MM Optimization Algorithms

Chathuranga Weeraddana

March 2022

Lecture 7: Some Applications (Part 2)

Applications

- many applications have already been discussed
- check for previous lectures
- last two lectures: we discuss a few more applications
- K-mean clustering with missing information
- Gaussian estimation with missing data
- regression
- total variation denoising of images
- factor analysis
- matrix completion

Image Denoising

- an $m \times m$ distorted image Y is given
- prior information:
- original image $X \in \mathbb{R}^{m \times m}$ is usually smooth
- neighboring pixels values are not very different
- boundaries of distinct color changes exist
- least-squares:
- no accounts for neighboring pixels conditions
- exhibits ringing phenomenon
- total variation denoising
- accounts for neighboring pixels conditions
- mitigates the ringing phenomenon

Total Variation Denoising

- problem formulation:
$\underset{X}{\operatorname{minimize}} \quad \frac{1}{2}\|X-Y\|^{2}+\lambda \sum_{i} \sum_{j} \sqrt{\left(X_{i, j}-X_{i, j+1}\right)^{2}+\left(X_{i, j}-X_{i+1, j}\right)^{2}}$
- Newton's method doesn't apply directly \rightarrow reformulate
- a convex reformulation:
- second-order cone program (SOCP) ${ }^{1}$
- int.-point method applies to the reformulated problem
${ }^{1}$ See §. 4.4.2, Convex Optimization by S. Boyd and L. Vandenberghe, 2004.

Apply MM Principle

- we have the following majorization function of the objective: ${ }^{2}$
$\frac{1}{2}\|X-Y\|^{2}+\frac{\lambda}{2} \sum_{i=1}^{m} w_{n i j}\left[\left(X_{i, j}-X_{i, j+1}\right)^{2}+\left(X_{i, j}-X_{i+1, j}\right)^{2}\right]+c_{n}$
where c_{n} is an irrelevant constant and

$$
w_{n i j}=\frac{1}{\sqrt{\left(X_{i, j}^{(n)}-X_{i, j+1}^{(n)}\right)^{2}+\left(X_{i, j}^{(n)}-X_{i+1, j}^{(n)}\right)^{2}+\epsilon}}
$$

- the majorization function is quadratic
- favorable for large scale problems
- e.g., Landweber's method is applied (see Lecture 3, pp. 9-11)

Factor Analysis

- $y_{1}, \ldots, y_{m} \in \mathbb{R}^{p}$ random samples
- suppose $m \ll p$
- standard Gaussian model cannot be fitted
- cannot be modeled even with a single Gaussian
- ML of the covariance matrix become singular ${ }^{3}$
- factor analysis
- is a model that capture some of the correlations of data
- doesn't run into the problem of singular covariance
${ }^{3}$ There are other fixes, e.g., constrain the covariance matrix to be diagonal. Usually those impositions are related to invalid assumptions.

Observation Model

- m independent observations are of the form

$$
\begin{equation*}
y_{k}=\mu+F z_{k}+u_{k} \tag{1}
\end{equation*}
$$

- $F \in \mathbb{R}^{p \times q}$: factor loading matrix, typically $q \ll p$
- $z_{k} \in \mathbb{R}^{q}$ latent variables
- $u_{k} \in \mathbb{R}^{p}$ measurement errors
- z_{k} and u_{k} are independent and Gaussian with

$$
\begin{array}{ll}
\mathbb{E}\left\{z_{k}\right\}=0 & \operatorname{Var}\left\{z_{k}\right\}=I \\
\mathbb{E}\left\{u_{k}\right\}=0 & \operatorname{Var}\left\{u_{k}\right\}=D
\end{array}
$$

where D is a diagonal matrix

- $\left(y_{k}, z_{k}\right)$ is Gaussian, i.e., $\left(y_{k}, z_{k}\right) \sim \mathcal{N}((\mu, 0), \Omega)$, where

$$
\Omega=\left[\begin{array}{cc}
F F^{\top}+D & F \\
F^{\top} & I
\end{array}\right]=\left[\begin{array}{cc}
D^{1 / 2} & F \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
D^{1 / 2} & 0 \\
F^{\top} & I
\end{array}\right]
$$

