MM Optimization Algorithms Homework 4

Iterative Refinement

Let f be a quadratic function, i.e., $f(x) = (1/2)x^{T}Ax - b^{T}x$, where A is an element of the set \mathbb{S}_{++}^{n} of symmetric *positive definite* $n \times n$ matrices. It is straightforward to see that that the *unique* minimizer of f is given by the solution of the linear system Ax = b.

- 1. By using the data files ¹ of A and b given in A.mat and b.mat, respectively, compute numerically the minimizer x^{direct} of f given by $x^{\text{direct}} = A^{-1}b$. What is the the numerical error e of the computed minimizer defined as $e(x^{\text{direct}}) = ||b Ax^{\text{direct}}||$?
- 2. Show that

$$prox_{\mu f}(x) = (A + (1/\mu)I)^{-1} (b + (1/\mu)x)$$

$$= x + [(1/\mu)I + A]^{-1} (b - Ax).$$
(1)

where I is the identity matrix and μ is a positive scalar.

3. Let $x^{(0)} = [1 \cdots 1]^{\mathrm{T}} \in \mathbb{R}^n$. Implement the proximal minimization algorithm

$$x^{(n+1)} = \operatorname{prox}_{\mu f}(x^{(n)})$$

with $\mu = 1000$ for 20 iterations, i.e., $n = 0, \ldots, 19$. Plot the graph of error versus iterations, i.e., $e(x^{(k)})$ for $k = 0, \ldots, 20$.

4. Compare the numerical errors $e(x^{(20)})$ and $e(x^{\texttt{direct}})$. What may be the reasons for their significant difference, if any?

¹The data files are stored in MATLAB mat form.