
Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. XX, MMMM 2012 1

Multicell MISO Downlink Weighted Sum-Rate

Maximization: A Distributed Approach

P. C. Weeraddana , Student Member, IEEE, M. Codreanu, Member, IEEE,

M. Latva-aho, Senior Member, IEEE, A. Ephremides, Life Fellow, IEEE.

Abstract

We develop an easy to implement distributed method for weighted sum-rate maximization (WSR-

Max) problem in a multicell multiple antenna downlink system. Unlike the recently proposed minimum

weighted mean-squared error based algorithms, where at each iteration all mobile terminals needs to

estimate the covariance matrices of their received signals, compute and feedback over the air certain

parameters to the base stations (BS), our algorithm operates without any user terminal assistance. It

requires only BS to BS signalling via reliable backhaul links (e.g. fiber, microwave links) and all

required computation is performed at the BSs. The algorithm is based on primal decomposition and

subgradient methods, where the original nonconvex problem is split into a master problem and a number

of subproblems (one for each BS). A novel sequential convex approximation strategy is proposed to

address the nonconvex master problem. In the case of subproblems, we adopt an existing iterative

approach based on second-order cone programming and geometric programming. The subproblems

are coordinated to find a (possibly suboptimal) solution to the master problem. Subproblems can be

solved by BSs in a fully asynchronous manner, though the coordination between subproblems should

be synchronous. Numerical results are provided to see the behavior of the algorithm under different

degrees of BS coordination. They show that the proposed algorithm yields a good tradeoff between the

implementation-level simplicity and the performance.
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I. INTRODUCTION

THE weighted sum-rate maximization (WSRMax) problem plays a central role in many

network control and optimization methods, e.g., in [1]–[9] it is the basis for physical

layer resource allocation. Unfortunately, in the case of wireless networks, the WSRMax problem

is NP-hard [10]. Therefore, we have to rely on centralized and exponentially complex global

optimization approaches [11], [12] for computing an exact solution. As a result, many optimal

network design methods developed so far require a centralized implementation. However, finding

even suboptimal but distributed methods for WSRMax is crucial for practical use.

Distributed implementation of WSRMax problem has been investigated in [13]–[17] in the

context of digital subscriber loops (DSL) networks. Those systems are inherently consisting

of single-input and single-output (SISO) links. Related algorithms for SISO wireless ad hoc

networks and SISO orthogonal frequency division multiple access cellular systems are found

in [18]–[21]. However, in the case of multi antenna cellular systems, the decision variables

space is, of course, larger, e.g., joint optimization of transmit beamforming patterns, transmit

powers, and link activations is required. Therefore, designing efficient distributed methods for

WSRMax is a more challenging task due to the extensive amount of message passing required

to resolve the coupling between variables.

Several distributed methods for WSRMax in multiple-input and single-output (MISO) cellular

networks have been proposed in [22]–[28]. Specifically, in [22] a two-user MISO interference

channel (IC) 1 is considered and a distributed algorithm is derived by using the commonly

used high signal-to-interference-plus-noise ratio (SINR) approximation [29]. Moreover, another

approximation, which relies on zero forcing (ZF) beamforming is introduced in [22] to address

1K-user MISO IC means that there are K transmitter-receiver pairs, where the transmitters have multiple antennas and the

receivers have single antennas.
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the problem in the case of multiuser MISO IC. Authors in [23] proposed a method based on a

distributed pricing mechanism to address the problem. Both methods in [22], [23] are restricted to

MISO IC (i.e., one user per cell) and are not applicable in the more general interfering broadcast

channels, where there are many users per cell. The methods proposed in [24]–[26] derived the

necessary (but not sufficient) optimality conditions for the WSRMax problem and used it as

the basis for their distributed solution. However, many parameters must be selected heuristically

to construct a potential distributed solution and there is in general no systematic method to

find those parameters. In particular, the algorithms in [24], [25] are designed for systems with

very limited backhaul signaling resources and do not consider any iterative base station (BS)

coordination mechanism to resolve the out-of-cell interference coupling. Even though, the method

proposed in [26] relies on stringent requirements on the message passing between BSs during

each iteration of the algorithm, their results show that BS coordination can provide considerable

gains as compared to uncoordinated methods. An inexact cooperate descent algorithm for the

case where each BS is serving only one cell edge user has been proposed in [27]. The method

proposed in [28] considers a per data stream power constraint for simplicity, and thus their

method does not apply in case of the more realistic power constraints at the BS, e.g., sum

power constraint at the BS transmitter, per antenna power constraints. Centralized methods for

WSRMax in multi antenna cellular networks are derived in [30]–[34].

Many optimization criteria other than the weighted sum-rate have been considered in ref-

erences [35]–[43] to distributively optimize the system resources (e.g., beamforming patterns,

transmit powers, etc.) in multi antenna cellular networks. In particular, the references [35]–

[38] used the characterization of the Pareto boundary of the MISO interference channel [44]

as the basis for their distributed methods. Their proposed methods do not employ any BS

coordination mechanism to resolve the out-of-cell interference coupling. These algorithm can

perform poorly, especially if the degrees of freedom available at BS transmitter is insufficient

to avoid interference. The method proposed in [39] is designed for sum-rate maximization and

uses high SINR approximation. A cooperative beamforming algorithm is proposed in [40] for

MISO IC, where each BS can transmit only to a single user. Their proposed method employs an
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iterative BS coordination mechanism to resolve the out-of-cell interference coupling. However,

the convexity properties exploited for distribution of the problem are destroyed when there are

more than one user is served by any BS. In [41]–[43] distributed algorithms have been derived

to minimize a total (weighted) transmitted power or the maximum per antenna power across the

BSs subject to SINR constraints at the user terminals.

Recently, an interesting distributed algorithm for WSRMax is proposed by Shi et al. [45],

which exploits a nontrivial equivalence between the WSRMax problem and a weighted sum

mean squared error minimization problem. In the rest of the paper, we refer to this method as

WMMSE algorithm as suggested in [45]. Each iteration of WMMSE algorithm essentially consists

of the following three steps: 1) received signal covariance estimation at each user terminal,

2) computation and feedback of certain parameters from user terminals to BSs over the air

interface, and 3) transmit beamformer adjustment at each BS. In practice, performing perfect

covariance estimation and perfect feedback during each iteration can be very challenging. In the

presence of user terminal imperfections, such as estimation and feedback errors, the algorithm’s

performance can degrade and its convergence can be less predictable.

In this paper we provide an alternative distributed method for WSRMax problem in a mul-

ticell MISO downlink system. Unlike the WMMSE algorithm [45], our method does not rely

on user terminals’ assistance such as estimations, computations, and feedback information to

BSs over the air interface during iterations. The proposed method require only the BS to BS

synchronized communication, where all the signalling overhead is exchanged through reliable

backhaul links (e.g., fiber and microwave links). All the necessary computation can be carried out

asynchronously at each BS without any involvement of the user terminals. Thus, our algorithm

is well suited for systems where the user terminal support is not allowed or not desirable. Our

algorithm is based on primal decomposition methods and subgradient methods [46]. Specifically,

we first apply primal decomposition techniques to split the problem into a master problem and

many subproblems. For master problem, we develop a novel sequential convex approximation

strategy [47] together with a subgradient method that relies on BS coordinations. The master

problem resolves the out-of-cell interference power, which is also known as the interference
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temperature in the context of cognitive radio networks [40]. In the case of subproblems, we

adopt an existing algorithm originally proposed in [31, Sec. 4.3], which is based on second-order

cone programming (SOCP) [48] and geometric programming (GP) [49]. These subproblems (or

BS optimizations) can be carried out in a fully asynchronous manner. We show the monotonic

convergence properties of the algorithm, with appropriate choice of the stopping criterion for

the subgradient method. We also provide practical stopping criteria, which are favorable for

implementing the algorithm, but at the expense of a sacrificing the monotone convergence.

