec. 11.3.1], or the explicit
greedy method proposed in [185, Sec. 3.2|, can be used to efficiently solve this
problem. Here we use the barrier method and refer the reader to Appendix 5 for
more details. Let g("), pl(n), and rl(n) denote the optimal objective value and the
corresponding optimal solution (i.e., power and rate) respectively. Then the

rate/power relation can be expressed as

(n)
n gpn(i)Pn(i) p n (2 .
" =log <1+ - ol ) i (L oM} (3.34)
T2 4G (i)pn (i) 2o jmitl Py i)

and the optimal solution of problem (3.32) is given by

n* = arg max g(”) ;

neN
g reom)
0 otherwise ; (3.35)
L reom
= 0 otherwise .

3.3.2 Single node reception case

Here we consider the case where only one node can receive during each slot. As
a result, the associated problem (3.31) is reduced to a simpler form where the
optimal power and rate allocation can be computed very efficiently by considering
N WSRMax problems for the Gaussian multiple access channel, one for each
possible receiving node.

We start by considering the capacity region descriptions of the Gaussian

multiaccess channel with |Z(n)|, n € N users [179],]9, Sec. 6]. For any receiving
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node n € N, the capacity region of a the |Z(n)| user Gaussian multiaccess
channel, with power constraints p;, I € Z(n), is given by the set of rate vectors

that lie in the intersection of the constraints

21ev(n) 9111?1)

2iev(m) Tt < log (1 + = (3.36)

for every subset V(n) C Z(n). Thus, we can rewrite problem (3.31) as

maximize ZlGI(n) Bir;

subject to n e N
n) 9uP1
Yiev(m 11 < log <1 + Zle";;) . V(n) C Z(n) (3.37)

0<p< p?ﬁ:ﬁ(l)a leZ(n)

n=0,1¢ZI(n),
where the variables are n, (p;)ierz, and (r;);c.. Again, the solution is obtained in
two steps. First, we solve N independent subproblems (one subproblem for each
possible receiving node n € ). Then we select the solution of the subproblem

with the largest objective value. The subproblem has the form

maximize ZleI(n) Biry

ZZEV

gupi
subject to 3 2cy i,y 71 < log (1 + ) , V(n) CZ(n) (3.38)

0<pi < p,. L€ ) .
where the variables are (p;);ez(n) and (71)iez(n)- Problem (3.38) is equivalent
to the WSRMax over the capacity region of the Gaussian multiaccess channel
with |Z(n)| users [9, Sec. 6]. The solution is readily obtained by considering the
polymatroid structure of the capacity region [179, Lem. 3.2|. Again we denote
by g™, pi"
problem (3.38) respectively. Thus, the solution of problem (3.38) can be written

, and Tl(") the optimal objective value and the optimal solution of

in closed form as p( " = = Diranq for all I € Z(n) and

(n)
an (4)on(7) pg,, (2)

ie{l,...,[Z(n)[}
1O ) 5 ) ’ ’
U2+ EL Z+|1 g@n n(j) pgn(j)

P
Ton(i) = 10g(1+

(3.39)
where g,, = (0n(1),...,0,(|Z(n)|)) is a permutation of the set of incoming links
Z(n) such that

Bont) < Bon() < -+ < Bo(zm) - (3.40)
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One can in fact identify g,, as the SIC order at the receiving node n € N. Finally,

the optimal solution of problem (3.37) can be expressed as

n* = arg max ¢(") ;
nEN*

oo ez
0 otherwise ; (3.41)
. rl(n*) leZ(n")
"= 0 otherwise .

34 Numerical examples

In this section, we use the algorithms of the preceding sections to identify the
solutions to the selected NUM problem and their properties, so as to get insight
into network design and provisioning methods. Specifically, in every time slot ¢,
the rate allocation at step 3 of the Dynamic Cross-Layer Control Algorithm (i.e.,
Algorithm 3.1, Section 3.1) is obtained by using the proposed algorithms for
WSRMax described in Section 3.2 and Section 3.3.

We assume a block fading Rayleigh channel model where the channel gains are
constant during each time slot and change independently from slot-to-slot. The
small-scale fading components of the channel gains are assumed to be independent
and identically distributed over the time slots, links, and channels. Recall that
we consider equal power spectral density for all receivers, i.e., N; = Ny for all
l € £ and equal channel bandwidths, i.e., W, = W for all ¢ € C. Furthermore,
the maximum power constraint is assumed to be the same for all nodes, i.e.,
pRax = pax for all n € N (independent of the number of channels C). For
a fair comparison between cases with different numbers of channels, we have
assumed that the total available bandwidth is constant regardless of C, i.e.,
25:1 W. = Wiet. In all our simulations we have selected the total bandwidth to
be normalized to one, i.e., Wit = 1 Hz.

