MM Optimization Algorithms

Chathuranga Weeraddana

March 2022

LECTURE 6: SOME APPLICATIONS (PART 1)

Applications

many applications have already been discussed

- check for previous lectures
- last two lectures: we discuss a few more applications
 - K-mean clustering with missing information
 - Gaussian estimation with missing data
 - regression
 - total variation denoising of images
 - factor analysis
 - matrix completion

K-Mean Clustering ¹

\blacktriangleright *m* subjects

- each subject i is associated with a vector $y \in {\rm I\!R}^d$
- subjects must be assigned to one of K clusters
- $\mu_k \in \mathbb{R}^d$, the center of cluster k
- subjects are assigned to clusters based on proximity
- the set of subjects assigned to cluster k is $C(\mu_k)$

¹For application examples, see pp. 70-71, 85, *Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares* by S. Boyd, 2018.

Loyd algorithm (1957): key idea

• choose cluster centers μ_k s arbitrarily

• centers to clusters: compute $C(\mu_k)^2$

• clusters to centers: μ_k = centroid of points in $C(\mu_k)$

iterate above two steps

we can formulate the problem of K-mean clustering as

minimize
$$f(\mu) = \sum_{k=1}^{K} \sum_{i \in \mathcal{C}(\mu_k)} \|y_i - \mu_k\|^2$$

• Loyd alg. \rightarrow not necessarily yield the optimal $\mu_k, C(\mu_k)$

²Ties are broken such that $\cap_k \mathcal{C}(\mu_k) = \emptyset$.

What if y_i s are Incomplete?

 \blacktriangleright e.g., suppose $y_i \in {\rm I\!R}^3$

►
$$y_1 = (1, 0.5, _), y_2 = (_, _, 3), y_3 = (0.2, 0.4, 2), ...$$

1st and 2nd indexes of y₁ is observed

> 3rd index of y_2 is observed

let O_i denote the set of indexes observed in subject i

• $\mathcal{O}_1 = \{1, 2\}$, $\mathcal{O}_2 = \{3\}$, and $\mathcal{O}_3 = \emptyset$ in the example above

incomplete data destroy the simple two steps of Loyd alg.

Apply MM Principle

 \blacktriangleright with incomplete y_i s, the objective function is given by

$$f(\mu) = \sum_{k=1}^{K} \sum_{i \in \mathcal{C}(\mu_k)} \left[\sum_{j \in \mathcal{O}_i} (y_{ij} - \mu_{kj})^2 \right]$$

 \blacktriangleright we can simply majorize f as

$$f(\mu) \le \sum_{k=1}^{K} \sum_{i \in \mathcal{C}(\mu_k)} \left[\sum_{j \in \mathcal{O}_i} (y_{ij} - \mu_{kj})^2 + \sum_{j \notin \mathcal{O}_i} (\mu_{kj}^{(n)} - \mu_{kj})^2 \right]$$

= $g(\mu | \mu^{(n)})$

since
$$\sum_{j \notin \mathcal{O}_i} (\mu_{kj}^{(n)} - \mu_{kj})^2 \ge 0$$

- symmetry of the data is restored
- thus the Loyd algorithm can be applied as it is

Gaussian Estimation with Missing Data

- $y_1, \ldots, y_m \in {\rm I\!R}^p$ random sample from a Gaussian distribution
- \blacktriangleright mean of the Gaussian is $ar{y}$
- \blacktriangleright covariance matrix is Ω
- ML estimates of \bar{y} and Ω is given by ³

$$\bar{y}_{\mathtt{ml}} = \frac{1}{m} \sum_{i=1}^{m} y_i$$
 $\Omega_{\mathtt{ml}} = \frac{1}{m} \sum_{i=1}^{m} (y_i - y_{\mathtt{ml}}) (y_i - y_{\mathtt{ml}})^{\mathsf{T}}$

³It is assumed that $m \ge p$.

What if y_i s are Incomplete?

 \blacktriangleright e.g., suppose $y_i \in {\rm I\!R}^3$

►
$$y_1 = (1, 0.5, _), y_2 = (_, _, 3), y_3 = (0.2, 0.4, 2), ...$$

1st and 2nd indexes of y₁ is observed

• 3rd index of y_2 is observed

 \blacktriangleright some components are missing in each y_i

• incomplete data destroy the above simple formulas of $\bar{y}_{m1}, \Omega_{m1}$

How to Restore the Symmetry?

we rely on Schur Compliment Majorization ⁴

more specifically

 \blacktriangleright we are given a vector x

we have a parameter matrix D given by

$$D = \begin{bmatrix} A & B \\ B^{\mathsf{T}} & C \end{bmatrix}$$

now it is useful to bound ⁵

1)
$$x^{\mathsf{T}}A^{-1}x$$
 2) $\ln|A|$

⁴See Example 4.9.7 of the textbook.