Numerical results are provided to compare our method with WMMSE algorithm [45], the

GP/SOCP based algorithm proposed in [31, Sec. 4.3], and the distributed algorithm proposed

in [24], [25]. The behavior of the algorithm under different degrees of BS coordination is also

discussed and numerically illustrated. Preliminary results of this paper can be found in [50].

The rest of the paper is organized as follows. The system model and problem formulation

are presented in Section II. In Section III we present the problem decomposition, where we

develop a novel sequential convex approximation strategy for addressing the nonconvex master

problem. Our proposed distributed algorithm is presented in Section IV. The numerical results

are presented in Section V and Section VI concludes our paper.

Notations: All boldface lower case and upper case letters represent vectors and matrices

respectively and calligraphy letters represent sets. We use IR+ to denote the set of nonnegative

real numbers. The set of complex numbers is denoted by C, the set of complex n-vectors is

denoted Cn. |x| denotes the absolute value of the complex number x, ∥x∥2 denote the ℓ2-norm

of the complex vector x, and vec(X) denotes the vector obtained by stacking the columns

of matrix X. The identity matrix is denoted by I. The superscript (·)H stands for Hermitian

transpose, the superscript (·)⋆ is used to denote a solution of an optimization problem, and

E{·} denotes statistical expectation. The notation x ∼ CN (x̄,Σx) indicates that x is complex

Gaussian distributed with mean x̄ and covariance Σx.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

A multicell MISO downlink system, with N BSs each equipped with T transmit antennas

is considered. The set of all BSs is denoted by N and we label them with the integer values

n = 1, . . . , N . The transmission region of each BS is modeled as a disc with radius RBS centered

at the location of the BS. Single data stream is transmitted for each user. We denote the set of

all data streams in the system by L and label them with the integer values l = 1, . . . , L. The

transmitter node (i.e., the BS) of lth data stream is denoted by tran(l) and the receiver node of

lth data stream is denoted by rec(l). We have L = ∪n∈NL(n), where L(n) denotes the set of

data streams transmitted by nth BS. Note that the users of the data streams transmitted by each

BS are necessarily located inside the transmission region of the BS (see Figure 1).

The antenna signal vector transmitted by nth BS is given by

xn =
∑

l∈L(n)
√
pldlvl, (1)

where pl ∈ IR+ denotes the power, dl ∈C represents the information symbol, and vl ∈CT is the

beamformer, all associated to lth data stream. We assume that dl and vl are normalized such that

E|dl|2 = 1 and ∥vl∥2 = 1. Moreover, we assume independent data streams, i.e., E{dld∗j} = 0 for

all l, j ∈ L, where l ̸= j.

The signal received at rec(l) is given by

yl=hH
ll

√
pldlvl+

∑
j∈L(tran(l))

j ̸=l

hH
jl

√
pjdjvj+

∑
j∈L\L(tran(l))

hH
jl

√
pjdjvj+zl (2)

= hH
ll

√
pldlvl+

∑
j∈L(tran(l))

j ̸=l

hH
jl

√
pjdjvj

+
∑

i∈N\{tran(l)}

∑
j∈L(i)

hH
jl

√
pjdjvj + zl , (3)

where hH
jl ∈C1×T is the channel matrix between tran(j) and rec(l), and zl is circular symmetric

complex Gaussian noise with variance σ2
l . Note that the second term in (3) represents the intra-

cell interference and the third term represents the out-of-cell interference. The received SINR of
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Fig. 1. Multicell network, N = {1, 2, 3}, L = {1, . . . , 12}, L(1) = {1, . . . , 4}, L(2) = {5, . . . , 8}, L(3) = {9, . . . , 12}.

The area inside solid-lined circles around BS 1, 2, and 3 represent the associated transmission regions of each BS and the area

inside dash-lined circles around BSs represent the associated interference regions of each BS.

lth data stream is given by

γl =
pl|hH

llvl|2

σ2
l +

∑
j∈L(tran(l)),j ̸=l

pj|hH
llvj|2+

∑
i∈N\{tran(l)}

zil
, (4)

where zil =
∑

j∈L(i) pj|hH
jlvj|2 represents the out-of-cell interference power from ith BS to

rec(l), which is typically known as interference temperature in the context of cognitive radio

networks [40].

The out-of-cell interference term in (4)
(
i.e.,

∑
i∈N\{tran(l)} zil

)
prevents resource allocation

(RA) on an intra-cell basis and demands centralized RA methods. To facilitate potential dis-

tributed algorithms for RA, we make the following assumption: transmissions from ith BS do

interfere the lth data stream transmitted by BS n ̸= i, if the distance between ith BS and rec(l)

is smaller than a threshold Rint.2 The disc with radius Rint centered at the location of any BS

is referred to as the interference region of the BS, see Figure 1. Thus, if ith BS is located at a

distance larger than Rint to rec(l), then the associated zil components are set to zero.3 Based on

the assumption above, we can express γl as

γl =
pl|hH

llvl|2

σ2
l +

∑
j∈L(tran(l)),j ̸=l

pj|hH
llvj|2 +

∑
i∈Nint(l)

zil
, (5)

2Similar assumptions are made in [51] in the context of arbitrary wireless networks.
3The value of Rint is chosen such that the power of the interference term is below the noise level and this commonly used

approximation is made to avoid unnecessary coordinations between distant BSs. The effect of nonzero zil terms can be accurately

modeled by changing the statistical characteristics of noise zl at rec(l). However, those issues are extraneous to the main focus

of the paper.
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where Nint(l) ⊆ N \ {tran(l)} is the set of out-of-cell interfering BSs that are located at a

distance less than Rint to rec(l). For example, in Figure 1 we have Nint(9) = {1}, Nint(12) =

{2}, Nint(6) = {1, 3}, and Nint(l) = ∅ for all l ∈ L \ {6, 9, 12}. It is worth noting that the

shape of the transmission and interference regions can be arbitrary closed contours around the

BSs instead of the circles. This can mean arbitrary associations of users to BSs. However,

without loss of generality, we can use disc model, which simplifies the presentation. Finally, it

is useful to define the set Lint of data streams that are subject to out-of-cell interference, i.e.,

Lint = {l | l ∈ L,Nint(l) ̸= ∅}. For example, in Figure 1 we have Lint = {6, 9, 12}.

Let βl be an arbitrary positive weight associated with lth data stream. We consider the case

where all receivers are using single-user detection (i.e., a receiver decodes its intended signal

by treating all other interfering signals as noise). Assuming that the power allocation is subject

to a maximum power constraint
∑

l∈L(n) pl||vl||2 ≤ pmax
n for each BS n ∈ N , the problem of

WSRMax can be expressed as

maximize
∑
n∈N

∑
l∈L(n)

βl ln

1+ pl|hH
llvl|2

σ2
l +
∑

j∈L(n)
j ̸=l

pj|hH
llvj|2+

∑
i∈Nint(l)

zil


subject to zil =

∑
j∈L(i) pj|hH

jlvj|2, l ∈ Lint, i ∈ Nint(l)∑
l∈L(n) pl||vl||22 ≤ pmax

n , n ∈ N

||vl||2 = 1, pl ≥ 0, l ∈ L ,

(6)

where the variables are {pl,vl}l∈L and {zil}l∈Lint,i∈Nint(l) and ln(·) is the natural logarithm.

The weights βl, l = 1, . . . , L assign different priorities to different users. For example, in the

context of physical layer resource allocation in optimal cross-layer control policies, βl represents

queue backlog associated with data stream l [2]. Note that we can simply replace the constraint∑
l∈L(n) pl||vl||22 ≤ pmax

n with
∑

l∈L(n) pl ≤ pmax
n , because ||vl||2 = 1.

