MM Optimization Algorithms Homework 3

Problem 1

Suppose you are given a linear system

$$
\begin{equation*}
A x=b, \tag{1}
\end{equation*}
$$

where $A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^{n}$, and $b \in \mathbb{R}^{m}$. Moreover, rank $A=r<m<n$. It is known that $b \in$ range A. If a scalar $L>\|A\|$ is given, determine a method to compute a solution of the linear system by using the MM pronciple.

Problem 2

1. Obtain a minorization function to f

$$
\begin{equation*}
f(x)=1+x \tag{2}
\end{equation*}
$$

at $x^{(n)} \in \mathbb{R}_{++}$where the minorization $g\left(\cdot \mid x^{(n)}\right)$ is of the form

$$
\begin{equation*}
g\left(x \mid x^{(n)}\right)=m x^{r} \tag{3}
\end{equation*}
$$

for some m and r that depends on $x^{(n)}$, which are to determined.
2. By using the above minorization apply the $M M$ principle to derive an algorithm to find a solution ${ }^{1}$ to the problem

$$
\begin{array}{ll}
\operatorname{maximize} & \log \left(1+\frac{\alpha_{1} p_{1}}{\sigma_{1}^{2}+\beta_{1} p_{2}}\right)+\log \left(1+\frac{\alpha_{2} p_{2}}{\sigma_{2}^{2}+\beta_{2} p_{1}}\right) \\
\text { subject to } & p_{1}+p_{2} \leq p_{\text {tot }} \\
& p_{1}, p_{2}>0
\end{array}
$$

where the decision variables are p_{1} and p_{2} and $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \sigma_{1}$, and σ_{2} are positive scalars and are given.

- Hint 1: You may use the substition $x_{1}=\alpha_{1} p_{1} /\left(\sigma_{1}^{2}+\beta_{1} p_{2}\right)$ and $x_{2}=$ $\alpha_{2} p_{2} /\left(\sigma_{2}^{2}+\beta_{2} p_{1}\right)$.
- Hint 2: You may use that log is an increasing finction.
- Hint 3: The maximization of the minorization function subject to relevant constraints may be posed equaivalently as a GP (geometric program).

[^0]
[^0]: ${ }^{1}$ The solution given by the algorithm is not necessarily optimal.

