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Abstract

Epilepsy is a disorder of the central nervous system that causes individuals

suffering from it to undergo recurrent seizures. It affects over 50 million people

worldwide.

A seizure is an abrupt anomaly in electrical activity, that disrupts the normal

working of the brain. Symptoms of epileptic seizures can range from simple

disorientation and lapse in attention, to sensory hallucinations and to full-body

convulsion. One third of patients with epilepsy continue to suffer with seizures

despite treatment. Such patients have their mobility and independence severely

limited and thereby undergo economic hardship and social isolation. More

seriously such patients have a much higher risk of experiencing burns,

lacerations, fractures and even death.

This thesis presents a method of detecting epileptic seizures as they happen, with

the objective that when a such a seizure is detected a caregiver or paramedic may

be alerted to prevent any injury to the patient as a result of the seizure. At the

heart of the presented method is an automated method for seizure detection based

on the patients electroencephalogram (EEG). The presented method works by

attempting to recreate a non linear dynamical system which could have generated

the the EEG of the patient at a given moment of time. The method was tested

on 100 hours of pre recorded scalp EEG data from 10 paediatric epilepsy patients

and reported a sensitivity of 91% with a mean detection time of 3.6 seconds
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Chapter 1

Introduction

1.1 Epilepsy

Epilepsy is a disorder of the central nervous system that causes individuals

suffering from it to undergo recurrent seizures. A seizure is an abrupt anomaly

in electrical activity that disrupts the normal working of the brain. Symptoms

of epileptic seizures can range from simple disorientation and lapse in attention,

to sensory hallucinations and to full-body convulsion. The poet Stuart Ross

McCallum describes the onset of a seizure:

It’s here again, the sinister sensation of an aura that I know only too well.

Searching for a safe place to lay down as I descend into my private hell.

I shout out loud, "It’s happening again," it’s beyond my control.

Dropping down heavily, my head hits the floor.

Feeling horrid my mind and body is no longer in my control.

Twitching, shaking, and staring into space – I blackout.

Epilepsy is not a singular disease but belongs to a family of syndromes that

share the common feature of recurring seizures. Physiological causes of epilepsy

could be the inheritance of a mutation in the molecular mechanism that
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Chapter 1. Introduction

regulates neuron connectivity, brain trauma due to injury, stroke, and infections

of the cerebellum or malignancies of the brain [Brown1992 ].

Epilepsy occurs with an incidence of 6.88/100,000 person-years

[Christensen2007 ], and the age adjusted incidence of epilepsy is estimated to

be 44/100,000 person-years [Hauser1993 ], thereby making epilepsy one of the

most common neurological disorders. Although new anti-epileptic drugs have

been developed over the past few decades, one third of patients with epilepsy

continue to suffer with seizures despite treatment [Kwan2000 ]. Such patients

have their mobility and independence severely limited and thereby undergo

economic hardship and social isolation. More seriously such patients have a

much higher risk of experiencing burns, lacerations, fractures and even death

[Friedman2010 ][Ficker2000 ]. In patients whose epilepsy is controlled by

medication, the anxiety caused by the unpredictable nature of the condition

results in a reported lower quality of life [Camfield2010 ].

They don’t know

Know what it feels like

Every day

Pain, suffering, weakness.

You look great on the outside

But you feel terrible on the inside

All the pain!

It hurts but you wouldn’t know!

You can’t feel it

The pain suffering and weakness!

It hurts so bad!

2



Chapter 1. Introduction

All I want to do is sleep

Excerpt from: My Epilepsy Life - Poem by Felicia Nicole Haggard, Chattanooga,

Tn, USA.

The negative effects of epilepsy apply not only the individual sufferers but also to

their families, friends and co-workers. The families of epilepsy patients undergo

chronic anxiety, and need to rearrange their lives so that the safety of their loved

one is ensured. The estimated annual direct medical cost of epilepsy in the United

States, not considering indirect costs from losses in productivity and quality of

life, is $ 9.6 billion [England2012 ]. Therefore novel therapeutic methods that

can better control seizures as well as technology which help both the affected

individual as well as their care givers to cope with the arising consequences of the

disease are desperately needed.

1.2 Motivation

The ability of an automated system to detect the onset of a seizure may ease

the burden that is carried by sufferers of medically intractable epilepsy, by being

able to warn them of the impending seizure just prior to the onset of debilitating

symptoms, or could alert those nearby of what is to come so that the consequences

of the seizure may be mitigated. Therapeutic systems may be able to reduce

symptoms or even abort a seizure through automated and targeted administration

of treatment with accurate detection of the onset of a seizure.

3



Chapter 1. Introduction

1.3 Challenges

Detection of the onset of a seizure is usually accomplished through the analysis

of the electroencephalogram or EEG, which is a recording of the electrical

activity that is generated by the billions of neurons of the brain. The different

channels of the EEG reflect the electrical activity of different parts of the brain

at a given moment in time. The EEG that is recorded by placing electrodes on

an individual’s scalp is called the scalp EEG, while that which is recorded by

invasively placing electrodes directly on the brain is called the intracranial EEG

or iEEG. The variability of the EEG across different patients as well as the

variation of the EEG among different recordings from the same patient for

patterns generated for both seizure and non seizure events make the detection

of epileptic seizures from the EEG most challenging.

At the onset of an epileptic seizure, a set of EEG channels will develop rhythmic

activity that is caused by the synchronous firing of neurons beneath the electrodes

of the channels involved. The location of this rhythmic activity as well as its

spectral content shows both inter patient as well as intra patient variability. Also

the EEG pattern of a seizure of one patient may resemble non seizure activity

from another patient.

1.4 Objectives

The objective of this work is to develop an epileptic seizure detection system based

on attractor reconstruction by applying the theories of non-linear dynamics to the

EEG. A further objective is to make this detection method independent of inter

patient variability to the most possible degree.

4



Chapter 2

Literature Review

This chapter reviews recent publications involved in the automated detection of

epileptic seizures from the EEG.

2.1 Electroencephalogram Analysis Methods for

Epileptic Seizure Detection

In the early days of EEG analysis for the purpose of automated epileptic seizure

detection (i.e. the 1970s), detection methods relied on interpretation of the EEG

using descriptive and heuristic methods. In time however various new methods

were developed and used to analyse the subtle changes in the EEG signal which

could indicate an epileptic seizure. These methods can be broadly grouped into

the following four categories:

1. Time domain methods

2. Frequency domain methods

3. Time-Frequency domain methods

4. Information Theory based methods

5. Non-Linear methods

5



Chapter 2. Literature Review

2.2 Time Domain Methods

In order to detect seizures from the EEG in the time domain, the discrete time

sequences of EEG epochs must be analysed. This can usually be accomplished

by calculating the histograms of the epochs. Runarsson and Sigurdsson have

presented a simple time domain based method through which a seizure is

detected by first breaking the signal into half waves and then tracing the

maxima and minima of the if the current EEG epoch. The bivariate histogram

of the amplitude difference between of consecative maxima and minima, and the

time difference between consecative maxima and minima is then calculated

[Runarsson2005 ]. A support vector machine is used to classify seizure and

non-seizure conditions, and the authors reported a sensitivity of 90%.