III. PROBLEM DECOMPOSITION, MASTER PROBLEM, AND SUBPROBLEMS

In this section, we develop the main building blocks required to derive the distributed algo-

rithm for problem (6), namely, the master problem and the subproblems. To do this, we first
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break problem (6) into a master problem and N subproblems (one for each BS), by treating

out-of-cell interference powers {zil}l∈Lint,i∈Nint(l) as complicating variables. In the case of the

master problem, we develop a novel sequential convex approximation strategy to circumvent the

difficulties due to the inherent nonconvexity of problem (6). In the case of the subproblem, we

adopt the method originally proposed in [31, Sec. 4.3], which is essentially based on SOCP and

GP techniques.

A. Primal decomposition

We start by first reformulating problem (6) as

minimize −
∑
n∈N

∑
l∈L(n)

βl ln

(
1+

pl|hH
llvl|2

σ2
l +
∑

j∈L(n)
j ̸=l

pj|hH
llvj|2+

∑
i∈Nint(l)

zil

)

subject to zil ≥
∑

j∈L(i) pj|hH
jlvj|2, l ∈ Lint, i ∈ Nint(l)∑

l∈L(n) pl ≤ pmax
n , n ∈ N

||vl||2 = 1, pl ≥ 0, l ∈ L ,

(7)

where the variables are {pl,vl}l∈L and {zil}l∈Lint,i∈Nint(l). Problem (6) and (7) are equivalent,

since 1) function ln(·) is increasing and 2) the objective function of problem (7) is increasing

in zil, and therefore the first set of constraints holds with equality at the optimal point.

Let Lint(n) denote the set of links for which base station n acts as an out-of-cell interferer. In

particular, Lint(n) = {l|l ∈ Lint, n ∈ Nint(l)}. By noting that the sets {(l, i)|l ∈ Lint, i ∈ Nint(l)}

and {(l, n)|n ∈ N , l ∈ Lint(n)} are identical, we can rewrite the first inequality constraint of

problem (7) as

znl ≥
∑

j∈L(n) pj|hH
jlvj|2, n ∈ N , l ∈ Lint(n) . (8)

Now we treat znl as complicating variables and use primal decomposition techniques to

split problem (7) into a master problem and N subproblems (one for each BS). The master

problem updates the complicating variables {znl}n∈N ,l∈Lint(n) to maximize the overall weighed

sum rate (i.e., to maximize the objective of original problem (6)). To express the master problem

compactly, let us denote the vector {znl}n∈N ,l∈Lint(n) of out-of-cell interference components by
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z. The master problem is given by

minimize
∑

n∈N fn (z)

subject to z ≽ 0 ,
(9)

where the variable is z and fn(z) is the optimal value of the nth subproblem given by

minimize −
∑

l∈L(n)
βl ln

(
1+

pl|hH
llvl|2

σ2
l +
∑

j∈L(n)
j ̸=l

pj|hH
llvj|2+

∑
i∈Nint(l)

zil

)

subject to znl ≥
∑

j∈L(n) pj|hH
jlvj|2, l ∈ Lint(n)∑

l∈L(n) pl ≤ pmax
n

||vl||2 = 1, pl ≥ 0, l ∈ L(n) ,

(10)

with variables {pl,vl}l∈L(n). To simplify the presentation, it is also useful to introduce the

following equivalent reformulation of problem (10):

minimize −
∑

l∈L(n) βl ln(1 + γl)

subject to γl≤
pl|hH

llvl|2
σ2
l +

∑
j∈L(n),j ̸=l

pj|hH
llvj|2+

∑
i∈Nint(l)

zil
, l ∈ L(n)

znl ≥
∑

j∈L(n) pj|hH
jlvj|2, l ∈ Lint(n)∑

l∈L(n) pl ≤ pmax
n

||vl||2 = 1, pl ≥ 0, l ∈ L(n) ,

(11)

where the variable is {pl, γl,vl}l∈L(n). The equivalence of problem (10) and (11) follows since

the objective function of problem (11) is decreasing in γl, and therefore the first set of constraints

holds with equality at the optimal point.

B. Master problem

Computing the objective value of the master problem (9) requires the solution of each subprob-

lem (10), which is NP-hard [10]. Moreover, even if we would be able to solve the subproblems,

we cannot apply standard subgradient methods to solve the master problem (9) since it is

not convex. To address these difficulties, we develop a novel method that solves successive

approximated variants of the original master problem (9). Each approximated problem can be

transformed into a convex problem by a change of variables. To solve the resulting convex
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problems, we proposed a subgradient method. It is important to note that, the approximations and

variable transformations mentioned above are such that we can always rely on subproblems (10)

(i.e., BS optimizations) to compute a subgradient. Details of the subproblem solution method

are deferred to Section III-C.

We start by approximating the objective function of problem (9) with an upper bound function,

which in turn is used to obtain the approximation of the master problem. We refer to the resulting

approximation as the approximated master problem. Next, we derive an equivalent convex form

of the approximated master problem, followed by the subgradient methods to solve it.

1) Derivation of an upper bound function for the master problem: The key idea is as

follows: we first carry out partial minimization of problem (11) to yield an initial upper bound

on fn (z).4 Then the initial upper bound is further modified by using a well known monomial

approximation, so that convex optimization techniques can be readily employed.

To simplify the presentation, let H denote the feasible set of problem (11). For some fixed

normalized v̌l, let Ȟ({v̌l}l∈L(n)) =
{
(pl, γl)l∈L(n)

∣∣(pl, γl, v̌l)l∈L(n) ∈ H
}

. Now we can write the

following relations:

fn (z) = inf
(pl,γl,vl)l∈L(n)∈H

−
∑

l∈L(n) βl ln(1 + γl) (12)

≤ inf
(pl,γl)l∈L(n)∈Ȟ({v̌l}l∈L(n))

−
∑

l∈L(n) βl ln(1 + γl) (13)

= inf
(pl,γl)l∈L(n)∈Ȟ({v̌l}l∈L(n))

ln
(∏

l∈L(n)(1 + γl)
−βl
)

(14)

≤ inf
(pl,γl)l∈L(n)

∈Ȟ({v̌l}l∈L(n))

ln
∏

l∈L(n)

(
γ̌
− γ̌l

1+γ̌l
l (1 + γ̌l) γl

γ̌l
1+γ̌l

)−βl

(15)

= ln inf
(pl,γl)l∈L(n)

∈Ȟ({v̌l}l∈L(n))

( ∏
l∈L(n)

(
γ̌
− γ̌l

1+γ̌l
l (1+γ̌l) γl

γ̌l
1+γ̌l

)−βl

)
︸ ︷︷ ︸

f̌n(z)

(16)

= ln
(
f̌n (z)

)
. (17)

4The minimum value of a function with respect to the all set of variables is always better than the minimum value of the

function with respect to a subset of variables while others being fixed.
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The first equality follows from the definition of fn(z) and from the equivalence of prob-

lems (10) and (11), (13) follows from partial minimization of the function over {pl, γl}l∈L(n) while

{vl}l∈L(n) being fixed such that {vl = v̌l}l∈L(n), (14) follows trivially from the properties of ln(·)

function, (15) follows from the monomial lower bound on 1+γl, i.e., 1+γl ≥ γ̌
− γ̌l

1+γ̌l
l (1+γ̌l)γl

γ̌l
1+γ̌l ,

where γ̌l is an arbitrary positive number 5 [52, Lem. 1], (16) follows from the monotonic

properties of ln(·), and f̌n (z) is the optimal value of the following problem:6

minimize
∏

l∈L(n)

(
γ̌
−γ̌l/(1+γ̌l)
l (1 + γ̌l)

)−βl ∏
l∈L(n)

γl
−βl

γ̌l
1+γ̌l

subject to γl≤
pl|hH

ll v̌l|2
σ2
l +

∑
j∈L(n),j ̸=l

pj|hH
ll v̌j|2+

∑
i∈Nint(l)

zil
, l∈L(n)\Llocal(n)

γl ≤
pl|hH

ll v̌l|2
σ2
l +

∑
j∈L(n),j ̸=l

pj|hH
ll v̌j|2

, l ∈ Llocal(n)

znl ≥
∑

j∈L(n) pj|hH
jlv̌j|2, l ∈ Lint(n)∑

l∈L(n) pl ≤ pmax
n

pl ≥ 0, l ∈ L(n) ,

(18)

where the variable is {pl, γl}l∈L(n) and Llocal(n) is the subset of data streams transmitted by nth

BS, which are not interfered by any out-of-cell interference, i.e., Llocal(n) = {l | l ∈ L(n),Nint(l) = ∅}.