⁵Details of the bounds are given in pp. 20-23.

why the aforementioned bounds are useful?

the log-likelihood function is based on similar terms

we can find a surrogate using the bounds

- apply MM principle
- for convenience suppose
 - we have one realization y_1 from the distribution
 - the first block x_1 of components of y_1 is observed
 - the second block z_1 of y_1 is missing

• y is Gaussian, i.e., $y_1 \sim \mathcal{N}((\bar{x}, \bar{z}), \Omega)$, where

$$\Omega = \begin{bmatrix} \Omega_{11} & \Omega_{12} \\ \Omega_{12}^\mathsf{T} & \Omega_{22} \end{bmatrix}$$

• parameters to be estimated $\theta = (\bar{x}, \bar{z}, \Omega)$

▶ log-likelihood function of observed data x_1 is given by ⁶

$$l(\bar{\theta}) = -\frac{1}{2}\ln|\Omega_{11}| - \frac{1}{2}(x_1 - \bar{x})^{\mathsf{T}}\Omega_{11}^{-1}(x_1 - \bar{x})$$

where $\bar{\theta} = (\bar{x}, \Omega_{11})$

• note $\rightarrow l$ doesn't contain a part of the parameters, i.e.,

 \blacktriangleright Ω_{12} , Ω_{22} , and \bar{z}

⁶Up to an irrelevant constant.

> a meaningful mechanism to maximize l and to compute θ ?

- EM principle
- MM principle
 - based on the bounds pointed in page 10
 - see (1), and (2) in pages 20-23

in particular from (1), and (2) in pages 20-23, we deduce $l(\bar{\theta}) \ge -\frac{1}{2} \ln |\Omega| - \frac{1}{2} \ln |G^{(n)}| + \frac{1}{2} \operatorname{Tr}(I) - \frac{1}{2} \operatorname{Tr}[\Omega^{-1} F^{(n)}]$ $- \frac{1}{2} \begin{bmatrix} x_1 - \bar{x} \\ z_1^{(n)} - \bar{z} \end{bmatrix}^{\mathsf{I}} \Omega^{-1} \begin{bmatrix} x_1 - \bar{x} \\ z_1^{(n)} - \bar{z} \end{bmatrix}$ $= -\frac{1}{2}\ln|\Omega| - \frac{1}{2}\operatorname{Tr} \left| \Omega^{-1} \left(F^{(n)} + \begin{bmatrix} x_1 - \bar{x} \\ z_1^{(n)} - \bar{z} \end{bmatrix} \begin{bmatrix} x_1 - \bar{x} \\ z_1^{(n)} - \bar{z} \end{bmatrix} ' \right) \right|$ $-\frac{1}{2}\ln|G^{(n)}| + \frac{1}{2}\mathrm{Tr}(I)$

here

$$z_1^{(n)} = \Omega_{12}^{(n)\mathsf{T}} (\Omega_{11}^{(n)})^{-1} (x_1 - \bar{x}^{(n)}) + \bar{z}^{(n)}$$

$$G^{(n)} = [\Omega_{22}^{(n)} - \Omega_{12}^{(n)\mathsf{T}} (\Omega_{11}^{(n)})^{-1} \Omega_{12}^{(n)}]^{-1}$$

$$F^{(n)} = \begin{bmatrix} 0 & 0 \\ 0 & (G^{(n)})^{-1} \end{bmatrix}$$

now consider all data

• *m* realizations y_1, \ldots, y_m (same observed, missing indexes)

let l denote the log-likelihood function

a minorization function of l is of the form

$$-\frac{m}{2}\ln|\Omega| - \frac{1}{2}\sum_{i=1}^{m} \mathrm{Tr}\left[\Omega^{-1}\left(F^{(n)} + (y_{i}^{(n)} - \bar{y})(y_{i}^{(n)} - \bar{y})^{\mathsf{T}}\right)\right]$$

• ML estimates of \bar{y} and Ω is given by

$$\bar{y}^{(n+1)} = \frac{1}{m} \sum_{i=1}^{m} y_i^{(n)}$$

$$\Omega^{(n+1)} = \frac{1}{m} \sum_{i=1}^{m} \left[F^{(n)} + (y_i - y^{(n+1)})(y_i - y^{(n+1)})^{\mathsf{T}} \right]$$

• if the observed, missing indexes are different for y_i s

$$\blacktriangleright \ F^{(n)} \leftarrow F^{(n)}_i$$

permutation matrices are to be introduced accordingly

▶ e.g., to
$$F_i^{(n)} + (y_i^{(n)} - \bar{y})(y_i^{(n)} - \bar{y})^\mathsf{T}$$

Regression

least squares estimation

sum of squared deviation is considered

well known: suffers from the distorting influence of outliers

least absolute deviation regression

sum of absolute deviation is considered

mitigates the impact of outliers

LEAST ABSOLUTE DEVIATION REGRESSION

problem formulation:

$$\begin{array}{ll} \min \limits_{\beta} \min \sum_{i=1}^{m} |y_i - a_i^\mathsf{T}\beta| \end{array}$$

▶ Newton's method doesn't apply directly \rightarrow reformulate

▶ a convex reformulation: ⁷

$$\begin{array}{ll} \underset{t_1,\ldots,t_m,\beta}{\text{minimize}} & \sum_{i=1}^m t_i \\ \text{subject to} & y_i - a_i^\mathsf{T}\beta \leq t_i \quad i = 1,\ldots,m \\ & y_i - a_i^\mathsf{T}\beta \geq -t_i \quad i = 1,\ldots,m \end{array}$$

int.-point method applies (i.e., a sequence of Newton's steps)

⁷We use the epigraph problem form of the original problem, see p. 134, *Convex Optimization* by S. Boyd and L. Vandenberghe, 2004.

