MM Optimization Algorithms

Chathuranga Weeraddana

March 2022

Lecture 5: EM Principle

Landmarks

- roots trace back to
- H. O. Hartley (1958, EM algorithms)
- a phenomenal contribution from
- A. P. Dempster et al. (1977, ML ... via the EM algorithm)
- citations ≈ 66500 (2022-May)

When to Use?

- observations are incomplete
- still you want to compute the ML estimate of parameter θ
- i.e., applied when observations can be viewed as incomplete
- missing value situations
- when there are censored or truncated data
- factor analysis
- many more

EM Vs MM

- $\mathrm{EM}=$ Expectation and Maximization
- an interpretation ${ }^{1}$
- EM transfers maximization of likelihood $l(\cdot)$ to $Q\left(\cdot \mid \theta^{(n)}\right)$
- this transfer is simply the expectation step
- then $Q\left(\cdot \mid \theta^{(n)}\right)$ is maximized with respect to θ
- $Q\left(\cdot \mid \theta^{(n)}\right)$ is a minorization function ${ }^{2}$ of $l(\cdot)$
- i.e., we have SM (surrogate maximization) principle within EM
${ }^{1}$ See Optimization Transfer Using Surrogate Objective Functions by K. Lange et al., 2000.
${ }^{2} U p$ to an irrelevant constant.
- is SM (or MM) ${ }^{3}$ is just EM?
- a problem posed by Xiao-Li Meng ${ }^{4}$
- given SM construction \rightarrow a corresponding EM construction?
- is EM class is as rich as SM class?
- Xiao-Li Meng's EM flu \rightarrow no cure so far

[^0]
Key Idea

- recall..
- maximization of \log-likelihood $l(\cdot)$ is transferred to $Q\left(\cdot \mid \theta^{(n)}\right)$
- $Q\left(\cdot \mid \theta^{(n)}\right)$ is a minorization function of $l(\cdot)$
- then $Q\left(\cdot \mid \theta^{(n)}\right)$ is maximized with respect to θ
- i.e., we have MM principle within EM
- recall that the observations are incomplete

Formulation of the Setting

- denote the complete data by x with likelihood $r_{\theta}(x)$
- denote the observed data by y with likelihood $s_{\theta}(y)$
- thus, the conditional density of $x \mid y, k_{\theta}(x \mid y)$ is given by

$$
\begin{equation*}
k_{\theta}(x \mid y)=\frac{r_{\theta}(x)}{s_{\theta}(y)} \tag{1}
\end{equation*}
$$

- log-likelihood function of x is $\ln r_{\theta}(x)$
- log-likelihood function of y (observed data) is $l(\theta)=\ln s_{\theta}(y)$
- EM literature defines the surrogate $Q\left(\cdot \mid \theta^{(n)}\right)$ as

$$
\begin{align*}
Q\left(\theta \mid \theta^{(n)}\right) & =\mathbb{E}\left\{\ln r_{\theta}(x) \mid y, \theta^{(n)}\right\} \tag{2}\\
& =\int_{\mathcal{X}(y)} \ln r_{\theta}(x) k_{\theta^{(n)}}(x \mid y) d x
\end{align*}
$$

- heuristic idea:
- we would like to choose θ^{\star} that maximize $\ln r_{\theta}(x)$
- but we do not have it because observations are incomplete
- instead, maximize the expectation of $\ln r_{\theta}(x)$ given
- the observations y
- the current parameter $\theta^{(n)}$

$Q\left(\cdot \mid \theta^{(n)}\right)$ as a Minorization

- it can be shown that ${ }^{5}$

$$
\begin{aligned}
Q\left(\theta \mid \theta^{(n)}\right)-l(\theta) & =\mathbb{E}\left\{\ln k_{\theta}(x \mid y) \mid y, \theta^{(n)}\right\} \\
& \leq \mathbb{E}\left\{\ln k_{\theta^{(n)}}(x \mid y) \mid y, \theta^{(n)}\right\} \\
& =Q\left(\theta^{(n)} \mid \theta^{(n)}\right)-l\left(\theta^{(n)}\right)
\end{aligned}
$$

- thus, $Q\left(\cdot \mid \theta^{(n)}\right)$ is a minorization function of l^{6}
${ }^{5}$ See Additional Reading section of the courseweb for a sketch of the proof. ${ }^{6}$ Up to an irrelevant constant.

