MM Optimization Algorithms

Chathuranga Weeraddana

March 2022

Lecture 6: Some Applications (Part 1)

Applications

- many applications have already been discussed
- check for previous lectures
- last two lectures: we discuss a few more applications
- K-mean clustering with missing information
- Gaussian estimation with missing data
- regression
- total variation denoising of images
- factor analysis
- matrix completion

K-Mean Clustering ${ }^{1}$

- m subjects
- each subject i is associated with a vector $y \in \mathbb{R}^{d}$
- subjects must be assigned to one of K clusters
- $\mu_{k} \in \mathbb{R}^{d}$, the center of cluster k
- subjects are assigned to clusters based on proximity
- the set of subjects assigned to cluster k is $\mathcal{C}\left(\mu_{k}\right)$
${ }^{1}$ For application examples, see pp. 70-71, 85, Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares by S. Boyd, 2018.
- Loyd algorithm (1957): key idea
- choose cluster centers $\mu_{k} \mathrm{~s}$ arbitrarily
- centers to clusters: compute $\mathcal{C}\left(\mu_{k}\right)^{2}$
- clusters to centers: $\mu_{k}=$ centroid of points in $\mathcal{C}\left(\mu_{k}\right)$
- iterate above two steps
- we can formulate the problem of K-mean clustering as

$$
\operatorname{minimize} \quad f(\mu)=\sum_{k=1}^{K} \sum_{i \in \mathcal{C}\left(\mu_{k}\right)}\left\|y_{i}-\mu_{k}\right\|^{2}
$$

- Loyd alg. \rightarrow not necessarily yield the optimal $\mu_{k}, \mathcal{C}\left(\mu_{k}\right)$
${ }^{2}$ Ties are broken such that $\cap_{k} \mathcal{C}\left(\mu_{k}\right)=\emptyset$.

What if $y_{i} \mathrm{~S}$ are Incomplete?

- e.g., suppose $y_{i} \in \mathbb{R}^{3}$
- $y_{1}=(1,0.5, \ldots), y_{2}=(\ldots, \ldots, 3), y_{3}=(0.2,0.4,2), \ldots$
- 1st and 2 nd indexes of y_{1} is observed
- 3rd index of y_{2} is observed
- let \mathcal{O}_{i} denote the set of indexes observed in subject i
- $\mathcal{O}_{1}=\{1,2\}, \mathcal{O}_{2}=\{3\}$, and $\mathcal{O}_{3}=\emptyset$ in the example above
- incomplete data destroy the simple two steps of Loyd alg.

Apply MM Principle

- with incomplete $y_{i} \mathrm{~s}$, the objective function is given by

$$
f(\mu)=\sum_{k=1}^{K} \sum_{i \in \mathcal{C}\left(\mu_{k}\right)}\left[\sum_{j \in \mathcal{O}_{i}}\left(y_{i j}-\mu_{k j}\right)^{2}\right]
$$

- we can simply majorize f as

$$
\begin{aligned}
f(\mu) & \leq \sum_{k=1}^{K} \sum_{i \in \mathcal{C}\left(\mu_{k}\right)}\left[\sum_{j \in \mathcal{O}_{i}}\left(y_{i j}-\mu_{k j}\right)^{2}+\sum_{j \notin \mathcal{O}_{i}}\left(\mu_{k j}^{(n)}-\mu_{k j}\right)^{2}\right] \\
& =g\left(\mu \mid \mu^{(n)}\right)
\end{aligned}
$$

since $\sum_{j \notin \mathcal{O}_{i}}\left(\mu_{k j}^{(n)}-\mu_{k j}\right)^{2} \geq 0$

- symmetry of the data is restored
- thus the Loyd algorithm can be applied as it is

Gaussian Estimation with Missing Data

- $y_{1}, \ldots, y_{m} \in \mathbb{R}^{p}$ random sample from a Gaussian distribution
- mean of the Gaussian is \bar{y}
- covariance matrix is Ω
- ML estimates of \bar{y} and Ω is given by ${ }^{3}$

$$
\bar{y}_{\mathrm{ml}}=\frac{1}{m} \sum_{i=1}^{m} y_{i} \quad \Omega_{\mathrm{ml}}=\frac{1}{m} \sum_{i=1}^{m}\left(y_{i}-y_{\mathrm{ml}}\right)\left(y_{i}-y_{\mathrm{ml}}\right)^{\top}
$$

${ }^{3}$ It is assumed that $m \geq p$.