Alutnay et al. [Altunay2010 ] used a linear predictive filter (LPC) to model

the EEG signal at a given EEG epoch. The error energy between the actual

EEG signal at the given epoch and the predicted signal is then compared to a

threshold to detect a seizure. Since the LPC assumes that the signal is stationary

it is unable to track sudden spikes, and therefore shows an increase in error energy

during ictal periods. A sensitivity of 92% was obtained.

2.3 Frequency Domain Methods

Rana et al. [Rana2012 ] has presented a frequency domain based epileptic

seizure detection method based on the phase slope index (PSI) of the

multi-channel IEEG. The PSI is a measure of the weighted sum of the slopes of

the phase between two iEEG channels, and is used as measure of the causal

influence of one iEEG channel on the other. The authors hypothesise that the

6



Chapter 2. Literature Review

level of causal influence between iEEG channels increases during ictal

conditions. The PSI value is then compared against a threshold to test its

significance. A global value of interaction between EEG channels is then

calculated by summing together the significant PSI values in a given EEG

epoch. The global interaction measure is then compared against a threshold to

test if a seizure has occurred in the current EEG epoch. Out of the five patients

included in the study, the authors were able to detect seizures in four patients

with a sensitivity of 100%, while a sensitivity of 93% was reported for the fifth

patient. However, the detection latencies for the system averaged slightly less

than 20 seconds.

A patient specific seizure detection system by Khamis et al. [Khamis2013 ]

used frequency-moment signatures. Differential EEG signals from electrode

pairs T6-P4 for the left hemisphere and T5-P3 for the right hemisphere were

first band pass filtered between 0.5 to 50 Hz. A triangular window was used to

taper the data to remove unnecessary spectral leakage, and the power spectral

densities of the two signals were calculated. Moments of the spectral densities

were then used to create seizure and non seizure signatures. The logarithm of

the probability that a specific signature belonged to set of non seizure

signatures was used as the test metric. A seizure detection sensitivity of 91%

and a false alarm rate of 0.02 false positives per hour were reported.

Blanke et al. [Blanke2000 ] detected seizure onset by first determining the

dominant frequencies in the EEG which are related to the seizure, and then

observing the EEG until these dominant frequencies arrive. 32 seconds of EEG

recording before seizure onset and 14 seconds after seizure onset were used to

7
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create 23 2 second long epochs. The data from each EEG epoch was then

transformed into the frequency domain with a resolution of 0.5 Hz using the

FFT approximation method of Lehmann and Michel [Lehmann1990 ], to take

into account the phase angles between the EEG electrodes, which gives a

conclusion about the electric field distribution at each frequency under

consideration. This method will be further discussed in Chapter 4. The global

field power (GFP) [Lehmann1980 ], which is the the standard deviation of the

potentials at all electrodes (obtained from the FFT approximation process) is

calculated for each frequency of the FFT. The dominant peaks of the GFP

which are consistent across three seizures were determined for each of the EEG

epochs, to show how the strength of the electric field at a particular frequency

evolves. By following the the evolution of the dominant frequencies back in

time, the point where the power in these frequencies begins to rise can be found.

this point is considered to be the point of seizure onset.

For the 10 patients analysed, the dominant frequencies were found to be between

3 Hz - 8.5 Hz, The initial rise in dominant frequencies were found to be upto 7

seconds before seizure onset, while the GFP peaked with a maximum latency of

7 seconds.

2.4 Time-Frequency Domain Methods

The method presented by Shoeb [Shoeb2009 ] involved dividing the EEG

spectrum of 0 to 30 Hz, from each EEG channel into 8 equal sub bands. The

spectral energy in each sub band was then calculated, and the energy measures

from each channel were concatenated to form a ‘spatio-spectral’ feature vector.

Three consecutive spatio-spectral vectors were then concatenated to form a

‘spatio-spectral-temporal’ feature vector. This is then used to train a support

8
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vector machine in order to classify seizure and non seizure feature vectors. The

system was tested on 844 hours of EEG data recorded from 23 patients, and

detected 96% of 163 seizures. A false alarm rate of up to 20 false alarms per 24

hours were reported for some patients.

Yan el al. [Yan2015 ] used the Stockwell transform to get a time-frequency

representation of certain iEEG channels involved in a seizure. 10 time-frequency

feature vectors are extracted from a 4 second long epoch of EEG data. The

feature vector is used to train a gradient boost algorithm based classifier. Post

process Kalmann filtering is applied to smooth the classifier output, which is

then compared to a threshold to detect the occurrence of a seizure. The system

was tested on iEEG data from 21 patients and provided an average sensitivity of

94.2% with a mean false detection rate of 0.66 false detections per hour.

2.5 Information Theory Based Methods

Stamoulis et al. [Stamoulis2012 ] used information theory measures to show

that changes in output of the brains neural network at high frequencies precede

the onset of focal seizures. EEG data from 7 patients were used from which a

total of 39 preictal and and 39 ictal epochs which on average were 2 minutes

long were extracted. Similarly 42 non-ictal baseline epochs were also used in

this analysis. The Authors were able to show that the relative entropies of

preictal and ictal epochs were statistically distinct at frequencies greater than

100 Hz. On patients with certain types of seizures the there was a decrease in

the directionality of information flow specifically at high frequencies. Similarly a

drop in preictal interaction information when compared to ictal and non ictal

9
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epochs were shown in certain patients.

Acharya et al. [Acharya2015 ] used 13 different entropy measures to

investigate the detection of seizures. Normal, interictal and ictal datasets from

the University of Bonn EEG database were used, and an Analysis Of Variance

(ANOVA) statistical test was used to evaluate the discrimination performance

of the entropy measures. The test determines an F-value and a p-value for the

three groups of data. The authors were able to show that Renyi’s entropy,

sample entropy, spectral entropy and permutation entropy had the highest

F-values, characterising performance and thus showing significant

discrimination among the three datasets.

2.6 Non-Linear Methods

Single neurons are are highly non-linear elements [Fell2000 ] and on a group

level further non linearity is introduced into the system by the presence of

feedback loops in the processing layers of the brain. Thus techniques provided

by non-linear dynamics provide additional information that cannot be measured

through linear methods [Stam2005 ]. A further discussion regarding the EEG

and non-linear dynamics will be provided in Chapter 3.

Arabi and He [Arabi2012 ] embedded the EEG data in phase space using

Takens’ embedding theorem [Takens1981 ] using parameters determined by

the algorithms of Moon et al [Moon1995 ] and Cao [Cao1997 ]. The authors

then estimated the correlation integral [Sprott2001 ], which represents a

dimensionality measure of a set of random points in state space. The correlation

entropy, which is a similar to the mutual information between two data

10
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segments, where a large value shows that there are similar characteristics

between the two data sets. The Lempel-Ziv Complexity, which is a measure of

the randomness of the data sequences. And finally the Largest Lyapunov

exponent, which is a measure of the chaotic behaviour of the sequence. If any of

these measures exceed a certain significance threshold, a flag is set.