Examples

Cell Probabilities of a Population

- 197 animals distributed multinomially into 4 groups
- observed data $y=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=(125,18,20,34)$
- cell probabilities are of the form

$$
\left(\frac{1}{2}+\frac{1}{4} \pi, \frac{1}{4}(1-\pi), \frac{1}{4}(1-\pi), \frac{1}{4} \pi\right)
$$

for some π with $0 \leq \pi \leq 1$

- thus the likelihood of observed data is

$$
s_{\pi}(y)=\frac{\left(y_{1}+y_{2}+y_{3}+y_{4}\right)!}{y_{1}!y_{2}!y_{3}!y_{4}!}\left(\frac{1}{2}+\frac{1}{4} \pi\right)^{y_{1}}\left(\frac{1}{4}-\frac{1}{4} \pi\right)^{y_{2}}\left(\frac{1}{4}-\frac{1}{4} \pi\right)^{y_{3}}\left(\frac{1}{4} \pi\right)^{y_{4}}
$$

- log-likelihood function l is given by

$$
l(\pi)=y_{1} \ln \left(\frac{1}{2}+\frac{1}{4} \pi\right)+\left(y_{2}+y_{3}\right) \ln \left(\frac{1}{4}-\frac{1}{4} \pi\right)+y_{4} \ln \pi+c
$$

- maximize $l(\pi)$ subject to $\pi \in[0,1]$ to determine π^{\star}
- in this example
- observed data $=$ complete data
- the procedure is straightforward
- what if observed data \neq complete data?
- 197 animals distributed multinomially into 5 groups
- complete data $x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$
- observed data $y=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=(125,18,20,34)$ where
- $y_{1}=x_{1}+x_{2}, y_{2}=x_{3}, y_{3}=x_{4}$, and $y_{4}=x_{5}$
- cell probabilities are of the form

$$
\left(\frac{1}{2}, \frac{1}{4} \pi, \frac{1}{4}(1-\pi), \frac{1}{4}(1-\pi), \frac{1}{4} \pi\right)
$$

for some π with $0 \leq \pi \leq 1$

- thus the likelihood of complete data is

$$
r_{\pi}(x)=\frac{\left(\sum_{i} x_{i}\right)!}{x_{1}!x_{2}!x_{3}!x_{4}!x_{5}!}\left(\frac{1}{2}\right)^{x_{1}}\left(\frac{1}{4} \pi\right)^{x_{2}}\left(\frac{1}{4}-\frac{1}{4} \pi\right)^{x_{3}}\left(\frac{1}{4}-\frac{1}{4} \pi\right)^{x_{4}}\left(\frac{1}{4} \pi\right)^{x_{5}}
$$

- EM defines the surrogate $Q\left(\cdot \mid \pi^{(n)}\right)$ as

$$
\begin{align*}
Q\left(\pi \mid \pi^{(n)}\right) & =\mathbb{E}\left\{\ln r_{\pi}(x) \mid y, \pi^{(n)}\right\} \tag{3}\\
& =\int_{\mathcal{X}(y)} \ln r_{\pi}(x) k_{\pi^{(n)}}(x \mid y) d x
\end{align*}
$$

- here we have

$$
\begin{align*}
k_{\pi^{(n)}}(x \mid y) & =\frac{y_{1}!}{x_{1}!x_{2}!\left(\frac{1}{2}+\frac{\pi^{(n)}}{4}\right)^{y_{1}}}\left(\frac{1}{2}\right)^{x_{1}}\left(\frac{1}{4} \pi^{(n)}\right)^{x_{2}} \tag{4}\\
& =\frac{250!}{x_{1}!x_{2}!\left(\frac{1}{2}+\frac{\pi^{(n)}}{4}\right)^{250}}\left(\frac{1}{2}\right)^{x_{1}}\left(\frac{1}{4} \pi^{(n)}\right)^{x_{2}}
\end{align*}
$$

- with some tedious steps it can be shown that ${ }^{7}$

$$
Q\left(\pi \mid \pi^{(n)}\right)=\ln \left[\left(\frac{1}{2}\right)^{x_{1}^{(n)}}\left(\frac{1}{4} \pi\right)^{x_{2}^{(n)}}\left(\frac{1}{4}-\frac{1}{4} \pi\right)^{18}\left(\frac{1}{4}-\frac{1}{4} \pi\right)^{20}\left(\frac{1}{4} \pi\right)^{34}\right]+\alpha^{(n)}
$$