Note that, the inequality (13) holds with equality if the optimal normalized beamforming direc-

tions of problem (11) is identical to {v̌l}l∈L(n) and the inequality (15) holds with equality if

{γl = γ̌l}l∈L(n).

From (12)-(17) we have fn (z) ≤ ln
(
f̌n (z)

)
, which holds for all n ∈ N . Thus we have

∑
n∈N fn (z) ≤

∑
n∈N ln

(
f̌n (z)

)
, (19)

which gives an upper bound on the objective function of (9). The approximated master problem

is obtained by replacing the objective function of the original master problem (9) by the upper

5This bound is typically used in conjunction with an iterative method, which uses local approximations. The parameter γ̌l is

usually the point at which the approximation is made.
6Here we have explicitly characterized the constraint (pl, γl)l∈L(n) ∈ Ȟ({v̌l}l∈L(n)).
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bound function given in (19), i.e.,

minimize
∑

n∈N ln
(
f̌n (z)

)
subject to z ≽ 0 ,

(20)

where the variables is z. Though Problem (20) is not convex in its current form, it can be

equivalently reformulated into a convex problem via a variable transformation as shown in the

next section.

2) Convex reformulation of the approximated master problem: Let us first transform prob-

lem (20) by the logarithmic change of variables z̄il = ln zil (so zil = ez̄il). This yields the

problem

minimize
∑

n∈N ln
(
f̌n
(
ez̄
))

, (21)

where the variable is z̄ = {z̄il}l∈Lint,i∈Nint(l). Here we use the notation ey, where y is a vector,

to mean componentwise exponentiation: [ey]k = eyk .

Next we show that problem (21) is convex. To see this, we capitalize on perturbation and

sensitivity analysis results for convex optimization problems [53]–[55].7 In particular, we apply

perturbation results to the convex form of GP (18). To do this, let us first perform the logarithmic

change of variables p̄l = ln pl, γ̄l = ln γl, logarithmic change of parameters z̄il = ln zil, and a

logarithmic transformation of the objective and constraint functions of GP (18) to get its convex

form:

minimize
∑

l∈L(n)

βlγ̌l
1 + γ̌l

γ̄l + ln
∏

l∈L(n)

(
γ̌
− γ̌l

1+γ̌l
l (1 + γ̌l)

)−βl

subject to ln

(
g−1
ll eγ̄l−p̄l

(
σ2
l +

∑
j∈L(n),j ̸=l

gjle
p̄j+

∑
i∈Nint(l)

ez̄il
))

≤0,

l ∈ L(n) \ Llocal(n)

ln

(
g−1
ll eγ̄l−p̄l

(
σ2
l +

∑
j∈L(n),j ̸=l

gjle
p̄j

))
≤0, l∈Llocal(n)

ln

(∑
j∈L(n) gjle

−z̄nlep̄j
)

≤ 0, l ∈ Lint(n)

ln

(∑
l∈L(n)(p

max
n )−1ep̄l

)
≤ 0 ,

(22)

7Basic sensitivity results are documented in [53, Sec. 5.6] and more general results can be found in [54, Chap. 2] and [55,

Sec. 5.6].
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where the variable is {p̄l, γ̄l}l∈L(n) and gjl = |hH
jlv̌j|2. Problem (22) possesses the following key

features:

a. Since the optimal value of GP (18) is f̌n (z), the optimal value of problem (22) is given

by ln(f̌n (e
z̄)).

b. Objective function of problem (22) is jointly convex in {p̄l, γ̄l}l∈L(n) and z̄.

c. The constraint functions of problem (22) become jointly convex in {p̄l, γ̄l}l∈L(n) and z̄.

By using the perturbation and sensitivity result given in [55, Lem. 1] it follows that ln
(
f̌n
(
ez̄
))

is convex in z̄. Consequently, problem (21) is convex.

3) Subgradient method to solve the convex form of the approximated master problem: In

this subsection, we derive the subgradient method for solving problem (21). By invoking [55,

Lem. 1], we can compute a subgradient of
∑

n∈N ln
(
f̌n
(
ez̄
))

at z̄. Specifically, a subgradient is

given by
∑

n∈N{dnil(z̄)}l∈Lint,i∈Nint(l) and

dnil(z̄) =



λ⋆
l (e

z̄)ez̄il

σ2
l +

∑
j∈L(n),j ̸=l gjle

p̄⋆j (e
z̄) +

∑
m∈Nint(l)

ez̄ml

l ∈ L(n) \ Llocal(n), i ∈ Nint(l)

−µ⋆
l (e

z̄) l ∈ Lint(n), i = n

0 otherwise ,

(23)

where {λ⋆
l (e

z̄)}l∈L(n)\Llocal(n) denotes the optimal Lagrange multipliers associated with the first

set of constraints of problem (22), {µ⋆
l (e

z̄)}l∈Lint(n) denotes the optimal Lagrange multipliers

associated with the third set of constraints of (22), and {p̄⋆l (ez̄), γ̄⋆
l (e

z̄)}l∈L(n) denotes the optimal

solution of problem (22). Each BS n can compute {dnil(z̄)}l∈Lint,i∈Nint(l) independently, which in

turn are used to construct the subgradient of
∑

n∈N ln
(
f̌n
(
ez̄
))

at z̄ via BS-BS coordination.

Note that the zero in equation (23) are used to simplify the presentation. In practice, these zeros

need not be exchanged between BSs during their coordinations.

The subgradient method for problem (21) is given by [46]

z̄
(j+1)
il = z̄

(j)
il − θ(j)

∑
n∈N dnil(z̄

(j)) , l ∈ Lint, i ∈ Nint(l) (24)

= z̄
(j)
il − θ(j)

(
diil(z̄

(j)) + d
tran(l)
il (z̄(j))

)
, (25)

l ∈ Lint, i ∈ Nint(l) ,
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Fig. 2. Block diagrams of proposed algorithms.

where j is the current iteration index of the subgradient method and θ(j) ∈ IR+ is a step size.8

The second equality (25) follows from (23) after ignoring the zero elements. This suggest that,

for computing the (i, l)th component of the subgradient, only two BSs (i.e., i and tran(l)) need

to coordinate.

C. Subproblem: BS optimization

Note that subproblem (11) is NP-hard [10], and therefore any practical solution method is

reliant on approximations. The subproblem solution method presented in this section is essentially

based on the Algorithm 4.3.1 originally proposed in [31, Sec. 4.3]. Here we briefly discuss the

key idea of this algorithm for the sake of completeness.