The non-linear independence between EEG channels is also measured; this is

a measure of the level of synchronization between the EEG channels that are

considered. Again if the non-linear independence between a pair of channels is

greater than a threshold another flag is set. If both flags are set then a seizure

alert is issued.

The system was tested of 58 hours of iEEG recordings from two patients,

containing 10 seizures with a 50 minute preictal period. Sensitivities of 90% and

96.5% were obtained for the two patients. the false detection rates were 0.06

and 0.055 false detections per hour.

Van Esbroeck et al. [VanEsbroeck2016 ] have introduced the use of the

Non-Linear Energy Operator (NLEO) to segment the EEG data into variable

sized epochs. The NLEO detects large changes in energy, and the data is

segmented at these points where the change in energy occurs. EEG epochs that

contain significant information are thus created, thus avoiding pertinent

information being distributed among several EEG epochs. The authors then

followed the same methods as Shoeb which have been described previously. The

authors were able to show a overall improvement of 27% in the false prediction

rate when compared to the method of Shoeb.

11



Chapter 3

Theoretical Background

3.1 The Electroencephalogram

The brain operates via the transmission of electrical discharges between

neurons. A non invasive way of monitoring these discharges is by measuring the

electrical at certain points on the scalp to give a sum of the electrical activity of

the millions of neurons that lie below.

Following the pioneering work of Richard Canton who studied the electrical

activity in brains of animals in the 19th century, Hans Berger in 1924 recorded

the electrical activity of a human brain for the first time. Berger called his

recording of the electrical activity an electroencephalogram, which he coined

from the two Greek words enkephalos meaning brain and gramma meaning

writing. He noted that these brain waves he had recorded were not completely

random, but showed certain regularities and periods.

The scalp recordings of the neuronal activity of the brain, now known as the EEG,

measure the potential changes that occur over time between a signal electrode and

a reference electrode. These electrical potentials are generated by the activity of

12
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tens of millions of neurons in the area of the brain underneath the electrode. To

standardise the spacial mapping of the electrical activity of the different regions of

the brain, the International Federation of Societies for Electroencephalography

and Clinical Neurophysiology has adopted the 10-20 scalp electrode placement

system as shown in Figure 3.1.

Figure 3.1: The international 10-20 system seen
from (A) left and (B) above the head. Image from
http://www.bem.fi/book/13/13.htm - redrawn from

Sharbrough1991

3.2 Epilepsy And The EEG

Neurons, the cells in the brain, generate, propagate and process electrical

signals. Functional networks are formed by interconnections between neurons,

and the brain may be viewed as collection of neural networks that interact with

each other. Certain neurons exhibit excitatory behaviour, while others show

inhibitory activity to inputs to the neural network. Epileptic seizures are caused

by temporary hyperactivity and hyper-synchronization of groups of neurons in

one or more of the neural networks that make up the brain. These hyperactive

and hyper-synchronous states occur due to a temporary imbalance between the

excitatory and inhibitory activity of a neural network, favouring excitatory

13



Chapter 3. Theoretical Background

activity. This imbalance may be caused by interconnectional and

intraconnectional defects of the neural networks or by damage to or defects

within one or more neurons themselves. These defects may be caused by genetic

disorders or by physical trauma to the brain.

Epileptic seizures are usually classified according to the area of the brain from

which they originate. For example seizures that originate from a localized area

of the brain are known as focal seizures. If a focal seizure arises from the area of

the brain responsible for emotions and short term memory it may result in

hallucinations of taste and smell, feelings of euphoria or fear and paranoia.

Seizures that initiate abnormal electrical activity across the entire brain are

known as generalized seizures. The effects of such seizures often results in loss of

conciousness.

Secondarily generalized seizures are those that begin as a focal seizure and then

spread to other areas of the brain and then finally to the whole brain. For

example as the seizure spreads to the motor cortex of one side of the brain, it

will induce jerks and twitches in the limbs on the opposite sides of the body. As

it then spreads to the entire brain whole body convulsion result.

Absence seizures are seizures where there is a loss of cognition and or

conciousness with no other physical symptoms.

The progressive clinical symptoms of an epileptic seizure usually show

corresponding patterns on the EEG, as shown by Noachtar and Rémi in 2009

14
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[Noachtar2009 ] in Figure 3.2. Interictal epileptiform discharges are certain

EEG patterns that do not normally occur in healthy individuals and tend to

precede seizures. There exist however, seizures that do not show any clinical

symptoms but only appear on the EEG. These are known as sub clinical

seizures [Bromfield2006 ].

Figure 3.2: Progression of clinical symptoms of an epileptic
seizure with corresponding EEG pattern [Noachtar2009 ]

The following figures show typical seizure patterns of three paediatric epilepsy

patients.
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Figure 3.3: EEG of a generalized seizure from paediactric patient
A. Begining of seizure marked with arrow (A) and later progression

of seizure (B) [Spinosa2011 ]
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Figure 3.4: EEG of a generalized seizure from paediactric patient
B. Begining of seizure marked with arrow (A) and (B) end of

seizure marked with arrow. [Spinosa2011 ]
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Figure 3.5: EEG of a absence seizure from paediactric patient
C. [Spinosa2011 ]

3.3 Non Linear Brain Dynamics

Evoked potentials (EPs) are time-locked electromagnetic responses in the brain

following the presentation of discrete stimuli such as light flashes, audio tones and

touch - the evoked EEG pattern is locked in time with respect to the external

stimulation. The scalp surface measurements of such responses are on the order of

a few microvolts, and as such are considered to be independently buried within the

ongoing background EEG which itself has an average amplitude of a few hundred

microvolts. therefore the simple model is often used to roughly represent the

relationship between the EEG and the EP is

y(t) = s(t) + n(t)
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where y(t) is the potential recorded from the surface of the scalp, s(t) is the

independent EP, and n(t) is the background EEG ‘noise’. The usual procedure

that is followed to extract the the EP is to average the signal recorded over many

stimulations (trials), such that all time-locked EEG activity will be enhanced,

while non time-locked EEG activity will diminish. This method is based on the

following assumptions:

1. The true underlying EP s(t) is invariant between trials.

2. The neural circuitry that generates the EP is completely independent of the

circuitry that generates the background EEG.

3. The ongoing background EEG is stationary between trials.

4. The current EP is not influenced by the previous EP.

However, in humans it is well known that EPs do vary between trials, and that

the EEG is not neither stationary nor completely independent from the process

that generates the EPs. Also the independence of the generation mechanisms of

the two processes has never been proved extensively. Similarly abnormal neural

activity such as epileptic seizures cannot be linearly separated from the

background EEG.