What if $y_{i} \mathrm{~S}$ are Incomplete?

- e.g., suppose $y_{i} \in \mathbb{R}^{3}$
- $y_{1}=(1,0.5, \ldots), y_{2}=(\ldots, \ldots, 3), y_{3}=(0.2,0.4,2), \ldots$
- 1st and 2 nd indexes of y_{1} is observed
- 3rd index of y_{2} is observed
- some components are missing in each y_{i}
- incomplete data destroy the above simple formulas of $\bar{y}_{\mathrm{ml}}, \Omega_{\mathrm{ml}}$

How to Restore the Symmetry?

- we rely on Schur Compliment Majorization ${ }^{4}$
- more specifically
- we are given a vector x
- we have a parameter matrix D given by

$$
D=\left[\begin{array}{cc}
A & B \\
B^{\top} & C
\end{array}\right]
$$

- now it is useful to bound ${ }^{5}$

$$
\text { 1) } x^{\top} A^{-1} x \quad \text { 2) } \quad \ln |A|
$$

${ }^{4}$ See Example 4.9.7 of the textbook.
${ }^{5}$ Details of the bounds are given in pp. 20-23.

- why the aforementioned bounds are useful?
- the log-likelihood function is based on similar terms
- we can find a surrogate using the bounds
- apply MM principle
- for convenience suppose
- we have one realization y_{1} from the distribution
- the first block x_{1} of components of y_{1} is observed
- the second block z_{1} of y_{1} is missing
- y is Gaussian, i.e., $y_{1} \sim \mathcal{N}((\bar{x}, \bar{z}), \Omega)$, where

$$
\Omega=\left[\begin{array}{ll}
\Omega_{11} & \Omega_{12} \\
\Omega_{12}^{\top} & \Omega_{22}
\end{array}\right]
$$

- parameters to be estimated $\theta=(\bar{x}, \bar{z}, \Omega)$
- log-likelihood function of observed data x_{1} is given by ${ }^{6}$

$$
l(\bar{\theta})=-\frac{1}{2} \ln \left|\Omega_{11}\right|-\frac{1}{2}\left(x_{1}-\bar{x}\right)^{\top} \Omega_{11}^{-1}\left(x_{1}-\bar{x}\right)
$$

where $\bar{\theta}=\left(\bar{x}, \Omega_{11}\right)$

- note $\rightarrow l$ doesn't contain a part of the parameters, i.e.,
- Ω_{12}, Ω_{22}, and \bar{z}
- a meaningful mechanism to maximize l and to compute θ ?
- EM principle
- MM principle
- based on the bounds pointed in page 10
- see (1), and (2) in pages 20-23
- in particular from (1), and (2) in pages 20-23, we deduce

$$
\begin{aligned}
& l(\bar{\theta}) \geq-\frac{1}{2} \ln |\Omega|-\frac{1}{2} \ln \left|G^{(n)}\right|+\frac{1}{2} \operatorname{Tr}(I)-\frac{1}{2} \operatorname{Tr}\left[\Omega^{-1} F^{(n)}\right] \\
&-\frac{1}{2}\left[\begin{array}{c}
x_{1}-\bar{x} \\
z_{1}^{(n)}-\bar{z}
\end{array}\right]^{\top} \Omega^{-1}\left[\begin{array}{c}
x_{1}-\bar{x} \\
z_{1}^{(n)}-\bar{z}
\end{array}\right] \\
&=-\frac{1}{2} \ln |\Omega|-\frac{1}{2} \operatorname{Tr}\left[\Omega ^ { - 1 } \left(\begin{array}{c}
\left.\left.F^{(n)}+\left[\begin{array}{c}
x_{1}-\bar{x} \\
z_{1}^{(n)}-\bar{z}
\end{array}\right]\left[\begin{array}{c}
x_{1}-\bar{x} \\
z_{1}^{(n)}-\bar{z}
\end{array}\right]^{\top}\right)\right] \\
\\
\\
\\
-\frac{1}{2} \ln \left|G^{(n)}\right|+\frac{1}{2} \operatorname{Tr}(I)
\end{array},\right.\right.
\end{aligned}
$$

