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LECTURE 6: SOME APPLICATIONS (PART 1)



Applications

> many applications have already been discussed
» check for previous lectures
> last two lectures: we discuss a few more applications

» K-mean clustering with missing information
» Gaussian estimation with missing data

P regression

> total variation denoising of images

» factor analysis

» matrix completion



K-Mean Clustering 1

> m subjects

» each subject i is associated with a vector y € R¢
P subjects must be assigned to one of K clusters

> 11, € R, the center of cluster k

P subjects are assigned to clusters based on proximity

> the set of subjects assigned to cluster k is C(uy)

1For application examples, see pp. 70-71, 85, Introduction to Applied Linear
Algebra: Vectors, Matrices, and Least Squares by S. Boyd, 2018.



» Loyd algorithm (1957): key idea
» choose cluster centers us arbitrarily
> centers to clusters: compute C () 2
> clusters to centers: uj = centroid of points in C(ug)

P iterate above two steps
» we can formulate the problem of K-mean clustering as

minimize  f(p) = Yy Sicetuy vi — pl?

» Loyd alg. — not necessarily yield the optimal g, C (k)

2Ties are broken such that NxC(uz) = 0.



WHAT IF ;S ARE INCOMPLETE?
> e.g., suppose y; € R3

>y =(1,05,_ ), yo=(_,_,3),y3 =(0.2,04,2), ...
» 1st and 2nd indexes of y; is observed

» 3rd index of yo is observed
» let O; denote the set of indexes observed in subject ¢
> O; ={1,2}, Oy = {3}, and O3 = 0 in the example above

» incomplete data destroy the simple two steps of Loyd alg.



ArpLYy MM PRINCIPLE

» with incomplete y;s, the objective function is given by

K
Fw =3 > | D i — mmy)?

k=1ieC(uk) [7€0i

> we can simply majorize f as

K
F <> 3 D iy — i)+ > (M;(J}) — pj)?

k=1ieC(pr) [7€0; J¢0;

= g(u|u™)

since 40, (1)) — k)2 > 0



> symmetry of the data is restored

» thus the Loyd algorithm can be applied as it is



Gaussian Estimation with Missing Data

» y1,...,Ym € IRP random sample from a Gaussian distribution
» mean of the Gaussian is

» covariance matrix is €2

» ML estimates of § and € is given by 3

Ym1 = % 27;1 Yi ml m Zz 1( yml)(yi - yml)T

31t is assumed that m > p.



WHAT IF y;S ARE INCOMPLETE?
> e.g., suppose y; € R3

>y = (1,05, ), y2o=(_,_,3),y3 =(0.2,04,2), ...
» 1st and 2nd indexes of y; is observed

» 3rd index of y, is observed
P> some components are missing in each y;

» incomplete data destroy the above simple formulas of ¢y, Qm



How TO RESTORE THE SYMMETRY?

» we rely on Schur Compliment Majorization 4

» more specifically

> we are given a vector x

» we have a parameter matrix D given by

A B
D:{BT C}

» now it is useful to bound °

1) zTA 'z 2) InlA|

*See Example 4.9.7 of the textbook.
®Details of the bounds are given in pp. 20-23.



» why the aforementioned bounds are useful?

» the log-likelihood function is based on similar terms
» we can find a surrogate using the bounds
» apply MM principle

» for convenience suppose

» we have one realization y; from the distribution
» the first block 1 of components of y; is observed

> the second block z; of y; is missing



> yis Gaussian, i.e., y1 ~ N((Z,2),9Q), where

Q1 Q12]
Q:
[Q-II—Z Q22

> parameters to be estimated 0 = (z, z,2)

> log-likelihood function of observed data z; is given by ©

l(é) = —% In |Qll| — %({El — E)TQil(l'l — {E)
where 0 = (7, Q1)
> note — [ doesn’t contain a part of the parameters, i.e.,

> 2, g2, and Z

®Up to an irrelevant constant.