- parameters to be estimated $\theta=(\mu, F, D)$
- w.l.g., we assume $\mu=0$, i.e., $\theta=(F, D)$?
- log-likelihood function of observed data y_{k} is given by ${ }^{4}$

$$
l(\theta)=-\frac{1}{2} \ln \left|F F^{\top}+D\right|-\frac{1}{2} y_{k}^{\top}\left(F F^{\top}+D\right)^{-1} y_{k}
$$

- l is not convex in $F, D \rightarrow$ alternating optimization applies
- now the idea is to find a minorization function to l

[^0]- a meaningful mechanism to maximize l and to compute θ ?
- EM principle
- MM principle, based on the bounds on
- $\ln \left|F F^{\boldsymbol{\top}}+D\right|$
- $y_{k}^{\top}\left(F F^{\top}+D\right)^{-1} y_{k}$

Bounding $\ln \left|F F^{\mathrm{T}}+D\right|$

- Schur complement of $\left(F F^{\top}+D\right)$ in the matrix Ω is given by

$$
I-F^{\boldsymbol{\top}}\left(F F^{\top}+D\right)^{-1} F
$$

- for clarity let us define G as

$$
\begin{aligned}
G & =\left(I-F^{\top}\left(F F^{\top}+D\right)^{-1} F\right)^{-1} \\
& =I+F^{\top} D^{-1} F
\end{aligned}
$$

- last equality \rightarrow classic Woodbury matrix identity
- we can bound $\ln \left|F F^{\top}+D\right|$ as follows:

$$
\begin{aligned}
\ln \left|F F^{\top}+D\right| & =\ln |\Omega|+\ln |G| \\
& \leq \ln |\Omega|+\ln \left|G^{(n)}\right|+\operatorname{Tr}\left[\left(G^{(n)}\right)^{-1}\left(G-G^{(n)}\right)\right] \\
& =\ln |\Omega|+\ln \left|G^{(n)}\right|-\operatorname{Tr}(I)+\operatorname{Tr}\left[\left(G^{(n)}\right)^{-1} G\right] \\
& =\ln |\Omega|+\ln \left|G^{(n)}\right|-\operatorname{Tr}(I)+\operatorname{Tr}\left[\Omega^{-1} H^{(n)}\right] \\
& =\ln |D|+\operatorname{Tr}\left[F^{\top} D^{-1} F\left(G^{(n)}\right)^{-1}\right]+r_{n}
\end{aligned}
$$

- where $r_{n}=\operatorname{Tr}\left(G^{(n)}\right)^{-1}+\ln \left|G^{(n)}\right|-\operatorname{Tr}(I)$
- the last equality follows from that $H^{(n)} \triangleq\left[\begin{array}{cc}0 & 0 \\ 0 & \left(G^{(n)}\right)^{-1}\end{array}\right]$,

$$
\Omega^{-1}=\left[\begin{array}{cc}
D^{-1} & -D^{-1} F \\
-F^{\top} D^{-1} & I+F^{\top} D^{-1} F
\end{array}\right], \quad \text { and } \quad \ln |\Omega|=\ln |D|
$$

