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Lecture 7: Some Applications (Part 2)
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Applications

▶ many applications have already been discussed

▶ check for previous lectures

▶ last two lectures: we discuss a few more applications

▶ K-mean clustering with missing information

▶ Gaussian estimation with missing data

▶ regression

▶ total variation denoising of images

▶ factor analysis

▶ matrix completion
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Image Denoising

▶ an m×m distorted image Y is given

▶ prior information:

▶ original image X ∈ IRm×m is usually smooth

▶ neighboring pixels values are not very different

▶ boundaries of distinct color changes exist

▶ least-squares:

▶ no accounts for neighboring pixels conditions

▶ exhibits ringing phenomenon
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▶ total variation denoising

▶ accounts for neighboring pixels conditions

▶ mitigates the ringing phenomenon
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Total Variation Denoising

▶ problem formulation:

minimize
X

1
2∥X−Y ∥2+λ

∑
i

∑
j

√
(Xi,j −Xi,j+1)2+(Xi,j−Xi+1,j)2

▶ Newton’s method doesn’t apply directly → reformulate

▶ a convex reformulation:

▶ second-order cone program (SOCP) 1

▶ int.-point method applies to the reformulated problem

1See §. 4.4.2, Convex Optimization by S. Boyd and L. Vandenberghe, 2004.
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Apply MM Principle

▶ we have the following majorization function of the objective: 2

1
2∥X−Y ∥2 + λ

2

∑m
i=1wnij

[
(Xi,j−Xi,j+1)

2+(Xi,j−Xi+1,j)
2
]
+cn

where cn is an irrelevant constant and

wnij =
1√(

X
(n)
i,j −X

(n)
i,j+1

)2
+
(
X

(n)
i,j −X

(n)
i+1,j

)2
+ϵ

▶ the majorization function is quadratic

▶ favorable for large scale problems

▶ e.g., Landweber’s method is applied (see Lecture 3, pp. 9-11)

2See Homework 1 → Problem 1 → Part 3.
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Factor Analysis

▶ y1, . . . , ym ∈ IRp random samples

▶ suppose m ≪ p

▶ standard Gaussian model cannot be fitted

▶ cannot be modeled even with a single Gaussian

▶ ML of the covariance matrix become singular 3

▶ factor analysis

▶ is a model that capture some of the correlations of data

▶ doesn’t run into the problem of singular covariance

3There are other fixes, e.g., constrain the covariance matrix to be diagonal.
Usually those impositions are related to invalid assumptions.
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Observation Model

▶ m independent observations are of the form

yk = µ+ Fzk + uk (1)

▶ F ∈ IRp×q: factor loading matrix, typically q ≪ p

▶ zk ∈ IRq latent variables

▶ uk ∈ IRp measurement errors

▶ zk and uk are independent and Gaussian with

IE{zk} = 0 Var{zk} = I

IE{uk} = 0 Var{uk} = D

where D is a diagonal matrix
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▶ (yk, zk) is Gaussian, i.e., (yk, zk) ∼ N
(
(µ, 0),Ω

)
, where

Ω =

[
FFT +D F

FT I

]
=

[
D1/2 F
0 I

] [
D1/2 0
FT I

]
▶ parameters to be estimated θ = (µ, F,D)

▶ w.l.g., we assume µ = 0, i.e., θ = (F,D)?

▶ log-likelihood function of observed data yk is given by 4

l(θ) = −1
2 ln |FFT +D| − 1

2y
T
k (FFT +D)−1yk

▶ l is not convex in F,D → alternating optimization applies

▶ now the idea is to find a minorization function to l

4Up to an irrelevant constant.
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▶ a meaningful mechanism to maximize l and to compute θ?