The key idea of the algorithm is to carry out the optimization with respect to different subsets

of variables by considering others fixed [31, Sec. 4.3]. First, by fixing the beamformers {vl}l∈L(n),

a GP of the form (18) is solved which locally approximates the original subproblem (11). This

is a decent step. Then, for fixed {γl}l∈L(n) values, a maximum power reduction factor t⋆ is found

such that the SINR values are preserved. The maximum power reduction factor is given by the

8We chose diminishing nonsummable step lengths (i.e., θ(j) = 1/j), that guarantees the asymptotic convergence of the

subgradient method [46].
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optimum t⋆ that solves the following problem:

minimize t

subject to γl ≤
pl|hH

llvl|2
σ2
l +

∑
j∈L(n),j ̸=l

pj|hH
llvj|2 +

∑
i∈Nint(l)

zil
, l ∈ L(n)

t2znl ≥
∑

j∈L(n) pj|hH
jlvj|2, l ∈ Lint(n)∑

l∈L(n) pl||vl||22 ≤ t2pmax
n

||vl||2 = 1, pl ≥ 0, l ∈ L(n) ,

(26)

where the variables are t and {pl,vl}l∈L(n).9 Note that, we always have t⋆ ≤ 1, and, hence,

the saved power can be used to decrease the objective of original problem (11) by 1) setting

{vl = v⋆
l }l∈L(n) and {pl = p⋆l /t

⋆}l∈L(n) and 2) increasing {γl}l∈L(n) until the SINR constraints

become tight. The result is again a descent step. The discussion above leads to the following

descent algorithm which can be asynchronously solved by nth BS:

Algorithm 1: Finding a suboptimal solution for BS optimization problem (11) [31, Sec. 4.3]

1 Initialization; given a feasible beamformer configuration
{
v
(0)
l

}
l∈L(n), a feasible power

allocation
{
p
(0)
l

}
l∈L(n), and z. Set iteration index i = 0.

2 By setting pl = p
(i)
l and vl = v

(i)
l , compute γ̌l for all l ∈ L(n) from (5).

3 By setting v̌l = v
(i)
l for all l ∈ L(n), solve problem (18). Denote the solution by

{p⋆l , γ⋆
l }l∈L(n) and the optimal Lagrange multipliers by {λ⋆

l }l∈L(n)\Llocal(n) and {µ⋆
l }l∈Lint(n).

4 Stopping criterion; if the stopping criterion is satisfied STOP by returning dnil(·) by us-

ing (23) and the suboptimal solution {p̌l, γ̌l, v̌l}l∈L(n), where p̌l = p⋆l . Otherwise, update

achieved SINR values γtmp
l = γ⋆

l for all l ∈ L(n).

5 By setting γl = γtmp
l for all l ∈ L(n), solve problem (26). Denote the solution by t⋆ and

{p⋆l ,v⋆
l }l∈L(n). Update p

(i+1)
l = p⋆l /(t

⋆)2 and v
(i+1)
l = v⋆

l for all l ∈ L(n). Set i = i + 1

and go to step 2.

The block diagram shown in Figure 2(a) summarizes Algorithm 1. It is a descent algorithm and

we refer the reader to [31] for more details.

9It is well known that problem (26) is equivalently formulated as a SOCP (see [31, Sec. 4.3])
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Note that, step 3 of Algorithm 1 solves problem (18) for some normalized v̌l. This is the

problem that should be solved to find dnil(z̄) given in (23), which is then used to compute

a subgradient
∑

n∈N{dnil(v̄)}l∈Lint,i∈Nint(l) for the objective of the approximated master prob-

lem (21). The observations above suggest that the local BS optimizations (i.e., Algorithm 1) can

be employed to compute the subgradient in a distributed fashion. Specifically, the dual variables

and the optimal solutions required to compute the subgradient elements dnil(z̄) are obtained as a

by-product of the BS optimization process. These are, of course, desirable and favorable features

that are exploited when developing our distributed WSRMax algorithm in Section IV.

IV. DISTRIBUTED ALGORITHM

In this section we blend 1) the subgradient method, which solves an approximation of the

master problem (9) (see Section III-B) and 2) Algorithm 1, which finds a suboptimal solution to

subproblem (10) (see Section III-C). The result is an algorithm, which solves a series of approx-

imated variants of the original master problem (9) via a subgradient method. Subgradients for

the subgradient method are computed by coordinating the subproblems or the BS optimizations.

The main skeleton of the proposed distributed algorithm is depicted in Figure 2(b), which is a

smooth integration of the subgradient method (24) and Algorithm 1 in an iterative manner. The

detailed algorithm is as follows (see Figure 2(b) for a concise block diagram).

Algorithm 2: Distributed algorithm for WSRMax

1 Initialization; given the globally agreed initial out-of-cell interference z, a feasible beam-

former configuration
{
v
(0)
l

}
l∈L(n), and a feasible power allocation

{
p
(0)
l

}
l∈L(n). Set sub-

gradient iteration index j = 0.

2 for n = 1 to N

- performs Algorithm 1 and return the subgradient contribution {dnil(z̄)}l∈Lint,i∈Nint(l)

and the suboptimal solution {p̌l, γ̌l, v̌l}l∈L(n).

3 Set {z̄(j)il = ln zil}l∈Lint,i∈Nint(l) and perform (24) to yield {z̄(j+1)
il }l∈Lint,i∈Nint(l) and set

z =
{
ez̄

(j+1)
il

}
l∈Lint,i∈Nint(l)

.
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4 for n = 1 to N

- solve problem (18). Denote the solution by {p⋆l (z), γ⋆
l (z)}l∈L(n) and the optimal

Lagrange multipliers by {λ⋆
l (e

z̄)}l∈L(n)\Llocal(n) and {µ⋆
l (e

z̄)}l∈Lint(n).

- Compute dnil(z̄) by using (23).

5 Stopping criterion; if the stopping criterion is satisfied, reset subgradient iteration index

j, i.e., j = 0, set
{
v
(0)
l = v̌l

}
l∈L(n),

{
p
(0)
l = p⋆l (z)

}
l∈L(n), and go to step 2. Otherwise

increment subgradient iteration index j, i.e., j = j + 1 and go to step 3.

The first step initializes Algorithm 2. Steps 2 represents the BS optimizations that are performed

asynchronously in a decentralized fashion by each BS for fixed out-of-cell interference z. BS

optimizations terminate after the per BS stopping criterion is satisfied; see step 4 of Algorithm 1.

At this stage each BS has its own solution and the subgradient part {dnil(z̄)}l∈Lint,i∈Nint(l). BS

coordination is initiated at step 3. For example each BSs coordinate to construct a subgradient∑
n∈N{dnil(z̄)}l∈Lint,i∈Nint(l) and perform subgradient method (24), which must be synchronous.

This updates global out-of-cell interference variable z. At step 4, each BS performs their own

GP to compute {dnil(z̄)}l∈Lint,i∈Nint(l) for the next subgradient iteration. Step 5, is the stopping

criterion for the subgradient method. If the stopping criterion is satisfied, Algorithm switches

back to BS optimizations, i.e., step 2. Otherwise, the subgradient method is performed until the

stopping criterion is satisfied. The algorithm continues in an iterative manner.

Figure 3(a) depicts graphically the behavior of Algorithm 2. The nonconvex curve is the

objective function of the master problem (9) after the logarithmic change of variables z̄il = ln zil.

The convex curves are the objective functions of approximated master problems of the form (21),

which are essentially parameterized by the current beamforming directions. The vertical arrows

correspond to asynchronous per BS optimizations, i.e., step 2 depicted in Figure 2(b). The

horizontal arrows correspond to the subgradient method, i.e., step 3-5 depicted in Figure 2(b).

Figure 3(a) shows that the algorithm switches between the per BS optimizations and the sub-

gradient method. For example, by fixing out-of-cell interference at z̄1, the algorithm performs

per BS optimizations. Once a specified stopping criterion is satisfied, the algorithm stops BS
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optimizations and performs the subgradient method until a specified stopping criterion is satisfied.

As a result, the out-of-cell interference values are changed from z̄1 to z̄2. The algorithm continues

in an iterative manner.