Therefore a new hypothesis is needed to model the generation of EPs and other

significant brain events. One such hypothesis is that the ongoing EEG experiences

a reorganization that can be modelled via the non linear transformation

y(t) = f [e(t)] + n(t)
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y(t) is the potential recorded from the surface of the scalp, e(t) is the ongoing

EEG up the the neural event n(t) is any non event related activity, and f [.] is

the non linear transformation function [Brandt2001 ]. Analysis of these non

linear transformation functions is a currently active area of research. Clear

evidence of non linearity can be easily found in the EEG by the fact that the

EEG under periodic photic or auditory stimulation shows not only the

frequency of stimulation but also harmonics and sub harmonics of that

frequency. This is in line with the fact that a non linear dynamic system driven

by a periodic frequency will not only have an output at the driving frequency

but also at its harmonics and sub harmonics. [Fell2000 ]. Thus non linear

dynamics have been increasingly used to reveal aspects of the EEG that are not

visible under linear methods.

3.4 Dynamical systems

A dynamical system is a model which describes the the the evolution of a

system given only the initial state, which gives the impression that these

systems possess memory. The next state of the system is a function of the

present state. Therefore a dynamical system is described by two parameters, a

state - which is all the values of the variables that describe the system at a

certain snapshot in time, and the dynamics of the system - a set of laws or

equations which govern the evolution of the system with time.

The state of system that is described by m variables can be represented by a

point in m dimensional space which known as phase space or state space. The

set of equations which govern the dynamical system usually consist of a set of

coupled differential equations (one for each of the systems variables) which map
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the transition of the system in m dimensional space. Therefore given a m

dimensional state of a dynamical system xmn , the next state of the system is

given by:

~xn+1 = f(~xn)

where f : Rm → Rm is a map from m dimensional space to m dimensional space.

The line connection the points in m dimensional space representing the set of

states reached by the system is known as the trajectory of the system.

3.5 Phase Space

Phase space, also known as state space is defined as the set of all states that can

be reached by the system in question, it might be described as the living space of

the dynamical system. Phase spaces are usually differentiable manifolds and thus

can be treated as Euclidean spaces Rn The flow Φ on the manifold is generated

by the map that transforms the initial state xn to the subsequent state xn+1.

Considering a point x of manifoldM in Rn phase space, if a copy of Rn is attached

tangentially at x the resulting space is known as tangential space. The derivative

of any trajectory passing through x is a vector of the tangential space.

3.6 Attractors

If a dynamical system is observed for a sufficiently long time, i.e. until the initial

transients have died out, its trajectory will converge to a subspace of the phase

space. The geometric object of the subspace is known as the attractor of the

system. The attractor is so called, because it attracts trajectories from all initial

conditions of the system.
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An attractor can be formally described as follows.

1. A set of states A is an attractor, if for a map f acting on A generating a

flow Φ, Φ(A) ⊂ A, which means that states within A will remain in A.

2. A has a neighbourhood known as the basin of attraction U such that f(U) ⊂

U and
⋂
i>0 Φi(U) = A. i.e. points within U are attracted to A

3. For conditions 1. and 2. to be fulfilled Ā 6⊂ A i.e. A is the smallest set for

which conditions 1. and 2. hold.

A linear dynamical system has only one type of attractor, a single point in phase

space. This implies that the system will converge to a steady state after a certain

settling time. Non linear systems have a far more varying repertoire of attractor

structures. There are of three main types:

1. Limit Cycles - these are closed loops in phase space representing periodic

motion.

2. k-tori - these attractors have a toroidal surface in an integer dimension,

representing quasi-periodic motion with the superposition of an integer

number of indecomposable frequencies.

3. Chaotic or strange attractors - this a very complex object with what is

known as ’fractal geometry’. The dynamics of chaotic or strange attractors

correspond to deterministic chaos.

Figure 3.6 illustrates the different types of attractors.
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Figure 3.6: Four different types of attractors, (a) a point
attractor, (b) a limit cycle, (c) a torus, (d) a strange attractor

Deterministic chaos is a type of dynamics that is deterministic while at the same

time is seemingly random. As such chaotic dynamics can be predicted only for

a short amount of time. A characteristic of a chaotic attractor is that it never

repeats the same state, even though it is confined to the attractor subspace.

3.7 Characterisation of attractors - Lyapunov

Exponents

Lyapunov exponents indicate the exponential divergence or convergence of

nearby trajectories of an attractor due to small perturbations in initial

conditions. Considering an initial state x0 with a small perturbation δ0 after n

states,

x0 + δ0 → xn + δn (3.1)
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Considering a single dimensional discrete system with a map f(·), the following

exponential evolution of the perturbation δ can be assumed:

δn = δ0e
λn (3.2)

then

λ =
1

n
ln

(
δn
δ0

)
(3.3)

δn = fn(x0 + δ0)− fn(x0) where x0 is the n-times application of f(·). Then

λ =
1

n
ln

(
fn(x0 + δ0)− fn(x0)

δ0

)
(3.4)

λ =
1

n
ln

(
d(fn)(x0)

dx

)
(3.5)

The Lyapunov exponent is then defined as the upper limit for n → ∞ for the

above equation.

λ(x0) = lim
n→∞

sup
1

n
ln

(
d(fn)(x0)

dx

)
(3.6)

A system will have as many Lyapunov exponents as there are dimensions in its

phase space. A positive Lyapunov exponent indicates that the attractor will

diverge, while a negative Lyapunov exponent will indicate that the attractor

will converge. The largest Lyapunov exponent of an attractor describes the

expansion along the principle axis of the attractor hypercube over a given time

interval. If the largest Lyapunov exponent is greater than zero, the system will

show sensitivity to the initial conditions. i.e. chaos.

The concept of entropy which is defined as the rate of information loss over time,

is equal to the sum of all positive Lyapunov exponents [Stam2005 ]
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3.8 Embedding - Attractor Reconstruction

A dynamical system may have a three dimensional attractor but only one

dimension of it may be measurable as a time series. Thus the purpose of

embedding is to recreate the m-dimensional attractor from a single visible time

series. The embedding is then a representation of the original attractor in its

phase space. Therefore mathematically speaking the embedding of an object A

is a diffeomorphic map of A into another phase space. This means that there is

a bijection from the true attractor to the embedding. According to the weak

Whitney embedding theorem, any smooth real manifold in d dimensional space

can be embedded in m dimensional space given that m > 2d. Therefore for a

smooth manifold A in m dimensional space, any smooth map Rd → R2d+1 is an

embedding of A. In simple words this means that if 2d + 1 dimensions are used,

an embedding is guaranteed. The work of Takens [Takens1981 ] deals with the

process of creating the embedding from a single observable time series.