▶ EM principle

▶ MM principle, based on the bounds on

▶ ln |FFT +D|

▶ yTk (FFT +D)−1yk
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Bounding ln |FFT +D|

▶ Schur complement of (FFT +D) in the matrix Ω is given by

I − FT(FFT +D)−1F

▶ for clarity let us define G as

G = (I − FT(FFT +D)−1F )−1

= I + FTD−1F

▶ last equality → classic Woodbury matrix identity
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▶ we can bound ln |FFT +D| as follows:

ln |FFT +D| = ln |Ω|+ ln |G|
≤ ln |Ω|+ ln |G(n)|+ Tr

[
(G(n))−1(G−G(n))

]
= ln |Ω|+ ln |G(n)| − Tr(I) + Tr

[
(G(n))−1G

]
= ln |Ω|+ ln |G(n)| − Tr(I) + Tr

[
Ω−1H(n)

]
= ln |D|+ Tr

[
FTD−1F (G(n))−1

]
+ rn

▶ where rn = Tr(G(n))−1 + ln |G(n)| − Tr(I)
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▶ the last equality follows from that H(n) ≜

[
0 0

0 (G(n))−1

]
,

Ω−1 =

[
D−1 −D−1F

−FTD−1 I + FTD−1F

]
, and ln |Ω| = ln |D|

▶ note that the inequality holds with equality when

F = F (n), D = D(n)
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Bounding yTk (FFT +D)−1yk

▶ from the partial minimization result, for all F and D

yTk (FFT+D)−1yk =

[
yk

FT(FFT+D)−1yk

]T
Ω−1

[
yk

FT(FFT+D)−1yk

]

≤

[
yk

z
(n)
k

]T [
D1/2 0
FT I

]−1 [
D1/2 F
0 I

]−1
[
yk

z
(n)
k

]

=

∣∣∣∣∣
∣∣∣∣∣
[
D−1/2 −D−1/2F

0 I

] [
yk

z
(n)
k

]∣∣∣∣∣
∣∣∣∣∣
2

= ∥D−1/2yk −D−1/2Fz
(n)
k ∥2 + sn

=
(
yk − Fz

(n)
k

)T
D−1

(
yk − Fz

(n)
k

)
+ sn
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with z
(n)
k = F (n)T

(
F (n)F (n)T+D(n)

)−1
yk and sn = constant

▶ note that the inequality holds with equality when

F = F (n), D = D(n)
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▶ now consider all data

▶ m realizations y1, . . . , ym

▶ let l denote the log-likelihood function

▶ a minorization function of l is of the form (up to a constant)

− m
2

[
ln |D|+ Tr

[
D−1F (G(n))−1FT

]]
− 1

2

∑m
i=1

(
yk − Fz

(n)
k

)T
D−1

(
yk − Fz

(n)
k

)
▶ we need to find D and F that maximize the above function
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▶ maximizing w.r.t. F for fixed D = D(n)

▶ the minorization function is quadratic with respect to F

▶ compute the gradient → make it zero to yield

F (n+1) =
[∑m

k=1 ykz
(n)T
k

] [
m
(
G(n)

)−1
+
∑m

k=1 z
(n)
k z

(n)T
k

]−1

▶ here we use the fact that

∇XTr[BXCXT] = BXC +BTXCT

and
∇XTr[BXT] = B
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▶ maximizing w.r.t. D for fixed F = F (n+1)

▶ perform the usual variable transformation D = E−1

▶ the resulting function is cocave in E

▶ compute the gradient →

▶ make it zero to yield a non-diagonal matrix D̂

▶ pick only the diagonals of D̂ to compute D

▶ here we use the fact that

∇X ln |X| = X−1

and
∇XTr[XA] = AT
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▶ in particular, we get

d
(n+1)
ii =

[
F (n+1)(G(n))−1F (n+1)T

+ 1
m

∑m
k=1

(
yk−F (n+1)z

(n)
k

)(
yk−F (n+1)z

(n)
k

)T]
ii

and d
(n+1)
ij = 0 for all i ̸= j, where dij = [D]ij for all i, j