The algorithm proposed in this section has following features, which simplify its practical

implementation:

a. Local channel state information (CSI): The nth BS requires to know only the channels

to receiver nodes located inside its interference region. Specifically, nth BS should know

channel matrices hH
jl, where l ∈ L(n) ∪ Lint(n) and tran(j) = n. This is similar to the

CSI requirement in WMMSE algorithm (see [45, Sec. IV]).

b. Asynchronism: All the subproblems or BS optimizations can be carried out in a fully

asynchronous fashion until a stopping criterion is satisfied.

c. Fast Local optimization: Each subsystem need to solve convex problems, which can be

performed very fast provided the significant computing power available at each BS.

d. Thin protocol: Each BS does not need to reveal the entirety of its own subproblem during

the BS coordination; only a little communication is needed, and therefore the protocol

between BSs can be very light.

e. Reliability: To carry out the algorithm, only BS to BS synchronized signalling is required.

This signalling can be carried out via reliable backhaul communication links such as

microwave and fibre links.

f. No user terminal involvement: The user terminals do not require performing any processing

associated with algorithm iterations and user to BS signalling is not required.

A. Monotonic Convergence of Algorithm 2

In this section we first show that Algorithm 2 can generate a monotonically nonincreasing

sequence of objective values, with appropriate choice of stopping criteria. In particular, we mea-

sure the objective value given by the algorithm just after each GP; see point ‘F1’ of Figure 2(a)

and point ‘F2’ of Figure 2(b). Then we show the monotonic convergence of Algorithm 2.

Algorithm 2 starts with Algorithm 1 (see step 2). Let f (0), f (1), . . . , f (K1) denote the sequence
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Step 2 of Algorithm 2, i.e., each 

BS n performs Algorithm 1

upper bound functions,                            ;
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Step 3-5 of Algorithm 2 i.e.,

the subgradient method (24) 

is performed until the 
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Step 3-5 of Algorithm 2

master problem         

objective, 

(a) Upper bounds (b) monotonic convergence

Fig. 3. The behavior of Algorithm 2; the objective function of problem (9) and (21) are shown in the domain of z̄.

of objective values obtained during Algorithm 1 iterations. Here K1 is the number of Algorithm 1

iterations until its stopping criterion is satisfied. Natural stopping criteria includes 1) running

Algorithm 1 for a fixed number of iterations or 2) running Algorithm 1 until the objective

value decrement between two successive iterations is below a certain predefined threshold. Since

Algorithm 1 contains nonascent steps (see Section III-C) we have

f (0) ≥ f (1) ≥ . . . ≥ f (K1), (27)

as depicted in Figure 3(b).

Next, Algorithm 2 switches to the subgradient method (24) (see step 3). Note that, the

subgradient method is not a descent algorithm. Therefore, in order to obtain a monotonically

nonincreasing sequence of objective values, we consider the following stopping criterion: running

subgradient method until an objective value f (K2) is achieved, such that f (K1) ≥ f (K2) (see

Figure 3(b)), where K2 = K1 + J and J > 1 is the number of subgradient iterations.10 Thus,

we have

f (0) ≥ f (1) ≥ . . . ≥ f (K1) ≥ f (K2). (28)

The switching between Algorithm 1 and the subgradient method is done in an iterative manner.

The result is a monotonically nonincreasing sequence of objective values f (0), f (1), f (2), . . . such

10In fact, the subgradient method, with diminishing nonsummable step lengths, ensures asymptotic convergence [46]. However,

the requirement here is to iterate until a better objective value
(
compared to the initial objective value f (K1)

)
is obtained.
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that f (i) ≥ f (i+1), i = 0, 1, 2, . . .. Moreover, note that the optimal objective value of problem (7)

is bounded. This guarantees the monotonic convergence of Algorithm 2 [56, Th. 3.14].

Note that the development of Algorithm 2 is not based on Karush-Kuhn-Tucker (KKT) op-

timality conditions for the nonconvex problem (7). As a result, characterizing completely the

solution structure of the proposed algorithm is a difficult task. For example, the (suboptimal)

solution after the convergence of Algorithm 2 may not necessarily be a locally optimal point of

problem (7).

B. A Practical Stopping criterion / Signalling Strategy

The stopping criteria discussed in Section IV-A are, of course, important to ensure the mono-

tonic convergence of the algorithm. However, it is desirable to seek for stopping criteria, which

are favorable for practical implementations of the algorithm, but with a violation of the monotonic

convergence. In the sequel, we explain such an example strategy.

The key idea is to define time barriers; i.e., system checkpoints at which all BS must start their

local optimizations (i.e., Algorithm 1) and system checkpoints at which all BS start coordination

(i.e., the subgradient method). In particular, each BS transmissions are synchronized and the

data transmission phase of each BS is preceded by a signalling phase, in which the rate/power

allocation of each BS is determined via WSRMax; see Figure 4. The signalling phase consists

of three types of time slots called initial signalling window, BS optimization window, and BS

coordination window. The initial signalling window is used for step 1 of Algorithm 2, i.e.,

the initialization step. The latter two types of windows (i.e., BS optimization window and BS

coordination window) are repeated until the data transmission phase is reached as shown in

Figure 4. We define the BS optimization windows to be the the time periods where Algorithm 1

is performed asynchronously. Therefore, during BS optimization windows, step 2 of Algorithm 2

is carried out. The width of the window is determined by the maximum number of Algorithm 1

iterations. The BS coordination windows are defined to be the time periods where the subgradient

method is performed. Therefore, during any BS coordination window, step 3, step 4, and step 5 of

Algorithm 2 are carried out repeatedly. The width of the BS coordination window is determined
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BS coordination windows:
Subgradient method is performed

signalling phase

data transmission phase

1 2

BS optimization windows:

Algorithm 1 is performed

3

Initial signalling window: 

used for Algorithm 2 initialization

Fig. 4. An example signalling frame structure.

by the maximum number of subgradient iterations. Typically, we may assume that the time period

of any BS optimization window is significantly smaller compared to the time period of any BS

coordination window because of the following reasons: 1) significant computing power available

at BSs so that the BS optimization can be performed very fast, 2) BS coordination require

backhaul message exchanges between BSs, which in turn demand stringent time requirements.

V. NUMERICAL EXAMPLES

In this section we run our proposed Algorithm 2 (Section IV) in multiuser multicell environ-

ments and the benefits due to different degrees of BS coordination are numerically evaluated.

As benchmarks, we consider three algorithms 11: 1) distributed WMMSE algorithm [45], 2) GP-

SOCP based centralized algorithm proposed in [31, Sec. 4.3], and 3) the distributed algorithm

proposed in [24], [25], which is based on a virtual SINR beamforming strategy. To emphasize the

practical relevance of the proposed algorithm, we consider only the stopping criterion discussed

in Section IV-B, which is based on time barriers or system checkpoints as shown in Figure 4.

We consider an exponential path loss model, where the channel gains between BSs and users

are given by

hij =

√(
dij
d0

)−η

cij , (29)

where dij is the distance from the transmitter of ith data stream to the receiver of jth data stream,

d0 is the far field reference distance [57], η is the path loss exponent, and cij ∈ CT such that

cij ∼ CN (0, I) (i.e., frequency-flat fading with uncorrelated antennas). The first term of (29)

represents the path loss factor and the second term models the Rayleigh small-scale fading. An

11These three algorithms are not restricted to MISO IC. They can handle more general MISO interfering broadcast channel.
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Fig. 5. (a) Multicell network 1, N = {1, 2}, L = {1, . . . , 8}, L(1) = {1, . . . , 4}, L(2) = {5, . . . , 8}, Lint = {3, . . . , 7};

(b) Multicell network 2, N = {1, 2, 3}, L = {1, . . . , 12}, L(1) = {1, . . . , 4}, L(2) = {5, . . . , 8}, L(3) = {9, . . . , 12},

Lint = {1, 2, 4, 6, . . . , 11}.

arbitrarily generated set C of fading coefficients where C = {cij | i, j ∈ L} is referred to as a

single fading realization. The variance of the noise is considered equal for all data streams, i.e.,

σ2
l = N0 for all l ∈ L and the maximum power constraint is assumed the same for all nodes,

i.e., pmax
n = pmax

0 for all n ∈ N . We define the SNR operating point at a distance d [distance

units] as

SNR(d) =

 pmax
0 /N0 d ≤ d0

pmax
0 /N0 (d/d0)

−η otherwise .
(30)

In all our simulations we set d0 = 1, η = 4, pmax
0 /N0 = 45 dB, SNR(Rint) = 0 dB, where Rint

is the radius of the interference regions of each BS 12, and SNR(RBS) = 8 dB, where RBS is

the radius of the transmission regions of each BS.

