MM Optimization Algorithms Homework 4

Iterative Refinement

Let f be a quadratic function, i.e., $f(x)=(1 / 2) x^{\mathrm{T}} A x-b^{\mathrm{T}} x$, where A is an element of the set \mathbb{S}_{++}^{n} of symmetric positive definite $n \times n$ matrices. It is straightforward to see that that the unique minimizer of f is given by the solution of the linear system $A x=b$.

1. By using the data files ${ }^{1}$ of A and b given in A.mat and b.mat, respectively, compute numerically the minimizer $x^{\text {direct }}$ of f given by $x^{\text {direct }}=A^{-1} b$. What is the the numerical error e of the computed minimizer defined as $e\left(x^{\text {direct }}\right)=\left\|b-A x^{\text {direct }}\right\|$?
2. Show that

$$
\begin{align*}
\operatorname{prox}_{\mu f}(x) & =(A+(1 / \mu) I)^{-1}(b+(1 / \mu) x) \tag{1}\\
& =x+[(1 / \mu) I+A]^{-1}(b-A x) .
\end{align*}
$$

where I is the identity matrix and μ is a positive scalar.
3. Let $x^{(0)}=[1 \cdots 1]^{\mathrm{T}} \in \mathbb{R}^{n}$. Implement the proximal minimization algorithm

$$
x^{(n+1)}=\operatorname{prox}_{\mu f}\left(x^{(n)}\right)
$$

with $\mu=1000$ for 20 iterations, i.e., $n=0, \ldots, 19$. Plot the graph of error versus iterations, i.e., $e\left(x^{(k)}\right)$ for $k=0, \ldots, 20$.
4. Compare the numerical errors $e\left(x^{(20)}\right)$ and $e\left(x^{\text {direct }}\right)$. What may be the reasons for their significant difference, if any?

[^0]
[^0]: ${ }^{1}$ The data files are stored in MATLAB mat form.