- here

$$
\begin{aligned}
& z_{1}^{(n)}=\Omega_{12}^{(n) \mathrm{T}}\left(\Omega_{11}^{(n)}\right)^{-1}\left(x_{1}-\bar{x}^{(n)}\right)+\bar{z}^{(n)} \\
& G^{(n)}=\left[\Omega_{22}^{(n)}-\Omega_{12}^{(n) \mathrm{T}}\left(\Omega_{11}^{(n)}\right)^{-1} \Omega_{12}^{(n)}\right]^{-1} \\
& F^{(n)}=\left[\begin{array}{cc}
0 & 0 \\
0 & \left(G^{(n)}\right)^{-1}
\end{array}\right]
\end{aligned}
$$

- now consider all data
$\rightarrow m$ realizations y_{1}, \ldots, y_{m} (same observed, missing indexes)
- let l denote the log-likelihood function
- a minorization function of l is of the form

$$
-\frac{m}{2} \ln |\Omega|-\frac{1}{2} \sum_{i=1}^{m} \operatorname{Tr}\left[\Omega^{-1}\left(F^{(n)}+\left(y_{i}^{(n)}-\bar{y}\right)\left(y_{i}^{(n)}-\bar{y}\right)^{\top}\right)\right]
$$

- ML estimates of \bar{y} and Ω is given by

$$
\begin{gathered}
\bar{y}^{(n+1)}=\frac{1}{m} \sum_{i=1}^{m} y_{i}^{(n)} \\
\Omega^{(n+1)}=\frac{1}{m} \sum_{i=1}^{m}\left[F^{(n)}+\left(y_{i}-y^{(n+1)}\right)\left(y_{i}-y^{(n+1)}\right)^{\top}\right]
\end{gathered}
$$

- if the observed, missing indexes are different for $y_{i} \mathrm{~s}$
$-F^{(n)} \leftarrow F_{i}^{(n)}$
- permutation matrices are to be introduced accordingly
- e.g., to $F_{i}^{(n)}+\left(y_{i}^{(n)}-\bar{y}\right)\left(y_{i}^{(n)}-\bar{y}\right)^{\top}$

Regression

- least squares estimation
- sum of squared deviation is considered
- well known: suffers from the distorting influence of outliers
- least absolute deviation regression
- sum of absolute deviation is considered
- mitigates the impact of outliers

Least Absolute Deviation Regression

- problem formulation:

$$
\underset{\beta}{\operatorname{minimize}} \sum_{i=1}^{m}\left|y_{i}-a_{i}^{\top} \beta\right|
$$

- Newton's method doesn't apply directly \rightarrow reformulate
- a convex reformulation: ${ }^{7}$

$$
\begin{array}{ll}
\underset{t_{1}, \ldots, t_{m}, \beta}{\operatorname{minimize}} & \sum_{i=1}^{m} t_{i} \\
\text { subject to } & y_{i}-a_{i}^{\top} \beta \leq t_{i} \quad i=1, \ldots, m \\
& y_{i}-a_{i}^{\top} \beta \geq-t_{i} \quad i=1, \ldots, m
\end{array}
$$

- int.-point method applies (i.e., a sequence of Newton's steps)

[^0]
Apply MM Principle

- we have the following majorization: ${ }^{8}$

$$
\sum_{i=1}^{m}\left|y_{i}-a_{i}^{\top} \beta\right| \leq \frac{1}{2} \sum_{i=1}^{m} w_{n i}\left(y_{i}-a_{i}^{\top} \beta\right)^{2}+c_{n}
$$

where $w_{n i}=1 /\left|y_{i}-a_{i}^{\top} \beta^{(n)}\right|$ and c_{n} is an irrelevant constant

- the majorization function is quadratic
- favorable for large scale problems
- caveat:
- $w_{n i}$ can be zero
- let $w_{n i}=1 / \sqrt{\left|y_{i}-a_{i}^{\top} \beta^{(n)}\right|^{2}+\epsilon}$