According to Takens, if f is a smooth map acting on an m dimensional manifold

M , generating a flowΦ, which in turn generates a measurement y an embedding

Ef,y : M → Rm is given by:

Ef,y(x̃) = (y(Φ0(x)), y(Φτ (x)), y(Φ2τ (x)), ..., y(Φmτ (x))) (3.7)

The 2m components of the state vectors x̃ in the embedding space are simply the

measured values of yt that are shifted in time by a time delay. τ i.e.

x̃0 = (yt, yt+τ , yt+2τ , ..., yt+mτ ) (3.8)
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By the repetition of this procedure for the next m set of delayed values we obtain

the vector of the next state in the embedded space.

x̃1 = (yt+1, yt+1+τ , yt+1+2τ , ..., yt+1+mτ ) (3.9)

The proper choice of both τ and m > 2d + 1 is important but difficult step

in non linear analysis since these two parameters need to be estimated from a

single time series. According to Takens, nearly every value of τ will give a correct

embedding. However there are practical reasons behind the proper choice of τ .

A value of τ that is too small will make Φkτ (x) ∼= Φkτ (x) causing the attractor

to be compressed in the diagonal of the embedding space. If the value of τ is too

large Φkτ (x) and Φkτ (x) will become dynamically unrelated causing the attractor

structure to disappear. Several methods exist for the determination of optimal

embedding parameters in which the optimum time delay τopt and the optimum

number of embedding dimensions mopt are found separately. Usually τopt is found

first by determining for which value of τ the mutual information between samples

xk and xk+τ is minimum [Fraser1986 ]. mopt is found next usually be calculating

the number of false nearest neighbours between embeddings when the number of

embedding dimensions is increased from m to m + 1. mopt is found at the point

where the number of false nearest neighbours is minimum [Kennel1992 ].

3.9 Optimum Embedding Parameter Estimation

Gautama et al. [Gautama2003 ] presented a method of jointly estimating the

optimum embedding parameters τopt andmopt based on the Kozachenko-Leonenko

(K-L) estimate of the differential entropy [Beirlant1997 ]. Differential entropy

is an extension of Shannon entropy to continuous probability distributions. The
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differential entropy is given by

H(x) = −
∫ +∞

−∞
p(x) ln p(x)d(x)

The K-L estimate of differential entropy is given by:

H(x) =
N∑
j=1

ln(Nρj) + ln 2 + CE (3.10)

In the above equation N is the number of samples in the data set. ρj is the

Euclidean distance of the jth delay vector to its nearest neighbour and CE is

the Euler–Mascheroni constant ≈ 0.5772. The method of Gautama et al. is to

estimate H(x,m, τ) for a given time series x with embedding parameters m and

τ . and then minimise H(x,m, τ) such that

minH(x,m, τ) = H(x,mopt, τopt)

The K-L differential entropy estimate is not robust with respect to changes in

dimensionality. Therefore,‘surrogate’ time series of the signal x, xsi where i =

1, ...Ns are generated performing random permutations of the time series. This

yields a whitened signal with a distribution identical to the original signal. The K-

L differential entropy estimates for both the original and surrogate time series are

calculated for increasing values of m and τ . The optimum embedding parameters

are then calculated by minimising the ratio

I(m, τ) =
H(x,m, τ

< H(xsi ,m, τ) >
(3.11)

where < · > denotes the average over i.
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3.10 Non Linear Analysis of the Epileptic Seizures

A complex non linear system may have more than a single type of attractor.

During the evolution of time, small perturbations in the parameters that govern

the system may drastically change the trajectory of the system in phase space.

The transition from one type of attractor to another may not happen abruptly,

but may ’flicker’ between basins of attraction [Dakos2013 ]. Transitions from

interictal EEG activity to ictal activity often follow such intermittent

behaviour. There are only a small number of parameters that can cause a

dynamical system to completely change its structure so as to cause a transition

to another type of attractor, i.e. a bifurcation. Thus a bifurcation represents a

qualitative change that depends on a small set of critical parameters that define

the operating characteristics of a dynamical system. An epileptic seizure may

occur due to a change in some critical parameters of a neuronal network which

cause a bifurcation to a different attractor. The dynamics of seizure generation

were reviewed by Lopes da Silva et al. [LopesdaSilva2003 ], who proposed

three different scenarios.

1. Sudden emergence of a seizure out of normal background activity. A

separatrix ( a plane of separation) exists between two clearly defined

basins of attraction. The dynamics of such systems show hysteresis where

the systems dynamics abruptly jump from one oscillatory mode to

another.

2. Reflex epilepsy: the transition to another attractor due to an external

stimulus such as flickering light. These stimulations cause resonance at

harmonic and sub harmonic frequencies of the stimulus in the neural

networks of the brain. A mechanical analogy of this could be the
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synchronizations of the pendulums of two mechanical clocks hung on the

same wall.

3. Gradual transition from normal to seizure activity through a series of

bifurcations. - The distance between between the basin of attraction of

normal behaviour and the separatrix gradually diminishes. Usually there

is enough of a gap between the two basins of attraction, that small

perturbations in the normal attractor fall back into the basin of

attraction. However as the distance between the two basins diminishes, a

transition to a seizure eventually occurs.
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Methodology

4.1 Epoching of EEG Data

Epoching is the process of extracting time windows of a specific length from

the continuous EEG signal. Considering prior research on the criticality of EEG

Epoch length we can turn to that of Levy [Levy1987 ]. Levy studied the effect of

epoch length on the power spectrum of the EEG and concluded that 2 second long

epochs identified changes in the EEG more rapidly than longer epoch length. The

slicing of the continuous EEG stream into finite epochs can however introduce

contamination of the spectra created by the spectral leakage caused by the abrupt

transitions at the end of the epoch. This is usually corrected by the windowing

process during spectral estimation. However, applying windows causes a loss of

amplitude at the beginning and end of the epochs. This can be compensated for

by causing the epochs to overlap usually at 50% of the epoch.

4.2 Preprocessing of EEG Data

Prior to the analysis, EEG signals in their raw form need preprocessing.

Preprocessing of the EEG often includes filtering and artefact removal since

recordings can contain noise that is mixed in the electrical activity of the brain.
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Power line noise at 50 or 60 Hz, electrode noise, eye blinks and movement of the

sensors due to facial muscles, which in turn cause electromyogenic artefacts all

tend to corrupt the EEG. A notch filter is usually used to filter out power line

noise, however there has been little justification to use such high frequencies in

EEG analysis because most brain activity occurs between 3 and 29 Hz

[Fergus2015 ]. Libenson [Libenson2009 ] has also argued that most EEG

instruments rarely exceed 30 - 40 Hz and recordings from cortically implanted

electrodes 50 Hz due to electrical noise and muscle artefacts. Greene et al.

[Greene2008 ] state that the frequency range between 2 - 20 Hz provide the

best discrimination between seizure and non seizure events. Considering the

lower cut-off frequency of EEG data Libenson again argues that there is no

cerebral activity below 0.5 Hz. In light of these reports the preprocessor filtering

range for the EEG was chosen to be 0.5 - 30 Hz.