In our simulations two multicell multiuser wireless cellular networks as shown in Figure 5

are considered. In the case of first network (i.e., Figure 5(a)), there are N = 2 BSs with

T = 4 antennas at each one. The BSs are located such that the distance between the two BSs is

DBS = 1.5× RBS. In the case of second network (i.e., Figure 5(b)), there are N = 3 BSs with

T = 4 antennas at each one. Moreover, the BSs are located such that they form an equilateral

triangle and the distance between any two BSs is DBS = 1.5×RBS. There are 4 users per each

BS located inside the transmission region of the BS. The locations of users associated with BSs

are arbitrarily chosen as shown in Figure 5. A single data stream is transmitted for each user.

12Signal strength of BS’s transmitted signal at a distance Rint is at most on the order of noise, Therefore, as we modeled in

Section II, it is reasonable to consider that the interference cased by the BS outside the interference region is negligible.
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Fig. 6. Objective value versus GP iteration: (a) Multicell network 1; (b) Multicell network 2.

To see the behavior of Algorithm 2, we first consider a nonfading case where for each network

(see Figure 5), an arbitrary generated single fading realization is considered. We run the algorithm

in both networks shown in Figure 5. Figure 6 shows the objective value of problem (6) computed

at points ‘F1’ and ‘F2’ (see figure 2(a) and figure 2(b)). Here the X-axis of Figure 6 represents

combined Algorithm 1 iterations and subgradient iterations. For simplicity, we denote the number

of Algorithm 1 iterations carried out during the BS optimization window by JBS−opt and denote

the number of subgradient iterations performed during the BS coordination window by Jsubgrad.

Plots are drawn for the cases of JBS−opt = 15 and Jsubgrad = 1, 10, 50. Note that Jsubgrad is a

measure of the degree of BS coordination. For example, Jsubgrad = 1 means that the subgradient

method is performed only once during any BS coordination window and Jsubgrad = 50 means

that the subgradient method is carried out 50 consecutive times during any BS coordination

window. Weights βl of each data stream is arbitrarily chosen from the interval (0, 1]. In step 1 of

Algorithm 2, the components of initial out-of-cell interference vector z are chosen on the order

of noise variance N0 (e.g., 0.5N0). Moreover, the normalized initial beamformers {v(0)
l }l∈L(n) are

randomly generated and a feasible uniform initial beamformer power allocation is chosen, i.e.,

{p(0)l = αpmax
0 /T}l∈L(n), where α ∈ (0, 1] is chosen to ensures the feasibility of problem (18).

In order to describe the algorithm’s behavior, let us first focus to Figure 6(a), the case of

Jsubgrad = 1. To distinguish Algorithm 1 iterations from the subgradient iterations, we use
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two types of squares; transparent squares and solid squares. Specifically, the transparent squares

correspond to the Algorithm 1 iterations and the solid squares correspond to the subgradient

iterations. Since Jsubgrad = 1, only a single subgradient iteration is performed during any BS

coordination window. Furthermore, each BS perform 15 Algorithm 1 iterations during any BS

optimization window, since we have JBS−opt = 15. Note that the BS optimizations (Algorithm 1)

are always nondecreasing steps.13 The flattening of these line segments means that BS optimiza-

tions cannot further improve the system objective. Violation of overall monotonic behavior is

inevitable since the subgradient method is not a descent algorithm in general [46] . Results show

that BS coordination can gracefully resolve the out-of-cell interference (i.e., z) via subgradient

method. For example, the plot in the case of Jsubgrad = 1, shows a 22% increase in the weighted

sum-rate (WSR), after having 5 subgradient iterations.

Figure 6(a) further shows that the value of Jsubgrad, which parameterizes the degree of BS

coordination has a significant effect on the overall WSR value. It is interesting to note that, a

smaller number of consecutive subgradient iterations (e.g., Jsubgrad = 1, 10) can perform better

compared to a larger number of consecutive subgradient iterations (e.g., Jsubgrad = 50). Such a

behavior is very important in practice to reduce significantly the backhaul message exchanges

during any BS coordination window. We can intuitively explain the behavior by considering the

two points ‘A’ and ‘B’ in Figure 3(a). In particular, point ‘A’ corresponds to a smaller Jsubgrad,

where the (convex form) approximated master problem (21) is solved to a low accuracy. Point

‘B’ corresponds to a larger Jsubgrad, where the (convex form) approximated master problem is

solved to a high accuracy. Of course, point ‘B’ is better than point ‘A’ for the approximated

master problem, but not necessarily for the original master problem (9); see the master objective

depicted in Figure 3(a). This suggest that one need not solve each approximation to a high

accuracy. Refining the approximation more often (which corresponds to a smaller Jsubgrad),

rather than solving some approximated master problem to a high accuracy (which corresponds

to a larger Jsubgrad) is more beneficial.

13Nondecreasing because we have plotted the positive weighted sum-rate value instead of the negative value of it.
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Fig. 7. Objective value versus GP iteration: (a) Multicell network 1; (b) Multicell network 2.

Figure 6(b) shows the proposed algorithm behavior in the case of network setup 2 in Fig-

ure 5(b). The behavior is very similar to the previous plots in Figure 6(a). The network can

yield substantial gains by performing just one subgradient iterations during any BS coordination

window, i.e., less backhaul message exchanges between BSs. For example, the plot in the case

of Jsubgrad = 1, shows a 23% increase in the WSR, after having 5 subgradient iterations; see

Figure 6(a). Figure 6 also shows the performance of the considered benchmark algorithms after

their convergence. In both networks, for the considered channel realizations, the performance of

the distributed algorithm in [24] is significantly low. Note that, algorithm in [24] is well suited for

lightly loaded scenarios (see [35, Fig. 4]), and therefore, it is intuitively expected this performance

drop due to the lack of degrees of freedom available at BS transmissions to avoid interference.

Results further show that the distributed WMMSE algorithm outperforms the proposed algorithm

in both scenarios. Such results are intuitively expected because WMMSE algorithm do rely on

user terminal assistance during algorithm’s iterations compared to our proposed Algorithm 2. The

good performance of the centralized algorithm compared to Algorithm 2 agrees with the intuition

that methods with a centralized controller can always outperform decentralized methods.

It is important to note, however, that all the considered algorithms are suboptimal methods to

problem (6), and therefore their optimality is not guaranteed. As a result, they may experience

different performance ranking for different channel realizations. One such case is illustrated in
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Figure 7. The algorithms’ parameters are same as in Figure 6 except the fading realizations.

Results show that Algorithm 2 can outperforms WMMSE and the centralized algorithms.

In order to see the average behavior of the proposed algorithm, we consider a fading case. Here,

we run Algorithm 2 for 500 fading realization with Jsubgrad = 1 and JBS−opt = 15. Recall that

the algorithm parameter Jsubgrad = 1 means that during any BS coordination window only one

subgradient iteration is performed. These are the only operations that require message exchanging

between BSs via backhaul links. Moreover, subgradient iterations are the main implementation-

level bottleneck, provided significant computing power at BSs, where Algorithm 1 iterations

can be performed fast and efficiently. Thus, it is interesting to see the average WSR value

of problem (6) achieved at point ‘F3’ of Algorithm 2 (see Figure 2(b)) after m (= 0, 1, . . .)

subgradient iteration. In other words, we examine the evolution of average WSR versus the

number of BS coordinations.

