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Lecture 6: Some Applications (Part 1)
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Applications

▶ many applications have already been discussed

▶ check for previous lectures

▶ last two lectures: we discuss a few more applications

▶ K-mean clustering with missing information

▶ Gaussian estimation with missing data

▶ regression

▶ total variation denoising of images

▶ factor analysis

▶ matrix completion
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K-Mean Clustering 1

▶ m subjects

▶ each subject i is associated with a vector y ∈ IRd

▶ subjects must be assigned to one of K clusters

▶ µk ∈ IRd, the center of cluster k

▶ subjects are assigned to clusters based on proximity

▶ the set of subjects assigned to cluster k is C(µk)

1For application examples, see pp. 70-71, 85, Introduction to Applied Linear
Algebra: Vectors, Matrices, and Least Squares by S. Boyd, 2018.
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▶ Loyd algorithm (1957): key idea

▶ choose cluster centers µks arbitrarily

▶ centers to clusters: compute C(µk)
2

▶ clusters to centers: µk = centroid of points in C(µk)

▶ iterate above two steps

▶ we can formulate the problem of K-mean clustering as

minimize f(µ) =
∑K

k=1

∑
i∈C(µk)

∥yi − µk∥2

▶ Loyd alg. → not necessarily yield the optimal µk, C(µk)

2Ties are broken such that ∩kC(µk) = ∅.
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What if yis are Incomplete?

▶ e.g., suppose yi ∈ IR3

▶ y1 = (1, 0.5, ), y2 = ( , , 3), y3 = (0.2, 0.4, 2), . . .

▶ 1st and 2nd indexes of y1 is observed

▶ 3rd index of y2 is observed

▶ let Oi denote the set of indexes observed in subject i

▶ O1 = {1, 2}, O2 = {3}, and O3 = ∅ in the example above

▶ incomplete data destroy the simple two steps of Loyd alg.
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Apply MM Principle

▶ with incomplete yis, the objective function is given by

f(µ) =

K∑
k=1

∑
i∈C(µk)

∑
j∈Oi

(yij − µkj)
2


▶ we can simply majorize f as

f(µ) ≤
K∑
k=1

∑
i∈C(µk)

∑
j∈Oi

(yij − µkj)
2 +

∑
j /∈Oi

(µ
(n)
kj − µkj)

2


= g(µ|µ(n))

since
∑

j /∈Oi
(µ

(n)
kj − µkj)

2 ≥ 0
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▶ symmetry of the data is restored

▶ thus the Loyd algorithm can be applied as it is
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Gaussian Estimation with Missing Data

▶ y1, . . . , ym ∈ IRp random sample from a Gaussian distribution

▶ mean of the Gaussian is ȳ

▶ covariance matrix is Ω

▶ ML estimates of ȳ and Ω is given by 3

ȳml =
1
m

∑m
i=1 yi Ωml =

1
m

∑m
i=1(yi − yml)(yi − yml)

T

3It is assumed that m ≥ p.
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What if yis are Incomplete?

▶ e.g., suppose yi ∈ IR3

▶ y1 = (1, 0.5, ), y2 = ( , , 3), y3 = (0.2, 0.4, 2), . . .

▶ 1st and 2nd indexes of y1 is observed

▶ 3rd index of y2 is observed

▶ some components are missing in each yi

▶ incomplete data destroy the above simple formulas of ȳml,Ωml
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How to Restore the Symmetry?

▶ we rely on Schur Compliment Majorization 4

▶ more specifically

▶ we are given a vector x

▶ we have a parameter matrix D given by

D =

[
A B
BT C

]
▶ now it is useful to bound 5

1) xTA−1x 2) ln |A|

4See Example 4.9.7 of the textbook.
5Details of the bounds are given in pp. 20-23.
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▶ why the aforementioned bounds are useful?

▶ the log-likelihood function is based on similar terms

▶ we can find a surrogate using the bounds

▶ apply MM principle

▶ for convenience suppose

▶ we have one realization y1 from the distribution

▶ the first block x1 of components of y1 is observed

▶ the second block z1 of y1 is missing
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▶ y is Gaussian, i.e., y1 ∼ N
(
(x̄, z̄),Ω

)
, where

Ω =

[
Ω11 Ω12

ΩT
12 Ω22

]
▶ parameters to be estimated θ = (x̄, z̄,Ω)

▶ log-likelihood function of observed data x1 is given by 6

l(θ̄) = −1
2 ln |Ω11| − 1

2(x1 − x̄)TΩ−1
11 (x1 − x̄)

where θ̄ = (x̄,Ω11)

▶ note → l doesn’t contain a part of the parameters, i.e.,

▶ Ω12, Ω22, and z̄

6Up to an irrelevant constant.
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▶ a meaningful mechanism to maximize l and to compute θ?