Appendix

Bounding $(x-\bar{x})^{\top} A^{-1}(x-\bar{x})$

- we have

$$
\begin{aligned}
f(x) & =\inf _{z} g(x, z) \\
& =\inf _{x}\left[\begin{array}{l}
x-\bar{x} \\
z-\bar{z}
\end{array}\right]^{\top}\left[\begin{array}{cc}
A & B \\
B^{\top} & C
\end{array}\right]^{-1}\left[\begin{array}{l}
x-\bar{x} \\
z-\bar{z}
\end{array}\right] \\
& =(x-\bar{x})^{\top} A^{-1}(x-\bar{x}) \\
& =\left[\begin{array}{c}
x-\bar{x} \\
B^{\top} A^{-1}(x-\bar{x})
\end{array}\right]^{\top}\left[\begin{array}{cc}
A & B \\
B^{\top} & C
\end{array}\right]^{-1}\left[\begin{array}{c}
x-\bar{x} \\
B^{\top} A^{-1}(x-\bar{x})
\end{array}\right]
\end{aligned}
$$

- from the last two equations we get for all A, B, C, \bar{x}, and \bar{z}

$$
\begin{align*}
&(x-\bar{x})^{\top} A^{-1}(x-\bar{x})=\left[\begin{array}{c}
x-\bar{x} \\
B^{\top} A^{-1}(x-\bar{x})
\end{array}\right]^{\top}\left[\begin{array}{cc}
A & B \\
B^{\top} & C
\end{array}\right]^{-1}\left[\begin{array}{c}
x-\bar{x} \\
B^{\top} A^{-1}(x-\bar{x})
\end{array}\right] \\
& \leq\left[\begin{array}{c}
x-\bar{x} \\
z^{(n)}-\bar{z}
\end{array}\right]^{\top}\left[\begin{array}{cc}
A & B \\
B^{\top} & C
\end{array}\right]^{-1}\left[\begin{array}{c}
x-\bar{x} \\
z^{(n)}-\bar{z}
\end{array}\right] \tag{1}\\
& \text { with } z^{(n)}=B^{(n) \top}\left(A^{(n)}\right)^{-1}\left(x-\bar{x}^{(n)}\right)+\bar{z}^{(n)}
\end{align*}
$$

- note that the inequality holds with equality when

$$
A=A^{(n)}, B=B^{(n)}, C=C^{(n)}, \bar{x}=\bar{x}^{(n)}, \bar{z}=\bar{z}^{(n)}
$$

Bounding $\ln |A|$

- the Schur complement of A in the matrix D is given by

$$
C-B^{\top} A^{-1} B
$$

- for clarity let us define G as

$$
G=\left(C-B^{\top} A^{-1} B\right)^{-1}
$$

- we have the following determinant identity

$$
|D|=|A| \times\left|C-B^{\top} A^{-1} B\right|=|A| /|G|
$$

- now we can bound $\ln |A|$ as follows:

$$
\begin{align*}
\ln |A| & =\ln |D|+\ln |G| \\
& \leq \ln |D|+\ln \left|G^{(n)}\right|+\operatorname{Tr}\left[\left(G^{(n)}\right)^{-1}\left(G-G^{(n)}\right)\right] \\
& =\ln |D|+\ln \left|G^{(n)}\right|-\operatorname{Tr}(I)+\operatorname{Tr}\left[\left(G^{(n)}\right)^{-1} G\right] \\
& =\ln |D|+\ln \left|G^{(n)}\right|-\operatorname{Tr}(I)+\operatorname{Tr}\left[D^{-1} F^{(n)}\right] \tag{2}
\end{align*}
$$

- the last equality follows from that $F^{(n)} \triangleq\left[\begin{array}{cc}0 & 0 \\ 0 & \left(G^{(n)}\right)^{-1}\end{array}\right]$ and

$$
D^{-1}=\left[\begin{array}{cc}
A^{-1}+A^{-1} B G B^{\top} A^{-1} & -A^{-1} B G \\
-G B^{\top} A^{-1} & G
\end{array}\right]
$$

- note that the inequality holds with equality when

$$
A=A^{(n)}, B=B^{(n)}, C=C^{(n)}
$$

[^0]: ${ }^{7}$ We use the epigraph problem form of the original problem, see p. 134, Convex Optimization by S. Boyd and L. Vandenberghe, 2004.