Figure 8 shows the dependence of the average WSR value on the number of subgradient

iterations in the case of considered network 1 and network 2. Note that, we have used the

same figure to plot the dependence of the average objective value of WMMSE algorithm on

the number of iterations.14 Results show that the BS coordination plays a critical role in the

performance of Algorithm 2. For clarity, we denote the situation where the subgradient iterations

Jsubgrad = 0 as noncoordinating case. In the case of network 1 (see Figure 8(a)), more than 12%

improvement in the average objective value is achieved within five BS coordinations compared

to the noncoordinating case. For network 2 (see Figure 8(b)), within five BS coordinations,

more than 24% improvement in the average objective value is achieved as compared to the

noncoordinating case.

Figure 8 also shows that the average performance of WMMSE algorithm is better compared to

that of Algorithm 2. This behavior is intuitively expected since, unlike the proposed Algorithm 2,

the WMMSE algorithm benefits from user terminal assistance. Recall that, during each iterations,

14The subgradient iterations are analogous to WMMSE iterations in the following sense: both the subgradient iterations and the

WMMSE algorithm iterations require message exchanges between nodes. Specifically, the subgradient method requires BS-BS

message exchanges and WMMSE requires BS-user terminal as well as user terminal-BS message exchanges.
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Fig. 8. Average objective value versus number of BS coordinations: (a) Multicell network 1; (b) Multicell network 2.

WMMSE algorithm requires user terminals assistance such as signal covariance estimations,

computations, and feedback information to BSs over the air interface. In contrast, our proposed

method require only BS-level synchronized communication and all the necessary computation is

concentrated at the BSs. The result is naturally a trade off between performance gains and the

implementation-level simplicity. For a fair comparison of Algorithm 2 and WMMSE algorithm,

we examine the sensitivity of WMMSE algorithm to imperfections on the signal covariance

estimations at user terminals. Specifically, during each WMMSE iteration, we randomly perturb

the error free signal covariance matrix Jl (which is a scalar in the case of MISO) at each user

terminal l as follows: Jl := Jl+Jl(xecov/100), where x is a random variable with 2 equiprobable

outcomes −1, 1 and ecov is the amount of covariance perturbation. Results show that such small

estimation errors have a significant effect on the performance of WMMSE algorithm. Moreover,

in such situations, the convergence of the WMMSE method becomes less predictable. Thus, our

algorithm is well suited for systems where the user terminal assistance is not desirable due to

potential errors such as estimation errors and feedback errors.

Figure 8 further shows that, the performance of Algorithm 2 within several BS coordinations

is comparable with that of the centralized algorithm [31, Sec. 4.3]. For example, in the case of

network 1, Algorithm 2 achieves around 99% of the average WSR value given by the centralized

algorithm [31, Sec. 4.3]. Moreover, in the case of network 2, Algorithm 2 yields around 94%
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of the average WSR value given by the considered centralized algorithm. Finally, we see that

there is a substantial performance gap between Algorithm 2 and the distributed algorithm in [24].

The main reason for such a performance drop of algorithm in [24] is the insufficient degree of

freedom available at BS transmissions to cancel the interference it causes to the user terminals.

VI. CONCLUSIONS

We considered the weighted sum-rate maximization problem in a multicell multiple-input

and single-output downlink system. The problem is nonconvex; in fact it is NP-hard. A dis-

tributed solution method for the problem is proposed. The main advantage of the proposed

algorithm is its implementation-level simplicity. Unlike the minimum weighted mean-squared

error based algorithms, our method does not demand user terminal assistance during each

iteration. Our algorithm essentially require base station to base station (BS) communication,

which are reasonably realizable, provided reliable backhaul links (e.g., fibre and microwave

links) and significant computing power at BSs. As a result, a good trade-off between the

performance gains and the implementation-level simplicity was achieved. The proposed algorithm

was based on primal decomposition and subgradient methods. In particular, the main problem

was split into a master problem and many subproblems (one for each base station). A novel

sequential convex approximation strategy together with a subgradient method were blent to

address the nonconvex master problem. Master problem solution relies on synchronous BS

coordinations. A descent algorithm based on second-order cone programming and a geometric

programming were adopted in the case of subproblems. The subproblems can be performed in a

fully asynchronous manner. The monotonic convergence of the algorithm was established, with

appropriate choice of stopping criteria at intermediate steps. Practical stopping criteria have also

been proposed. Numerical experiments were performed to compare our method with existing

state-of-the-art algorithms. Results suggest that our algorithm is well suited for systems where the

user terminal assistance is not allowed or not desirable. Results further showed that the proposed

algorithm could significantly improve the overall system performance with a small amount of BS

coordinations. These observations are indeed important for deriving simple signalling protocols

in the context of large-scale practical cellular communication systems.
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[30] M. Codreanu, A. Tölli, M. Juntti, and M. Latva-aho, “Joint design of Tx-Rx beamformers in MIMO downlink channel,”

IEEE Trans. Signal Processing, vol. 55, no. 9, pp. 4639–4655, Sept. 2007.

[31] M. Codreanu, Multidimensional Adaptive Radio Links for Broadband Communications, Ph.D. thesis, Centre for Wireless

Communications, University of Oulu. Acta Universitatis Ouluensis, Oulu, Finland, Nov. 2007, [Online]. Available: http:

//herkules.oulu.fi/isbn9789514286223.

[32] G. Zheng, K-K. Wong, and T-S. Ng, “Throughput maximization in linear multiuser MIMO-OFDM downlink systems,”

IEEE Trans. Veh. Technol., vol. 57, no. 3, pp. 1993–1998, May 2008.

[33] S. Joshi, P. C. Weeraddana, M. Codreanu, and M. Latva-aho, “Weighted sum-rate maximization for MISO downlink

cellular networks via branch and bound,” IEEE Trans. Signal Processing, vol. 60, no. 4, pp. 2090–2095, Apr. 2012.

[34] S. S. Christensen, R. Agarwal, E. Carvalho, and J. Cioffi, “Weighted sum-rate maximization using weighted MMSE for

MIMO-BC beamforming design,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 4792–4799, Dec. 2008.

[35] E. Björnson, R. Zakhour, D. Gesbert, and B. Ottersten, “Cooperative multicell precoding: Rate region characterization and

October 9, 2012 DRAFT



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. XX, MMMM 2012 32

distributed strategies with instantaneous and statistical CSI,” IEEE Trans. Signal Processing, vol. 58, no. 8, pp. 4298–4310,

Aug. 2010.

[36] R. Zakhour and D. Gesbert, “Coordination on the MISO interference channel using the virtual SINR framework,” in Proc.

ITG Workshop Smart Antennas, Berlin, Germany, Feb.16–18 2009.

[37] R. Zakhour and D. Gesbert, “Distributed multicell-MISO precoding using the layered virtual SINR framework,” IEEE

Trans. Wireless Commun., vol. 9, no. 8, pp. 2444–2448, Aug. 2010.

[38] R. Zakhour, Z. Ho, and D. Gesbert, “Distributed beamforming coordination in multicell MIMO channels,” in Proc. IEEE

Veh. Technol. Conf., Barcelona, Spain, Apr.26–29 2009, pp. 1–5.

[39] B. O. Lee, H. W. Je, I. Sohn, O-S. Shin, and K. B. Lee, “Interference-aware decentralized precoding for multicell MIMO

TDD systems,” in Proc. IEEE Global Telecommun. Conf., New Orleans, LA, USA, Nov. 30–Dec. 4 2008, pp. 1–5.

[40] R. Zhang and S. Cui, “Cooperative interference management with MISO beamforming,” IEEE Trans. Signal Processing,

vol. 58, no. 10, pp. 5450–5458, Oct. 2010.
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