4.3 Smoothed EEG Subtraction

It is quite evident that the spikes and other deformities in the EEG signal carry

significant information about abnormal behaviour in the brain, when compared

to the baseline oscillations of the neural networks. Such sudden spikes and

abnormalities will often indicate bifurcations in the non linear dynamics of the

brain [Rodrigues2009 ]. Thus drawing inspiration from the method of

Altunay et al. [Altunay2010 ] Smoothed EEG Subtraction is used to extract

these spikes and other abnormalities and deformities from the original EEG

signal. Feuerstein et al. [Feuerstein2009 ] have shown how Savitzky-Golay

filtering can be used to remove unwanted spikes from data measurements,

however, in this method the reverse is necessary spikes and abnormalities are

required while the baseline EEG signal is not. Thus a 2nd order Savitzki -
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Golay Filter with a window width of 5 samples is used to smooth the EEG

signal from each EEG channel. The smoothed EEG data is then subtracted

from the original EEG data.

4.4 EEG Channel Fusion

The EEG contains data from multiple channels recorded from different areas of

the brain, and epileptic seizures usually originate from the same areas of the brain

for a given patient. However this not always the case and as such excluding EEG

channels where seizure activity does not occur is not a wise choice. Therefore a

method is presented to fuse the data in all the EEG channels based on the FFT

approximation method of Lehmann and Michel [Lehmann1990 ], the Global

Field Power [Lehmann1980 ] and the Stockwell Transform [Stockwell1996 ].

4.4.1 The FFT Approximation Method of Lehmann and

Michel

This method assumes that there is a single dipole generator for every single

frequency in the EEG and then localizes the multichannel EEG to that single

dipole. The process begins with taking the FFT of each channel of each EEG

epoch and then plotting the sine cosine diagrams for all the channels at each

frequency point of the FFT. This results in a unique constellation diagram that

describes the electric field distribution at each frequency point in the EEG.

The single dipole is approximated on the sine - cosine map by taking the best

fit straight line through the origin (the mean value of all entries) which gives the

least sum of squared deviations from the original entries in the map and their

corresponding projections onto the straight line.
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Figure 4.1: Sine - Cosine plot
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Figure 4.2: Orthogonal projections onto the single dipole FFT
approximation line

The projections above the line are considered to be positive while the projections

below the line are considered to be negative. The length of the projections gives

the contribution from the respective EEG channel to the single frequency dipole.

4.4.2 Global Field Power

Global field power [Lehmann1980 ] is a measure that allows one to quantify

the quantify the electrical activity in each sine - cosine map by computing a

type of spacial standard deviation. The rationale behind this idea is that

certain channels presumably contain little information, while certain channels
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contain maximal information about the electrical activity at that frequency,

reflecting the synchronous activation of a large number of neurons. Global field

power is used to quantify this activity and is calculated as the standard

deviation of the length of all orthogonal projections onto the single dipole FFT

approximation line.

The method of Lehmann and Michel assumes that the EEG is stationary across

individual epochs. However as it now well known that the EEG is non stationary,

and therefore the time-frequency distribution via the Stockwell transform is used

for the FFT approximation process.

4.4.3 The Stockwell Transform

The Stockwell transform [Stockwell1996 ] is a time - frequency decomposition

that synchronously probes both the local amplitude and the power spectrum of a

time series. The Stockwell transform Sx(τ, f) for a time series x(t) is calculated

as:

Sx(τ, f) = ei2πfτWx(τ, d) (4.1)

where Wx(τ, d) is the wavelet transform of the signal x(t)

Wx(τ, d) =

∫ +∞

−∞
x(t)w(t− τ, d)dt

the mother wavelet w(t, f) is given by:

w(t, f) =
|f |√
2π
e−
t2f 2

2
e−i2πft
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the factor d is the inverse of the frequency f . thus the Stockwell transform is

given by:

Sx(τ, f) =
|f |√
2π

∫ +∞

−∞
e−

t2f2

2 e−i2πftdt (4.2)

The width of the Gaussian window in the above equation is determined by the

inverse of the frequency f . Thus the window provides good frequency resolution

at lower frequencies, and good time resolutions at higher frequencies. This was

compensated for by Assous and Boashash [Assous2012 ] by introducing two

new parameters m and k which are used to control the width and variance of the

Gaussian window to appropriately localize the low and high frequencies of the

Stockwell transform. The now modified Stockwell transform is given by:

Sx(τ, f,m, k) =
|f |

(mf + k)
√

2π

∫ +∞

−∞
e
− t2f2

2(mf+k)2 e−i2πftdt (4.3)

The parameter k is selected as 1
N
, where N is the length of the sequence x(t).

The parameter m is four times the variance of the sequence x(t).

The EEG channels are fused as follows. The Stockwell transform for each channel

of each EEG epoch is calculated resulting in a T×F×M three dimensional matrix

where T is the number of time steps, F is the number of frequency steps and M

is the number of EEG channels. From this an F ×M sub matrix is extracted for

each time step t ∈ T . Each element of a given row vector in this matrix gives the

contribution of an EEG channel to the frequency point represented by the said

row vector.

The Global field power is then calculated using the method given above for each

row in the F ×M , giving a column vector of length F for each time step t ∈ T .
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This results in a F ×T matrix containing the fused time-frequency representation

of the EEG epoch. Finally the inverse Stockwell transform is used to regenerate

a time series representing the entire EEG epoch.

4.5 Identification Of Changes in Optimum

Embedding Parameters

From the work of Lopez da Silva [LopesdaSilva2003 ] it can be seen that there

is a change in the structure of the attractor of the EEG during an epileptic

seizure. Therefore this method now attempts to detect a seizure by looking for

sudden changes in the optimum embedding parameters of the time series obtained

by fusing the multichannel EEG. Using the method outlined by Gautama et al.

[Gautama2003 ] the optimum embedding parameters for each fused EEG epoch

are calculated and plotted with respect to time. A sudden bifurcation of the

attractor should be indicated by a change in the optimum embedding dimension

showing that a sudden change in the dynamics of the neural networks of the brain

has occurred.
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Materials and Testing

5.1 The EEG Data Set

Scalp EEG data from 10 paediatric patients, taken from the CHB-MIT EEG

database [Goldberger2000 ] was used to evaluate the performance of the

previously described method for the detection of epileptic seizures. The EEG

was recorded at the Children’s Hospital, Boston USA from children undergoing

withdrawal from epilepsy medication in preparation for brain surgery. The EEG

was recorded at a sampling rate of 256 Hz, using a 20-channel 10-20 bipolar

montage. The seizures that have been recorded are clinical seizures, i.e. physical

manifestations of the seizure are visible, as opposed to sub-clinical seizures

where there are no physical signs of the seizure but the EEG record shows signs

of an ongoing seizure [Bromfield2006 ]. The EEG data has been segmented

into seizure and non seizure records that are usually one hour in length. 10

hours of seizure and non seizure records are selected from each patient taking

into account as many seizures as possible from each patient. The 10 patients

were selected such that seizure records from each patient had only one seizure

per seizure record. Records longer than one hour were segmented into hour long

records.
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5.2 Preliminary Testing Of The Proposed Method

The Proposed method given in chapter 4 was tested using MATLAB 2015a (The

MathWorks, Inc.) in conjunction with EEGLAB, an open source toolbox for

analysis of single-trial EEG dynamics [Delorme2004 ].