- note that the inequality holds with equality when

$$
F=F^{(n)}, D=D^{(n)}
$$

Bounding $y_{k}^{\mathrm{T}}\left(F F^{\mathrm{T}}+D\right)^{-1} y_{k}$

- from the partial minimization result, for all F and D

$$
\begin{aligned}
y_{k}^{\top}\left(F F^{\top}+D\right)^{-1} y_{k} & =\left[\begin{array}{c}
y_{k} \\
F^{\top}\left(F F^{\top}+D\right)^{-1} y_{k}
\end{array}\right]^{\top} \Omega^{-1}\left[\begin{array}{c}
y_{k} \\
F^{\top}\left(F F^{\top}+D\right)^{-1} y_{k}
\end{array}\right] \\
& \leq\left[\begin{array}{c}
y_{k} \\
z_{k}^{(n)}
\end{array}\right]^{\top}\left[\begin{array}{cc}
D^{1 / 2} & 0 \\
F^{\top} & I
\end{array}\right]^{-1}\left[\begin{array}{cc}
D^{1 / 2} & F \\
0 & I
\end{array}\right]^{-1}\left[\begin{array}{c}
y_{k} \\
z_{k}^{(n)}
\end{array}\right] \\
& =\left\|\left[\begin{array}{cc}
D^{-1 / 2} & -D^{-1 / 2} F \\
0 & I
\end{array}\right]\left[\begin{array}{c}
y_{k} \\
z_{k}^{(n)}
\end{array}\right]\right\|^{2} \\
& =\left\|D^{-1 / 2} y_{k}-D^{-1 / 2} F z_{k}^{(n)}\right\|^{2}+s_{n} \\
& =\left(y_{k}-F z_{k}^{(n)}\right)^{\top} D^{-1}\left(y_{k}-F z_{k}^{(n)}\right)+s_{n}
\end{aligned}
$$

with $z_{k}^{(n)}=F^{(n) \top}\left(F^{(n)} F^{(n) \top}+D^{(n)}\right)^{-1} y_{k}$ and $s_{n}=\mathrm{constant}$

- note that the inequality holds with equality when

$$
F=F^{(n)}, D=D^{(n)}
$$

- now consider all data
- m realizations y_{1}, \ldots, y_{m}
- let l denote the log-likelihood function
- a minorization function of l is of the form (up to a constant)

$$
\begin{aligned}
-\frac{m}{2}[\ln |D|+ & \left.\operatorname{Tr}\left[D^{-1} F\left(G^{(n)}\right)^{-1} F^{\top}\right]\right] \\
& -\frac{1}{2} \sum_{i=1}^{m}\left(y_{k}-F z_{k}^{(n)}\right)^{\top} D^{-1}\left(y_{k}-F z_{k}^{(n)}\right)
\end{aligned}
$$

- we need to find D and F that maximize the above function
- maximizing w.r.t. F for fixed $D=D^{(n)}$
- the minorization function is quadratic with respect to F
- compute the gradient \rightarrow make it zero to yield

$$
F^{(n+1)}=\left[\sum_{k=1}^{m} y_{k} z_{k}^{(n) \mathrm{\top}}\right]\left[m\left(G^{(n)}\right)^{-1}+\sum_{k=1}^{m} z_{k}^{(n)} z_{k}^{(n) \mathrm{T}}\right]^{-1}
$$

- here we use the fact that

$$
\nabla_{X} \operatorname{Tr}\left[B X C X^{\top}\right]=B X C+B^{\top} X C^{\top}
$$

and

$$
\nabla_{X} \operatorname{Tr}\left[B X^{\boldsymbol{\top}}\right]=B
$$

- maximizing w.r.t. D for fixed $F=F^{(n+1)}$
- perform the usual variable transformation $D=E^{-1}$
- the resulting function is cocave in E
- compute the gradient \rightarrow
- make it zero to yield a non-diagonal matrix \hat{D}
- pick only the diagonals of \hat{D} to compute D
- here we use the fact that

$$
\nabla_{X} \ln |X|=X^{-1}
$$

and

$$
\nabla_{X} \operatorname{Tr}[X A]=A^{\top}
$$

- in particular, we get

$$
\begin{aligned}
d_{i i}^{(n+1)}= & {\left[F^{(n+1)}\left(G^{(n)}\right)^{-1} F^{(n+1) \top}\right.} \\
& \left.+\frac{1}{m} \sum_{k=1}^{m}\left(y_{k}-F^{(n+1)} z_{k}^{(n)}\right)\left(y_{k}-F^{(n+1)} z_{k}^{(n)}\right)^{\top}\right]_{i i}
\end{aligned}
$$

and $d_{i j}^{(n+1)}=0$ for all $i \neq j$, where $d_{i j}=[D]_{i j}$ for all i, j

[^0]: ${ }^{4}$ Up to an irrelevant constant.

