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LECTURE 7: SOME APPLICATIONS (PART 2)



Applications

> many applications have already been discussed
» check for previous lectures
> last two lectures: we discuss a few more applications

» K-mean clustering with missing information
» Gaussian estimation with missing data

P regression

> total variation denoising of images

» factor analysis

» matrix completion



Image Denoising

> an m x m distorted image Y is given
» prior information:

» original image X € IR™*™ is usually smooth
» neighboring pixels values are not very different

» boundaries of distinct color changes exist
» least-squares:

» no accounts for neighboring pixels conditions

» exhibits ringing phenomenon



> total variation denoising

» accounts for neighboring pixels conditions

P mitigates the ringing phenomenon



TOTAL VARIATION DENOISING

» problem formulation:

minimize SIX =Y PN/ (X — Xi 1) (X j— Xir1,5)?
i j

» Newton's method doesn’t apply directly — reformulate
> a convex reformulation:
» second-order cone program (SOCP) !

» int.-point method applies to the reformulated problem

1See §. 4.4.2, Convex Optimization by S. Boyd and L. Vandenberghe, 2004.



AprpPLYy MM PRINCIPLE

» we have the following majorization function of the objective: 2
SIX=Y 1P+ 5 20 waiy [(Xig=Xi41)* (X —Xis1,5)°] +en

where ¢,, is an irrelevant constant and

Wnij = 2 : 2
\/(X(n)_X(n) )24 (x-x) ) e

ij Mg ij Vit
» the majorization function is quadratic

» favorable for large scale problems

> e.g., Landweber's method is applied (see Lecture 3, pp. 9-11)

2See Homework 1 — Problem 1 — Part 3.



Factor Analysis

» vy1,...,Ym € RP random samples
P> suppose m <K p

» standard Gaussian model cannot be fitted
P cannot be modeled even with a single Gaussian
» ML of the covariance matrix become singular 3

» factor analysis

» is a model that capture some of the correlations of data

» doesn't run into the problem of singular covariance

3There are other fixes, e.g., constrain the covariance matrix to be diagonal.
Usually those impositions are related to invalid assumptions.



OBSERVATION MODEL
» m independent observations are of the form
Yk = b+ Fzp + ug (1)
> [ € IRP*?: factor loading matrix, typically ¢ < p
» 2. € IR? latent variables
» wu; € IRP measurement errors

» 2z, and uy are independent and Gaussian with

E{z} =0 Var{z;} =1
E{ux} =0 Var{uy} =D

where D is a diagonal matrix



> (yk, 2k) is Gaussian, i.e., (yg, 2x) ~ N ((1,0),€2), where

o_ |[FFT+D F| _[DY?> F][D'* 0
- FT Il 1o I]J|FT I

» parameters to be estimated 6 = (u, F, D)

» w.l.g., we assume =0, i.e.,, 6 = (F,D)?

v

log-likelihood function of observed data ¥, is given by #
1(0) = —3In|FFT + D| — iyl (FFT + D)1y,

» [ is not convex in F, D — alternating optimization applies

» now the idea is to find a minorization function to [

*Up to an irrelevant constant.



» a meaningful mechanism to maximize [ and to compute 67
» EM principle
» MM principle, based on the bounds on
» In|FF' + D

>yl (FFT + D) 1y,



BOUNDING In|FFT 4 D|

» Schur complement of (FFT + D) in the matrix Q is given by
I-FY(FFT+D)'F
> for clarity let us define G as

G=I—-F (FF"+D)'F)!
=I+F'D'F

P last equality — classic Woodbury matrix identity



» we can bound In |FFT + D| as follows:

In|FF" +D| =In|Q| + 1In|G|

<In|Q +In|G™|+ T [(GM)H(G — G™)]
=In|Q| +In|G™| - Tr(I) + Tr [(G™)7'G]
=In|Q +In|G™| - Tr(I) + T [Q 1 H™]

=In|D| + Te[FTD'F(G™) ] 4y

> where r,, = Tr(G™)~! 4 In |G™| — Tr(I)



. m a |0 0
» the last equality follows from that HM £ [0 (G(”))_I}

D1 —-DF

0=
—F'Dl T4+ F'D1F

} , and In|Q|=1In|D|

P> note that the inequality holds with equality when

F=F®" D=p"



BOUNDING yf (FFT + D)~ 1y,

» from the partial minimization result, for all F' and D

T
T T -1, _ Yk -1 Yk
Y. (FF +D> Yk = [FT(FFT—FD)_lyJ Q |:FT(FFT+D)—

T _ —
we | [DY2 0] [DY2 P17 | me
> Z](gn) Fr 7 0 T z}(f”)
D12 _p-12p Yk 2
_ ||D—1/2 o 1/2F ||2+5n

(y/z€ — Fz(n)) D! (yk — Fz,in)) + s,

lyk]



with z,in) = F@T (F(")F(”)T+D(”))_1yk and s, = constant

P note that the inequality holds with equality when

F=F" D=pM



» now consider all data

> m realizations yi,...,Ym
» let [ denote the log-likelihood function

» a minorization function of [ is of the form (up to a constant)

— 2 [In|D| 4+ T [D71F(GM)~1FT]]
— 3 X (= F5Y) D7 (- F5)

» we need to find D and F' that maximize the above function



> maximizing w.r.t. F for fixed D = D™

» the minorization function is quadratic with respect to F’

» compute the gradient — make it zero to yield

— n)_(m)T] 7!
Fotl) = [ym yk:Z;(gn)T} [m(G(”)) Ty Sy ,z](C )z,(C )T}

» here we use the fact that
VxTr[BXCX'"| = BXC +B'XC"

and
VxTr[BX'| =B



> maximizing w.r.t. D for fixed F = F("+1)

» perform the usual variable transformation D = E—!
» the resulting function is cocave in E
» compute the gradient —
» make it zero to yield a non-diagonal matrix D
> pick only the diagonals of D to compute D
> here we use the fact that
Vxlhn|X|=X""!

and
VxTr[XA] = AT



P in particular, we get

d(’frl) _ F(n+1)(G(n))—1F(n+1)T

n

S (PO (PO

i

and d{/™" = 0 for all i # j, where d;; = [D],; for all i, j



