MM Optimization Algorithms

Chathuranga Weeraddana

March 2022

LECTURE 7: SOME APPLICATIONS (PART 2)

Applications

many applications have already been discussed

- check for previous lectures
- last two lectures: we discuss a few more applications
 - K-mean clustering with missing information
 - Gaussian estimation with missing data
 - regression
 - total variation denoising of images
 - factor analysis
 - matrix completion

Image Denoising

• an $m \times m$ distorted image Y is given

prior information:

• original image $X \in \mathbb{R}^{m \times m}$ is usually smooth

neighboring pixels values are not very different

boundaries of distinct color changes exist

least-squares:

no accounts for neighboring pixels conditions

exhibits ringing phenomenon

total variation denoising

accounts for neighboring pixels conditions

mitigates the ringing phenomenon

TOTAL VARIATION DENOISING

problem formulation:

$$\underset{X}{\text{minimize}} \quad \frac{1}{2} \|X - Y\|^2 + \lambda \sum_{i} \sum_{j} \sqrt{(X_{i,j} - X_{i,j+1})^2 + (X_{i,j} - X_{i+1,j})^2}$$

▶ Newton's method doesn't apply directly → reformulate

a convex reformulation:

second-order cone program (SOCP)¹

int.-point method applies to the reformulated problem

¹See §. 4.4.2, *Convex Optimization* by S. Boyd and L. Vandenberghe, 2004.

Apply MM Principle

▶ we have the following majorization function of the objective: ² $\frac{1}{2} ||X-Y||^2 + \frac{\lambda}{2} \sum_{i=1}^m w_{nij} \left[(X_{i,j} - X_{i,j+1})^2 + (X_{i,j} - X_{i+1,j})^2 \right] + c_n$

where c_n is an irrelevant constant and

$$w_{nij} = \frac{1}{\sqrt{\left(X_{i,j}^{(n)} - X_{i,j+1}^{(n)}\right)^2 + \left(X_{i,j}^{(n)} - X_{i+1,j}^{(n)}\right)^2 + \epsilon}}$$

the majorization function is quadratic

favorable for large scale problems

e.g., Landweber's method is applied (see Lecture 3, pp. 9-11)

 $^{^2 \}text{See}$ Homework 1 \rightarrow Problem 1 \rightarrow Part 3.

Factor Analysis

• $y_1, \ldots, y_m \in \mathbb{R}^p$ random samples

• suppose $m \ll p$

standard Gaussian model cannot be fitted

cannot be modeled even with a single Gaussian

ML of the covariance matrix become singular ³

factor analysis

is a model that capture some of the correlations of data

doesn't run into the problem of singular covariance

³There are other fixes, e.g., constrain the covariance matrix to be diagonal. Usually those impositions are related to invalid assumptions.

Observation Model

m independent observations are of the form

$$y_k = \mu + F z_k + u_k \tag{1}$$

- $F \in \mathbb{R}^{p \times q}$: factor loading matrix, typically $q \ll p$
- ▶ $z_k \in \mathbb{R}^q$ latent variables
- $u_k \in \mathbb{R}^p$ measurement errors
- \triangleright z_k and u_k are independent and Gaussian with

$$\begin{split} \mathbb{E}\{z_k\} &= 0 & \quad \operatorname{Var}\{z_k\} = I \\ \mathbb{E}\{u_k\} &= 0 & \quad \operatorname{Var}\{u_k\} = D \end{split}$$

where D is a diagonal matrix

• (y_k, z_k) is Gaussian, i.e., $(y_k, z_k) \sim \mathcal{N}((\mu, 0), \Omega)$, where

$$\Omega = \begin{bmatrix} FF^{\mathsf{T}} + D & F\\ F^{\mathsf{T}} & I \end{bmatrix} = \begin{bmatrix} D^{1/2} & F\\ 0 & I \end{bmatrix} \begin{bmatrix} D^{1/2} & 0\\ F^{\mathsf{T}} & I \end{bmatrix}$$

▶ parameters to be estimated $\theta = (\mu, F, D)$

• w.l.g., we assume $\mu = 0$, i.e., $\theta = (F, D)$?

▶ log-likelihood function of observed data y_k is given by ⁴

$$l(\theta) = -\frac{1}{2}\ln|FF^{\mathsf{T}} + D| - \frac{1}{2}y_k^{\mathsf{T}}(FF^{\mathsf{T}} + D)^{-1}y_k$$

l is not convex in $F, D \rightarrow$ alternating optimization applies

now the idea is to find a minorization function to l

⁴Up to an irrelevant constant.

• a meaningful mechanism to maximize l and to compute θ ?

EM principle

MM principle, based on the bounds on

 $\blacktriangleright \ln |FF^{\mathsf{T}} + D|$

$$\blacktriangleright y_k^{\mathsf{T}} (FF^{\mathsf{T}} + D)^{-1} y_k$$

BOUNDING $\ln |FF^{\mathrm{T}} + D|$

Schur complement of $(FF^{\mathsf{T}} + D)$ in the matrix Ω is given by $I - F^{\mathsf{T}}(FF^{\mathsf{T}} + D)^{-1}F$