5.3 Detecting Changes in Optimum Embedding

Parameters - Preliminary Tests

The change in number of optimum embedding dimensions mopt with respect to

the emergence of an epileptic seizure were first tested on a preliminary basis on

three patients taking one seizure record and one non seizure record from each of

the patients. Data from patients 3, 5 and 9 were randomly chosen for this test.

5.3.1 Results From Patient No. 3 - Seizure record

Figure 5.1 shows the changes in the value of mopt that were calculated for EEG

record number 1, in which a seizure is observed to have occurred at 362 seconds

into the record. The value of mopt for the system oscillates between 4 and 6

dimensions during the preictal state, indicating that the EEG has a fractal nature.

However at 362 seconds mopt rises to 8 dimensions, drops to 7 dimensions at

364 seconds and then moves between 8 and 9 dimensions before returning to 6

dimensions at 404 seconds. It then gradually settles down to 4 dimensions at

414 seconds. There are also a few high dimensional spikes around 950 seconds

as well as another prominent one at 2592 seconds. There are also a few negative

going spikes indicating a sporadic decrease in the number of optimum embedding
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dimensions. Figure 5.2 shows a zoom up of the area of the seizure depicted in

Figure 5.1.
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Figure 5.1: Optimum embedding dimension, patient 3, record
no. 1
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Figure 5.2: Zoom in to seizure occurring in figure 5.1

Looking at the EEG that generated the above figures, the sudden onset of the

seizure can be clearly seen in Figure 5.3.
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Figure 5.3: EEG at start of seizure, patient 3, record no. 1
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Figure 5.4: Optimum embedding dimension, patient 3, record
no. 14

5.3.2 Results From Patient No. 3 - Non Seizure record

Figure 5.4 shows the changes in the changes in the value of mopt that were

calculated for EEG record number 14, in which a seizure does not occur.. The

system’s mopt again oscillates between 4 and 6 dimensions during the preictal
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state. Small positive going and negative going spikes randomly occur indicating

a sporadic increase and decrease in the optimum number of embedding

dimensions.

5.3.3 Results From Patient No. 5 - Seizure record

Figure 5.5 shows the changes in the changes in the value of mopt that were

calculated for EEG record number 17, in which a seizure is observed to have

occurred at 2451 seconds into the record. The system in this patient’s record

oscillates between 2 and 4 optimum dimensions during the preictal state, also

indicating that the EEG has a fractal nature. However beginning at 2447

seconds the value of mopt slowly rises to 12, and continues to oscillate between

10 and 12 dimensions until 2572 seconds. It then moves between 8 and 10

dimensions until briefly returning to the values it had during its preictal state at

2630 seconds. the value of mopt again rises slightly and oscillates between 4 and

6 dimensions before finally setting down to between 2 and 4 dimensions as 2740

seconds. Notable spikes are also visible at 3197 seconds and 3521 seconds.
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Figure 5.5: Optimum embedding dimension, patient 5, record
no. 17

A zoom in of the change in mopt for Figure 5.5 is shown in Figure 5.6
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Figure 5.6: Zoom in to seizure occurring in figure 5.5

Considering the actual EEG that generated Figures 5.5 and 5.6, Figure 5.7 shows

the start of typical spike and wave EEG pattern beginning at 2152 seconds.
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Figure 5.7: EEG at start of seizure, patient 5, record no. 17

Considering the oscillation of mopt between 2650 seconds and 2740 seconds as

shown in Figure 5.6, the EEG in Figure 5.8 shows a pulsating pattern indicative

of spasms of the facial muscles caused by chewing [Shoeb2009 ], However this

EEG pattern is reminiscent of a seizure with superimposed muscle artefacts

[Mirski2008 ].

Figure 5.8: EEG, 2657s - 2665s, patient 5, record no. 17

Figure 5.9 shows the EEG responsible for generating the spike in the vicinity of

3197 seconds, while Figure 5.10 shows the EEG responsible for generating the

spike in the vicinity of 3521 seconds.
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Figure 5.9: EEG, 3187s - 3195s, patient 5, record no. 17

Figure 5.10: EEG, 3507s - 3515s, patient 5, record no. 17

5.3.4 Results From Patient No. 5 - Non Seizure record

Figure 5.11 shows the changes in the changes in the value of mopt that were

calculated for EEG record number 4, in which a seizure does not occur.. The

system’s mopt again oscillates between 2 and 4 dimensions during the preictal

state. Small positive going and negative going spikes randomly occur indicating a

sporadic increase and decrease in the optimum number of embedding dimensions.
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The main feature though is the indication of a seizure which begins at 2809

seconds.
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Figure 5.11: Optimum embedding dimension, patient 5, record
no. 4

A further zoom in of the area around the indicated seizure is shown in figure 5.12.
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Figure 5.12: Zoom in of unexpected seizure in figure 5.11
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Looking at the EEG of the time period depicted in Figure 5.12, the pattern

presented in Figure 5.13 resembles a burst suppression pattern of a non convulsive

status epilepticus as described by Sutter and Kaplan [Sutter2012 ].

Figure 5.13: EEG, 2815s - 2823s, patient 5, record no. 17

5.3.5 Results From Patient No. 9 - Seizure record

Figure 5.14 shows the changes in the changes in the value of mopt that were

calculated for EEG record number 8, in which a seizure is observed to have

occurred at 3021 seconds into the record. The system in this patient’s record

oscillates between 4 and 5 optimum dimensions during the preictal state, with

random drops down to 3 optimum dimensions. Beginning at 2957 seconds the

value of mopt slowly rises to 11, and continues to oscillate between 8 and 11

dimensions until 3031 seconds. It then moves between 5 and 8 dimensions until

3241 seconds. The system then continues to move between 4 and 6 optimum

dimensions with random drops to 3 optimum dimensions until the end of the

record. Figure 5.14 zooms into the area where the seizure occurs in Figure 5.15.
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Figure 5.14: Optimum embedding dimension, patient 9, record
no. 8
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Figure 5.15: Zoom in to seizure occurring in figure 5.14

The EEG segments that generated the start of the seizure Figures 5.14 and 5.15

is shown in Figure 5.16.
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Figure 5.16: EEG at start of seizure, patient 9, record no. 2

5.3.6 Results From Patient No. 9 - Non Seizure record

Figure 5.17 shows the changes in the changes in the value of mopt that were

calculated for EEG record number 2, in which a seizure does not occur.. The

system’s mopt again oscillates between 4 and 5 dimensions with random drops

down to 3 optimum dimensions. Small positive going a spikes randomly occur

indicating a sporadic increase and decrease in the optimum number of embedding

dimensions.
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Figure 5.17: Optimum embedding dimension, patient 9, record
no. 2

5.4 Analysis Of Preliminary Results

The following conclusions can be gleaned from the above preliminary results:

• The preictal value of mopt will oscillate around a single value with usually

unitary positive and negative excursions.