» a meaningful mechanism to maximize [ and to compute 67
» EM principle
» MM principle
» based on the bounds pointed in page 10

> see (1), and (2) in pages 20-23



» in particular from (1), and (2) in pages 20-23, we deduce
10) > —3m|Q] — i n|G™| + i1r(I) — JTr[Q71FM)]

— T —
1 r1 — T _1 rKT — T
—1 0
2 [z%n) — z] z(n) — z]

_ 7T
xr1 — I 1 — T
zgn) — Z] Lgn) — 2] )]

1 1
_ Zlnlg®™) o =
5 n|G \+2Tr(I)

= —%ln]Q\ - %Tr |:Q1 (F(") +




> now consider all data

> m realizations y1, ..., ym (same observed, missing indexes)
» let [ denote the log-likelihood function

» a2 minorization function of [ is of the form
~2 o~ 5 T [0 (FO 4 () - ) - 5)7)]
> ML estimates of § and €2 is given by
gt = i yz(n)

QD = LS [P0 4 (y; — y ) (g — yn )T



> if the observed, missing indexes are different for y;s

» F(n) — Fz(n)
» permutation matrices are to be introduced accordingly

> eg, to B+ (™ — )™ — )T



Regression

> least squares estimation

» sum of squared deviation is considered

» well known: suffers from the distorting influence of outliers
> least absolute deviation regression

» sum of absolute deviation is considered

» mitigates the impact of outliers



LEAST ABSOLUTE DEVIATION REGRESSION
» problem formulation:
miniﬁmize Sy —al Bl
» Newton's method doesn’t apply directly — reformulate

» a convex reformulation: *

L m

minimize ot

t1yeeestim 3 2ii b

subject to yi—a;rﬁgti i=1,....,m

yi—aiTﬁZ—ti i=1,...,m

» int.-point method applies (i.e., a sequence of Newton's steps)

"We use the epigraph problem form of the original problem, see p. 134,
Convex Optimization by S. Boyd and L. Vandenberghe, 2004.



ArrpLYy MM PRINCIPLE

» we have the following majorization: &

1
Z;’;l |y — aiTB! <3 E:’;l Wi (Yi — 016)2 +cn
where wy; = 1/|y; — aiTB(”)| and ¢, is an irrelevant constant
» the majorization function is quadratic

» favorable for large scale problems
> caveat:
» wyp; can be zero

> et wn; = 1/1/|yi —a) B2 + €

8See Homework 1 — Problem 1 — Part 1.



APPENDIX



Bounding (z — z)"A~ ! (z — 7)

» we have

fx) = inf g(z,2)

_inf +—7]"[A Bl '[z-=z
Il P BT C z—Zz

=(z-2)TA Yz - 7)

= [omatie - s) T Bl i i o)



» from the last two equations we get for all A, B,C,Z, and z
T -1
N e rT—I A B r—
(z=2) A7 (2=7) = [BTA—l(x—x)} [BT c} [BTA_I(x—x)]
. -1 _
< T — a;_ AT B T — x_ (1)
2 _ 3 B' C M _ 3
with 20 = BOOT(A0) 7L (g—z(m) 4 50

P> note that the inequality holds with equality when

A=A B=BM c=cW™, z=z" z=z"



Bounding In | A]

» the Schur complement of A in the matrix D is given by
C—-B'A™'B
» for clarity let us define G as
G=(C-B"A'B)™!
» we have the following determinant identity

D] = |A] x |C — BTAT'B| = |Al/|G



» now we can bound In|A| as follows:

In|A| =In|D|+ In|G]
<In|D|+In|G™| + Tr[(G(”))_l(G —GM)]
=In|D|+ In|G™| - Tr(I) + Tr[(G™) 1G]
=In|D|+In|G™| - Te(I) + Te[DFM]  (2)

> the last equality follows from that F(") £ [O (G("))l} and

oo [ATH+ A"'BGBTA™! —A‘lBG]

~GBTA™! G
P note that the inequality holds with equality when

A=A B=pB" c=c"



