
MM Optimization Algorithms
Homework 1

Problem 1

The fact that x2 ≥ 0 for all x ∈ IR is commonly used when deriving many useful majorizing
functions. By using this trick, show that
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Note that θ(n) is a fixed scalar/vector and should be nonzero depending on the context.

Problem 2

Section 1.4, Problem 21 of the Textbook