For comparing different algorithms, we consider the following two performance
metrics: 1) the average sum-rate Y, - . cs. Tp and 2) the average network
congestion ) s Zle g; - For each network instance, the Dynamic Cross-Layer
Control Algorithm (i.e., Algorithm 3.1) is simulated for at least 7" = 10000
time slots and the average rates z; and queue sizes ¢, are computed by

averaging the last to = 3000 time slots, i.e., 5 = 1/t ZtT:T—tO x$ (t) and

n n
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@ =1/ty ZtT:T—tO ¢ (t). We assume that the rates corresponding to all node-
commodity pairs (n,s)ses,,n € N are subject to proportional fairness, and
therefore we select the utility functions u (y) = log,(y). In all considered setups,
we selected V' = 100 [see (3.4)] and the parameters R [see (3.4)] were chosen
such that all conditions presented in [44, Sec. III-D] were satisfied.

We start with a simple network instance (Section 3.4.1); a bipartite network
where no self interferers exist (i.e., A = () and the proposed successive approxi-
mation algorithm, Algorithm 3.2 (Section 3.2.2) is used in resource allocation.
The associated results show important consequences on upper layers due to the
proposed successive approximation algorithm. We then consider more general
networks (Section 3.4.2), with the presence of self interferers (i.e., A # )) and no
self interference cancellation at network’s nodes (i.e., g = 1). Here Algorithm 3.3
(Section 3.2.4) is used in resource allocation. The gains achievable at the network
layer, due to different degrees of the self interference cancelation performed at
the network nodes, are investigated quantitatively in Section 3.4.3. By changing
¢ in the interval [0, 1], the results are able to capture the effect of self interference
cancelation performed with different levels of accuracy. Finally, we look at
the multiuser receiver scenario, again using the same network instance as in
Section 3.4.2. The associated results (Section 3.4.4) show impacts in upper layer

performance due to advanced receiver architectures.

3.4.1 NUM for bipartite networks with singleuser detection
at receivers

A bipartite network, as shown in Figure 3.4, is considered. There are N = 8 nodes,
L = 4 links, and S = 4 commodities. One distinct commodity arrives exogenously
at every node n from the subset {1,2,3,4} C A. Without loss of generality we
assume that the nodes and commodities are labeled such that commodity 4
arrives at node i for any i € {1,2,3,4}. The destination nodes are specified by the
following commodity-destination node pairs (s,ds) € {(1,5),(2,6), (3,7), (4,8)}.

The channel power gains between distinct nodes are given by
|hijc(t)|2 = Mli_j‘cijc(t), 1,] € £, celC R (342)

where c¢;;.(t) are exponentially distributed independent random variables with

unit mean used to model Rayleigh small-scale fading and the scalar p € [0,1] is
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Fig 3.4. Bipartite wireless network with N = 8 nodes, L = 4 links, and S = 4
commodities, [112] © 2011, IEEE.

referred to as the interference coupling index, which parameterizes the interference
between direct links. For example, if ¢ = 0, transmissions of links are interference
free. The interference between transmissions increases as the parameter p
grows. Similar channel gain models for bipartite networks has also been used
in [186]. Of course, this simple hypothetical model provides useful insights into
the performance of proposed algorithms in bipartite networks (e.g., cellular

networks). We define the SNR operating point as

max

Po
SNR = — . 3.43
NOWtot ( )

Figure 3.5 shows the dependence of the average sum-rate [Figure 3.5(a)]
and the average network congestion [Figure 3.5(b)] on the interference coupling
index p for our proposed Algorithm 3.2 and for the optimal base line single
link activation (or BLSLA) policy . We consider the single-channel case
C = 1 operating at three different SNR values 2, 8, and 16dB. The initial

max

power allocation Py for Algorithm 3.2 is chosen such that [Pgl; 1 = p§*®* unless
otherwise specified. Here we can make several observations. First, the proposed
Algorithm 3.2 provides substantial gains, both in the average sum-rate, as well as
in the average network congestion, especially for small and medium values of the
interference coupling index. The gains diminish as interference between direct
links become significant. This is intuitively expected since for large SNR values
the BLSLA policy becomes optimal when the interference coupling index p

approaches 1. It is interesting to note that at small SNR values the network can

16 A channel access policy where, during each time slot, only one link is activated in each
channel is called BLSLA policy. Finding the optimal BLSLA policy that solves problem (3.6)
is a combinatorial problem with exponential complexity in C. Thus, it quickly becomes
intractable, even for moderate values of C. However, for the case C = 1 the optimal BLSLA
policy can be easily found and it consists of activating, during each time slot, only the link

that achieves the maximum weighted rate.
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Fig 3.5. Dependence of the average sum-rate and the average network congestion
on the interference coupling index p; C = 1 and SNR = 2,8,16dB, [112] © 2011,
IEEE.
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still benefit from scheduling multiple links per slot, even for the case p = 1. This
gain comes from the fact that the channel gains between interfering links are also
affected by fading. Thus, links that experience low instantaneous interference
levels can be simultaneously scheduled. Results suggest that, especially for small
and medium values of the interference coupling index, the proposed solution
method often yields designs that are far superior to those obtained by BLSLA.