▶ EM principle

▶ MM principle

▶ based on the bounds pointed in page 10

▶ see (1), and (2) in pages 20-23
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▶ in particular from (1), and (2) in pages 20-23, we deduce

l(θ̄) ≥ −1
2 ln |Ω| −

1
2 ln |G

(n)|+ 1
2Tr(I)−

1
2Tr

[
Ω−1F (n)

]
− 1

2

[
x1 − x̄

z
(n)
1 − z̄

]T

Ω−1

[
x1 − x̄

z
(n)
1 − z̄

]

= −1
2 ln |Ω| −

1
2Tr

Ω−1

F (n) +

[
x1 − x̄

z
(n)
1 − z̄

][
x1 − x̄

z
(n)
1 − z̄

]T


− 1

2
ln |G(n)|+ 1

2
Tr(I)

▶ here
z
(n)
1 = Ω

(n)T
12

(
Ω
(n)
11

)−1(
x1 − x̄(n)

)
+ z̄(n)

G(n) =
[
Ω
(n)
22 − Ω

(n)T
12

(
Ω
(n)
11

)−1
Ω
(n)
12

]−1

F (n) =

[
0 0

0 (G(n))−1

]



15/23

▶ now consider all data

▶ m realizations y1, . . . , ym (same observed, missing indexes)

▶ let l denote the log-likelihood function

▶ a minorization function of l is of the form

−m
2 ln |Ω| − 1

2

∑m
i=1 Tr

[
Ω−1

(
F (n) + (y

(n)
i − ȳ)(y

(n)
i − ȳ)T

)]
▶ ML estimates of ȳ and Ω is given by

ȳ(n+1) = 1
m

∑m
i=1 y

(n)
i

Ω(n+1) = 1
m

∑m
i=1

[
F (n) + (yi − y(n+1))(yi − y(n+1))T

]
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▶ if the observed, missing indexes are different for yis

▶ F (n) ← F
(n)
i

▶ permutation matrices are to be introduced accordingly

▶ e.g., to F
(n)
i + (y

(n)
i − ȳ)(y

(n)
i − ȳ)T
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Regression

▶ least squares estimation

▶ sum of squared deviation is considered

▶ well known: suffers from the distorting influence of outliers

▶ least absolute deviation regression

▶ sum of absolute deviation is considered

▶ mitigates the impact of outliers
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Least Absolute Deviation Regression

▶ problem formulation:

minimize
β

∑m
i=1 |yi − aTi β|

▶ Newton’s method doesn’t apply directly → reformulate

▶ a convex reformulation: 7

minimize
t1,...,tm,β

∑m
i=1 ti

subject to yi − aTi β ≤ ti i = 1, . . . ,m
yi − aTi β ≥ −ti i = 1, . . . ,m

▶ int.-point method applies (i.e., a sequence of Newton’s steps)

7We use the epigraph problem form of the original problem, see p. 134,
Convex Optimization by S. Boyd and L. Vandenberghe, 2004.
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Apply MM Principle

▶ we have the following majorization: 8∑m
i=1 |yi − aTi β| ≤ 1

2

∑m
i=1wni(yi − aTi β)

2 + cn

where wni = 1/|yi − aTi β
(n)| and cn is an irrelevant constant

▶ the majorization function is quadratic

▶ favorable for large scale problems

▶ caveat:

▶ wni can be zero

▶ let wni = 1/

√
|yi − aTi β

(n)|2 + ϵ

8See Homework 1 → Problem 1 → Part 1.
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Appendix
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Bounding (x− x̄)TA−1(x− x̄)

▶ we have

f(x) = inf
z

g(x, z)

= inf
x

[
x− x̄
z − z̄

]T [
A B
BT C

]−1 [
x− x̄
z − z̄

]
= (x− x̄)TA−1(x− x̄)

=

[
x− x̄

BTA−1(x− x̄)

]T [
A B
BT C

]−1 [
x− x̄

BTA−1(x− x̄)

]
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▶ from the last two equations we get for all A,B,C, x̄, and z̄

(x−x̄)TA−1(x−x̄) =
[

x− x̄
BTA−1(x−x̄)

]T [
A B
BT C

]−1 [
x− x̄

BTA−1(x−x̄)

]
≤

[
x− x̄

z(n) − z̄

]T [
A B
BT C

]−1 [
x− x̄

z(n) − z̄

]
(1)

with z(n) = B(n)T
(
A(n)

)−1(
x−x̄(n)

)
+ z̄(n)

▶ note that the inequality holds with equality when

A = A(n), B = B(n), C = C(n), x̄ = x̄(n), z̄ = z̄(n)
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Bounding ln |A|

▶ the Schur complement of A in the matrix D is given by

C −BTA−1B

▶ for clarity let us define G as

G = (C −BTA−1B)−1

▶ we have the following determinant identity

|D| = |A| × |C −BTA−1B| = |A|/|G|
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▶ now we can bound ln |A| as follows:

ln |A| = ln |D|+ ln |G|
≤ ln |D|+ ln |G(n)|+ Tr

[
(G(n))−1(G−G(n))

]
= ln |D|+ ln |G(n)| − Tr(I) + Tr

[
(G(n))−1G

]
= ln |D|+ ln |G(n)| − Tr(I) + Tr

[
D−1F (n)

]
(2)

▶ the last equality follows from that F (n) ≜

[
0 0

0 (G(n))−1

]
and

D−1 =

[
A−1 +A−1BGBTA−1 −A−1BG

−GBTA−1 G

]
▶ note that the inequality holds with equality when

A = A(n), B = B(n), C = C(n)


