Problem 1

Suppose you are given a linear system

$$Ax = b, (1)$$

where $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$, and $b \in \mathbb{R}^m$. Moreover, rank A = r < m < n. It is known that $b \in \text{range } A$. If a scalar L > ||A|| is given, determine a method to compute a solution of the linear system by using the MM pronciple.

Problem 2

1. Obtain a minorization function to f

$$f(x) = 1 + x \tag{2}$$

at $x^{(n)} \in \mathbb{R}_{++}$ where the minorization $g(\ \cdot \ | x^{(n)})$ is of the form

$$g(x|x^{(n)}) = mx^r \tag{3}$$

for some m and r that depends on $x^{(n)}$, which are to determined.

2. By using the above minorization apply the MM principle to derive an algorithm to find a solution ¹ to the problem

$$\begin{array}{ll} \text{maximize} & \log\left(1 + \frac{\alpha_1 p_1}{\sigma_1^2 + \beta_1 p_2}\right) + \log\left(1 + \frac{\alpha_2 p_2}{\sigma_2^2 + \beta_2 p_1}\right) \\ \text{subject to} & p_1 + p_2 \leq p_{\texttt{tot}} \\ & p_1, p_2 > 0 \end{array}$$

where the decision variables are p_1 and p_2 and $\alpha_1, \alpha_2, \beta_1, \beta_2, \sigma_1$, and σ_2 are positive scalars and are given.

- Hint 1: You may use the substitution $x_1 = \alpha_1 p_1 / (\sigma_1^2 + \beta_1 p_2)$ and $x_2 = \alpha_2 p_2 / (\sigma_2^2 + \beta_2 p_1)$.
- Hint 2: You may use that log is an increasing function.
- Hint 3: The maximization of the minorization function subject to relevant constraints may be posed equal equal as a GP (geometric program).

¹The solution given by the algorithm is not necessarily optimal.