• When a seizure occurs, there will be a slow to sudden rise in mopt.

• Sudden spikes in mopt related to detection anomalies do not last more than

2 - 3 seconds.

• Non seizure records may have detections that resemble seizures but have

not been classified as clinical seizures in the dataset.
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5.5 Further Processing For Automatic Blind

Detection of Seizures

5.5.1 Calculation Of Detection Threshold

With respect to the conclusions drawn in section 5.4, the following processing

steps can now be described to obtain a threshold value for mopt in order to declare

a seizure.

1. Randomly choose one of the data records for a given patient from the

dataset.

2. Using the method outlined in chapter 4 obtain the time series of the values

of mopt with respect to time.

3. Using k-means clustering with k = 2 obtain the two means of the clusters

created.

4. Round up the higher mean value to its nearest integer, and round down the

lower mean value to its nearest integer. This process isolates the preictal

boundaries of moptl and moptu for the given patient.

5. The upper rounded value moptu is then added to an integer M which is a

control value of sensitivity is then used as the threshold moptth . A lower

value of M will increase the sensitivity of the detector, while a higher value

will do the opposite. From the preliminary test data a value of M = 3

seems suitable for this process.

Applying the above process to the data obtained from patient 5, record 17, the

two means are found to be at 4.9895 and 2.5007, rounding this data, the borders
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for the preictal values moptu and moptl are 5 and 2 respectively. Figure 5.18

shows this, with the two red horizontal lines indicating the limits, and the green

horizontal line represents moptth = moptu +M , where M = 3.
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Figure 5.18: Application of threshold detection to record no. 14,
patient 5

5.5.2 Detection Delay

From Figure 5.18 it is clear that if the threshold value of moptth is directly used,

the detector will pick up the spurious spike that occur in mopt therefore a delay

of T seconds will be used in the detection process.Thus If the value of mopt

remains above the threshold value of moptth for a period greater than T seconds

a seizure will be declared. A value of T = 44 seems a suitable value based on the

preliminary test results.
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5.6 Final Testing of the Proposed Method

As stated in section 5.1, 10 hours of hour long EEG records from 10 patients are

used for this purpose, However the number of seizure records for each patient

changes in the CHB-MIT dataset, thus all seizure records for each patient are

selected, and the remaining non seizure records are selected randomly. Figure 5.19

Illustrates the distribution of seizure and non seizure records of the 10 patients

used in this test.
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Figure 5.19: Distribution of seizure and non seizure records
across the 10 patients

5.6.1 Performance Metrics

Two metrics will be used to characterize the performance of the proposed seizure

detection method.

1. Average seizure onset detection delay via EEG Dsieze

This refers to the delay between the stated clinical seizure onset time and

the time that the seizure id declared via the scalp EEG. The indication
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of the seizure in the EEG may or may not precede the onset of clinical

symptoms. This is defined per patient.

2. Sensitivity S This refers to the percentage of correctly identified seizures

per patient.

The number of false detections was also planned to be used, however in light of

the preliminary test results it was decided not to use it as the false detections,

may or may not be sub clinical seizures and there was no method at the present

time to correctly differentiate between a sub clinical seizure and an EEG artefact.

5.6.2 Detector Performance

The performance of the detector was tested on a a computer system based on a

Intel Core i7 6800K 3.4 Ghz Hexa Core processor, 16 GB DDR 4 3000 MHz

RAM and a Sapphire Radeon RX 480 Nitro+ 8GB GDDR5 GPU. The software

was written with a mixture of MATLAB and C++. ViennaCL an open source

scientific computing library from the Institute for Microelectronics, Vienna,

Austria supporting the openCl language, was used to accelerate parts of the

MATLAB code on the computers GPU, to radically speed up the computation

process.

Detection Delay

Figure 5.20 illustrates the delay with which the detector declared the onset of each

seizure for the ten patients in the test indicated by the 10 stem plots. While pre-

detection was indicated for a few seizures, a bulk of the seizures were detected

after the given seizure onset time. The mean delay with which the detector

declared the seizures was 3.59 seconds.
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Figure 5.20: Seizure detection delays for the 10 patients in the
test

Sensitivity

Figure 5.21 shows the sensitivity with which the detector was able to detect the

seizures from the 10 patents in the test. Overall 91.49% of the test seizures were

detected.
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Figure 5.21: Detector sensitivity for the 10 patients
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Conclusions And Future Work

6.1 Conclusions

The objective of this thesis was to discuss the feasibility of a system for the

detection of epileptic seizures. The system was based on the estimation of the

number of optimum embedding dimensions used for the recreation of an attractor

of a non linear dynamic system. The non linear dynamic system was created by

fusing together the data from all EEG channels by the assumption that the each

and every frequency component of the EEG was generated by a single dipole

source. The Stockwell transform and the Global Field Power measurement was

used for this purpose.

Preliminary test showed that the detection method was able to detect the

occurrence of an epileptic seizure and further testing showed that the system

had a detection sensitivity of 91.49% for the EEG recordings used. A mean

seizure detection time of 3.59 seconds was reported. The false detection rate of

the system was not considered as there was no way to ascertain if any of the

false detections were actually sub clinical seizures that were not reported in the

original dataset. This decision was reached after the EEG segments that

generated the false detections in the preliminary tests were viewed and found to
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closely resemble those of sub clinical seizures which were published in reputed

medical journals.

The proposed detection method did not need much customization from patient

to patient other than identifying the the preictal optimum embedding dimension

range that the systems attractor occupied in phase space. Although the detection

system appears to be promising, long testing on a much larger varied dataset will

be required to gauge its true potential.

6.2 Future Work

1. Test the feasibility of using perpetual points in the attractor as a method

of detecting where bifurcations occur. A perpetual point in an attractor is

a point where the velocity and acceleration of the change in states along

an attractor trajectory are instantaneously zero, in contrast to fixed points

where only the velocity is instantaneously zero. Perpetual points have

been recently shown to indicate bifurcations of attractors in phase space

[Prasad2015 ]. Therefore the acceleration and velocity along an

optimally embedded reconstructed attractor are calculated and any

perpetual points are identified as a method of searching for bifurcations in

the EEG attractor caused by seizures.

2. Long term testing is need to verify the operation of almost all newly designed

systems, therefore as a first step in the future for this proposed system would

be to test it on a widely varied EEG data set containing not only epileptic

seizures, but also all the irregularities and artefacts that are possible to be

recorded. Only then will the true flaws in this system be revealed, which

then can be corrected.
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3. This detection method requires extensive computing power in its current

form. therefore for it to be truly practically implemented further research

is needed to as to how it can be implemented as an embedded system.

Parallelizing the processing on a Field Programmable Gate Array (FPGA)

thus seems a logical step.

4. Easy to use wearable brain computer interface devices such as the Emotiv

Epoc+ 14 channel EEG device are now available. Coupling an embedded

system that implements the proposed detection method will create a

portable epileptic seizure detection system that can be field tested, thus

possibly leading to the development of a commercial product.
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