Apply MM Principle

we have the following majorization: ⁸

$$\sum_{i=1}^{m} |y_i - a_i^{\mathsf{T}}\beta| \le \frac{1}{2} \sum_{i=1}^{m} w_{ni} (y_i - a_i^{\mathsf{T}}\beta)^2 + c_n$$

where $w_{ni} = 1/|y_i - a_i^\mathsf{T}\beta^{(n)}|$ and c_n is an irrelevant constant

the majorization function is quadratic

favorable for large scale problems

caveat:

w_{ni} can be zero

• let
$$w_{ni} = 1/\sqrt{|y_i - a_i^\mathsf{T}\beta^{(n)}|^2 + \epsilon}$$

⁸See Homework 1 \rightarrow Problem 1 \rightarrow Part 1.

Appendix

Bounding
$$(x-ar{x})^{{\scriptscriptstyle\mathsf{T}}}A^{-1}(x-ar{x})$$

► we have

$$\begin{split} f(x) &= \inf_{z} g(x, z) \\ &= \inf_{x} \begin{bmatrix} x - \bar{x} \\ z - \bar{z} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} A & B \\ B^{\mathsf{T}} & C \end{bmatrix}^{-1} \begin{bmatrix} x - \bar{x} \\ z - \bar{z} \end{bmatrix} \\ &= (x - \bar{x})^{\mathsf{T}} A^{-1} (x - \bar{x}) \\ &= \begin{bmatrix} x - \bar{x} \\ B^{\mathsf{T}} A^{-1} (x - \bar{x}) \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} A & B \\ B^{\mathsf{T}} & C \end{bmatrix}^{-1} \begin{bmatrix} x - \bar{x} \\ B^{\mathsf{T}} A^{-1} (x - \bar{x}) \end{bmatrix} \end{split}$$

From the last two equations we get for all A, B, C, \bar{x} , and \bar{z}

$$(x-\bar{x})^{\mathsf{T}}A^{-1}(x-\bar{x}) = \begin{bmatrix} x-\bar{x} \\ B^{\mathsf{T}}A^{-1}(x-\bar{x}) \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} A & B \\ B^{\mathsf{T}} & C \end{bmatrix}^{-1} \begin{bmatrix} x-\bar{x} \\ B^{\mathsf{T}}A^{-1}(x-\bar{x}) \end{bmatrix}$$
$$\leq \begin{bmatrix} x-\bar{x} \\ z^{(n)}-\bar{z} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} A & B \\ B^{\mathsf{T}} & C \end{bmatrix}^{-1} \begin{bmatrix} x-\bar{x} \\ z^{(n)}-\bar{z} \end{bmatrix}$$
(1)

with
$$z^{(n)} = B^{(n)\mathsf{T}} (A^{(n)})^{-1} (x - \bar{x}^{(n)}) + \bar{z}^{(n)}$$

note that the inequality holds with equality when

$$A = A^{(n)}, \ B = B^{(n)}, \ C = C^{(n)}, \ \bar{x} = \bar{x}^{(n)}, \ \bar{z} = \bar{z}^{(n)}$$

Bounding $\ln |A|$

• the Schur complement of A in the matrix D is given by

$$C - B^{\mathsf{T}} A^{-1} B$$

▶ for clarity let us define G as

$$G = (C - B^{\mathsf{T}} A^{-1} B)^{-1}$$

we have the following determinant identity

$$|D| = |A| \times |C - B^{\mathsf{T}} A^{-1} B| = |A|/|G|$$

• now we can bound $\ln |A|$ as follows:

$$\ln |A| = \ln |D| + \ln |G|$$

$$\leq \ln |D| + \ln |G^{(n)}| + \operatorname{Tr} \left[(G^{(n)})^{-1} (G - G^{(n)}) \right]$$

$$= \ln |D| + \ln |G^{(n)}| - \operatorname{Tr}(I) + \operatorname{Tr} \left[(G^{(n)})^{-1} G \right]$$

$$= \ln |D| + \ln |G^{(n)}| - \operatorname{Tr}(I) + \operatorname{Tr} \left[D^{-1} F^{(n)} \right]$$
(2)

 \blacktriangleright the last equality follows from that $F^{(n)} \triangleq \begin{bmatrix} 0 & 0 \\ 0 & (G^{(n)})^{-1} \end{bmatrix}$ and

$$D^{-1} = \begin{bmatrix} A^{-1} + A^{-1}BGB^{\mathsf{T}}A^{-1} & -A^{-1}BG \\ -GB^{\mathsf{T}}A^{-1} & G \end{bmatrix}$$

note that the inequality holds with equality when

$$A = A^{(n)}, \ B = B^{(n)}, \ C = C^{(n)}$$