Figure 3.6 shows the dependence of the average sum-rate [Figure 3.6(a)] and
of the average network congestion [Figure 3.6(b)] on the number of iterations of
Algorithm 3.2. We consider the single-channel case C = 1 with interference
coupling index p = 0.5 and SNR values 2, 8, and 16dB. To facilitate faster
convergence, Algorithm 3.2 is run without considering the trust region constraints;
to do this, we can simply set the parameter o in Algorithm 3.2 to a very large
positive number, e.g., o = 10190 [see problem (3.18)]. As a reference, we consider
the optimal BLSLA policy. Results show that the incremental benefits are very
significant for the first few iterations and are marginal later. For example, in
the case of SNR = 16dB, when the numbers of iterations changes from 1 to 3,
the improvement in the average sum-rate is around 18.1%, whereas when it
changes from 7 to 9, the improvement is around 0.30%. Therefore, by running
Algorithm 3.2 for a few iterations (e.g., 5 iterations) we can yield performance
levels which are almost indistinguishable from those that would have been
obtained by running Algorithm 3.2 until it terminates (see the stopping criterion
in step 3). This observation can be very useful in practice, since we can terminate
Algorithm 3.2 when the incremental improvements between consecutive iterations
become negligible.

Figure 3.7 shows the dependence of the average sum-rate [Figure 3.7(a)] and
of the average network congestion [Figure 3.7(b)] on the SNR for Algorithm 3.2
and optimal BLSLA policy. We have considered the case C =1 and p = 0.3.
For comparison, we also plot the results due to a commonly used high SINR
approximation [34] where the achievable rates log(1 4 +;.) are approximated by
log(7ic). In particular, the objective function of problem (3.11) is approximated
by [lece Iicr %;ﬁl- Recall that ~,. represents the SINR of link [ in channel ¢
and f; represents the differential backlog of link [. This results in a convex
approximation (i.e., a GP) of problem (3.11). One should not confuse high SINR
with high SNR, since those are fundamentally different and a high SNR value

does not ensure high SINR values in all links. Results show that, when compared
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with other methods, RA based on Algorithm 3.2 offers larger average sum-rate as
well as reduced average network congestion. The relative gains of Algorithm 3.2
reduce, compared to the BLSLA at high SNR, e.g., the relative gain offered
by proposed Algorithm 3.2 in the average sum-rate changes from 40% to 17%
[Figure 3.7(a)] and the relative gain in the average network congestion changes
from 23% to 15% [Figure 3.7(b)] when the SNR value is increased from vy = 16dB
to v = 24dB respectively. This observation is consistent with the fact that
at high SNR it is very likely the optimal RA has a BLSLA structure. As a
result, at the optimal RA, different links correspond to different SINR regions,
and therefore the high SINR approximation is, of course, unreasonable and
suffers a large penalty, especially at high SNR values. This poor performance is
qualitatively consistent with intuition: the solution obtained by employing high
SINR approximation in RA must contain all nonzero entries (i.e., nonzero ;) to
drive the approximated objective (i.e., [ToceILicr 71261) into a nonzero value,
and therefore never yields a solution to the form of BLSLA.

Figure 3.8 shows the dependence of the average sum-rate [Figure 3.8(a)] and
of the average network congestion [Figure 3.8(b)] on the number of channels
C for Algorithm 3.2. We consider the case SNR = 16dB and p = 0.3 and
the initial power allocation Py for Algorithm 3.2 is simply chosen such that
[Poli,c = pg®*/C. The plots illustrate that increasing the number of channels
will yield better performance in both the average sum-rate and the average
network congestion (e.g., when the number of channels C' changes from 1 to
8, the improvement in the average sum-rate and the reduction in average
network congestion is around 12% and 12.4% respectively). We stress that
the benefits are solely achieved by opportunistically exploiting the available
multichannel diversity in the network via the proposed Algorithm 3.2 without
any supplementary bandwidth or power consumption. Moreover, the incremental
benefits are very significant for small C, e.g., when the number of channels
C changes from 1 to 2, the improvement in the average sum-rate is around
6%, whereas when C' changes from 7 to 8, the improvement is around 0.25%.
The plots give much insight into why multichannel designs are important and

beneficial compared to the single-channel counterpart.
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3.4.2 NUM for nonbipartite networks with singleuser
detection at receivers

First, two small fully connected multihop wireless network setups, which are
identical to the once shown in Figure 2.11 are considered.

We assume an exponential path loss model; the channel power gains |h;;.(t)|?
between distinct nodes are given by

2 (dii\"
sl = (5) el (3.49)

where d;; is the distance from the transmitter of link ¢ to the receiver of link j,
do is the far field reference distance [176], 1 is the path loss exponent, and ¢;;c(t)
are exponentially distributed random variables with unit mean, independent
over the time slots, links, and channels. The first term of (3.44) represents the
path loss factor and the second term models Rayleigh small-scale fading. The
SNR operating point is defined as

panax DO ) -n
SNR = | = . 3.45
NOWtot ( dO ( )

In the following simulations we set Dy/dy = 10 and 7 = 4.

Figure 3.9 shows the dependence of the average network layer sum-rate on the
SNR for the considered network setups, where we use C' = 1. As a benchmark,
we first consider the branch 