▶ for clarity let us define G as

$$G = (I - F^{\mathsf{T}} (FF^{\mathsf{T}} + D)^{-1}F)^{-1}$$

= $I + F^{\mathsf{T}} D^{-1}F$

► last equality → classic Woodbury matrix identity

• we can bound $\ln |FF^{\mathsf{T}} + D|$ as follows: $\ln |FF^{\mathsf{T}} + D| = \ln |\Omega| + \ln |G|$ $< \ln |\Omega| + \ln |G^{(n)}| + \operatorname{Tr}[(G^{(n)})^{-1}(G - G^{(n)})]$ $= \ln |\Omega| + \ln |G^{(n)}| - \operatorname{Tr}(I) + \operatorname{Tr}[(G^{(n)})^{-1}G]$ $= \ln |\Omega| + \ln |G^{(n)}| - \operatorname{Tr}(I) + \operatorname{Tr}[\Omega^{-1}H^{(n)}]$ $= \ln |D| + \operatorname{Tr}[F^{\mathsf{T}}D^{-1}F(G^{(n)})^{-1}] + r_n$

• where $r_n = \operatorname{Tr}(G^{(n)})^{-1} + \ln |G^{(n)}| - \operatorname{Tr}(I)$

• the last equality follows from that $H^{(n)} \triangleq \begin{bmatrix} 0 & 0 \\ 0 & (G^{(n)})^{-1} \end{bmatrix}$,

$$\Omega^{-1} = \begin{bmatrix} D^{-1} & -D^{-1}F\\ -F^{\mathsf{T}}D^{-1} & I + F^{\mathsf{T}}D^{-1}F \end{bmatrix}, \text{ and } \ln|\Omega| = \ln|D|$$

note that the inequality holds with equality when

$$F = F^{(n)}, \ D = D^{(n)}$$

Bounding $y_k^{\mathrm{T}}(FF^{\mathrm{T}}+D)^{-1}y_k$

 \blacktriangleright from the partial minimization result, for all F and D

$$y_{k}^{\mathsf{T}}(FF^{\mathsf{T}}+D)^{-1}y_{k} = \begin{bmatrix} y_{k} \\ F^{\mathsf{T}}(FF^{\mathsf{T}}+D)^{-1}y_{k} \end{bmatrix}^{\mathsf{T}} \Omega^{-1} \begin{bmatrix} y_{k} \\ F^{\mathsf{T}}(FF^{\mathsf{T}}+D)^{-1}y_{k} \end{bmatrix}$$
$$\leq \begin{bmatrix} y_{k} \\ z_{k}^{(n)} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} D^{1/2} & 0 \\ F^{\mathsf{T}} & I \end{bmatrix}^{-1} \begin{bmatrix} D^{1/2} & F \\ 0 & I \end{bmatrix}^{-1} \begin{bmatrix} y_{k} \\ z_{k}^{(n)} \end{bmatrix}$$
$$= \left\| \begin{bmatrix} D^{-1/2} & -D^{-1/2}F \\ 0 & I \end{bmatrix} \begin{bmatrix} y_{k} \\ z_{k}^{(n)} \end{bmatrix} \right\|^{2}$$
$$= \| D^{-1/2}y_{k} - D^{-1/2}Fz_{k}^{(n)} \|^{2} + s_{n}$$
$$= (y_{k} - Fz_{k}^{(n)})^{\mathsf{T}} D^{-1}(y_{k} - Fz_{k}^{(n)}) + s_{n}$$

with
$$z_k^{(n)} = F^{(n)\mathsf{T}} (F^{(n)}F^{(n)\mathsf{T}} + D^{(n)})^{-1} y_k$$
 and $s_n = \text{constant}$

note that the inequality holds with equality when

$$F = F^{(n)}, \ D = D^{(n)}$$

now consider all data

• *m* realizations y_1, \ldots, y_m

let l denote the log-likelihood function

a minorization function of l is of the form (up to a constant)

$$- \frac{m}{2} \left[\ln |D| + \operatorname{Tr} \left[D^{-1} F(G^{(n)})^{-1} F^{\mathsf{T}} \right] \right] - \frac{1}{2} \sum_{i=1}^{m} \left(y_k - F z_k^{(n)} \right)^{\mathsf{T}} D^{-1} \left(y_k - F z_k^{(n)} \right)$$

we need to find D and F that maximize the above function

• maximizing w.r.t. F for fixed $D = D^{(n)}$

the minorization function is quadratic with respect to F

• compute the gradient \rightarrow make it zero to yield

$$F^{(n+1)} = \left[\sum_{k=1}^{m} y_k z_k^{(n)\mathsf{T}}\right] \left[m (G^{(n)})^{-1} + \sum_{k=1}^{m} z_k^{(n)} z_k^{(n)\mathsf{T}}\right]^{-1}$$

here we use the fact that

$$\nabla_X \operatorname{Tr}[BXCX^\mathsf{T}] = BXC + B^\mathsf{T}XC^\mathsf{T}$$

and

$$\nabla_X \operatorname{Tr}[BX^{\mathsf{T}}] = B$$

• maximizing w.r.t. D for fixed $F = F^{(n+1)}$

• perform the usual variable transformation $D = E^{-1}$

the resulting function is cocave in E

 \blacktriangleright compute the gradient \rightarrow

• make it zero to yield a non-diagonal matrix \hat{D}

• pick only the diagonals of \hat{D} to compute D

here we use the fact that

 $\nabla_X \ln |X| = X^{-1}$

and

$$\nabla_X \operatorname{Tr}[XA] = A^{\mathsf{T}}$$

▶ in particular, we get

$$d_{ii}^{(n+1)} = \left[F^{(n+1)}(G^{(n)})^{-1} F^{(n+1)\mathsf{T}} + \frac{1}{m} \sum_{k=1}^{m} \left(y_k - F^{(n+1)} z_k^{(n)} \right) \left(y_k - F^{(n+1)} z_k^{(n)} \right)^{\mathsf{T}} \right]_{ii}$$

and $d_{ij}^{(n+1)}=0$ for all $i\neq j,$ where $d_{ij}=[D]_{ij}$ for all i,j