where

$$
\begin{align*}
& x_{1}^{(n)}=\mathbb{E}\left\{x_{1} \mid y, \pi^{(n)}\right\}=\frac{\frac{1}{2} y_{1}}{\frac{1}{2}+\frac{1}{4} \pi^{(n)}}=\frac{250}{2+\pi^{(n)}}, \\
& x_{2}^{(n)}=\mathbb{E}\left\{x_{2} \mid y, \pi^{(n)}\right\}=\frac{\frac{1}{4} \pi^{(n)} y_{1}}{\frac{1}{2}+\frac{1}{4} \pi^{(n)}}=\frac{250 \pi^{(n)}}{2+\pi^{(n)}}, \tag{5}
\end{align*}
$$

and $\alpha^{(n)}$ is an irrelevant constant which does not depend on π

[^1]- maximize $Q\left(\pi \mid \pi^{(n)}\right)$ with respect to π to yield

$$
\begin{equation*}
\pi^{(n+1)}=\frac{x_{2}^{(n)}+34}{x_{2}^{(n)}+34+38} \tag{6}
\end{equation*}
$$

Algorithm 1 EM for Computing Cell Probabilities

Input: $\pi^{(0)} \in(0,1), n=0$
1: while a stopping criterion true do
2: $\quad x_{2}^{(n)}$ is computed from (5)
3: $\quad \pi^{(n+1)}$ is computed from (6) and $n \leftarrow n+1$
4: end while
5: return $\pi^{(n)}$

Life of Light Bulbs

- lifetime information of 2 bulbs were observed
- observed data
- lifetime of the first bulb is y
- lifetime z of the second bulb is less than t
- note: z was not observed
- lifetime x of bulbs \rightarrow an exponential density, i.e.,

$$
p(x)=\lambda e^{-\lambda x}, \quad x \geq 0
$$

- z is known \rightarrow ML estimate of λ is computed
- complete data $x=(y, z)$
- observed data y and $z \leq t$
- the likelihood of complete data is

$$
r_{\lambda}(x)=\lambda e^{-\lambda y} \lambda e^{-\lambda z}
$$

- EM defines the surrogate $Q\left(\cdot \mid \lambda^{(n)}\right)$ as

$$
\begin{equation*}
Q\left(\lambda \mid \lambda^{(n)}\right)=\mathbb{E}\left\{\ln r_{\lambda}(y, z) \mid y, z \leq t, \lambda^{(n)}\right\} \tag{7}
\end{equation*}
$$

- here we have

$$
\begin{equation*}
k_{\lambda^{(n)}}(y, z \mid y, z \leq t)=\frac{\lambda^{(n)} e^{-\lambda^{(n)} z}}{1-e^{-\lambda^{(n)} t}}, \quad 0 \leq z \leq t \tag{8}
\end{equation*}
$$

- therefore we have

$$
\begin{aligned}
Q\left(\lambda \mid \lambda^{(n)}\right) & =\mathbb{E}\left\{\ln r_{\lambda}(y, z) \mid y, z \leq t, \lambda^{(n)}\right\} \\
& =\mathbb{E}\left\{\ln \left[\lambda e^{-\lambda y} \lambda e^{-\lambda z}\right] \mid y, z \leq t, \lambda^{(n)}\right\} \\
& =\ln \lambda-\lambda y+\ln \lambda-\lambda \mathbb{E}\left\{z \mid z \leq t, \lambda^{(n)}\right\} \\
& =2 \ln \lambda-\lambda y-\lambda \underbrace{\int_{0}^{t} z \frac{\lambda^{(n)} e^{-\lambda^{(n)} z}}{1-e^{-\lambda^{(n)} t}} d z}_{w^{(n)}} \\
& =2 \ln \lambda-\lambda y-\lambda \underbrace{\left[\frac{1}{\lambda^{(n)}}-\frac{t e^{-\lambda^{(n)} t}}{1-e^{-\lambda^{(n)} t}}\right]}
\end{aligned}
$$

- maximize $Q\left(\lambda \mid \lambda^{(n)}\right)$ with respect to λ to yield

$$
\lambda^{(n+1)}=\frac{2}{w^{(n)}+y}
$$

- thus an EM algorithm for computing the lifetime of a bulb
- is readily derived

Mixture of Gaussian

- to be discussed!

[^0]: ${ }^{3}$ There is a slight difference though, see [Optimization Transfer Using Surrogate Objective Functions]: Rejoinder by D. R. Hunter and K. Lange, 2000.
 ${ }^{4}$ See [Optimization Transfer Using Surrogate Objective Functions]:
 Discussion by Xiao-Li Meng, 2000.

[^1]: ${ }^{7}$ When the underlying distributions are from exponential families, some convenient tricks can be used when computing $Q\left(\cdot \mid \theta^{(n)}\right)$. See A. P. Dempster et al. 1977, pp. 2-4.

