
1/17

MM Optimization Algorithms

Chathuranga Weeraddana

March 2022

1/17

Lecture 4: Key Inequalities for MM (Part III)

1/17

Majorization and Partial Optimization

2/17

Partial Minimization

▶ variety of functions can be represented as partial minima 1

f(x) = min
y∈Y

g(x, y) (1)

▶ such a function f can readily be majorized at x(n) ∈ IRp, i.e.,

f(x) = min
y∈Y

g(x, y) (2)

≤ g
(
x, y(n)

)
= h(x | x(n))

where y(n) = argmin
y∈Y

g
(
x(n), y

)
▶ h(x |x(n)) is the restriction of g to set {(x, y(n)) | x ∈ IRp}

1It is assumed that the minimum over y ∈ Y is attained for each x.

2/17

Examples

3/17

Block Descent

▶ suppose you are given the problem

minimize g(x, y)
subject to x ∈ X

y ∈ Y

▶ the problem is equivalent to

minimize f(x) = min
y∈Y

g(x, y)

subject to x ∈ X

▶ MM principle: f(x) ≤ h
(
x|x(n)

)
= g

(
x, y(n)

)
▶ can the constraint be of the form (x, y) ∈ Z?

4/17

A Simple Problem

▶ consider the following problem

minimize ∥Ax− y∥
subject to y ∈ Y

where the decision variables are x, y

▶ the iterative algorithm reduces to:

x(n+1) = (ATA)−1ATPY(Ax
(n))

where PY(·) is the projection onto Y

5/17

Distance Between Two Sets

▶ X , Y → two disjoint closed sets

▶ compute dist(X ,Y) the optimal value of

minimize ∥x− y∥
subject to x,∈ X , y ∈ Y

where the decision variables are x, y

▶ the iterative algorithm reduces to:

x(n+1) = PX
(
PY(x

(n))
)

▶ optimality if X (or both sets) is nonconvex?

6/17

Proximal Minimization Algorithm

▶ suppose you are given the problem

minimize
x

f(x)

▶ trivial to see: f(x) = min
y

[
f(x) + (1/2µ)∥x− y∥2

]
, µ > 0

▶ thus a majorization function of f is given by h
(
x|x(n)

)
where

h
(
x|x(n)

)
= f(x) + (1/2µ)∥x− x(n)∥2

▶ output of h
(

· |x(n)
)
minimization compromises between

▶ minimizing f and being near to x(n) (controlled by µ)

7/17

▶ the algorithm if MM principle is applied

x(n+1) = proxµf
(
x(n)

)
where proxµf is called the proximal operator of µf ,

proxµf (v) = argmin
x

f(x) + (1/2µ)∥x− v∥2

▶ the resulting algorithm is a proximal minimization algorithm

▶ also called: proximal iteration or the proximal point algorithm 2

2See § 4.1 of Proximal Algorithms by N. Parikh and S. Boyd, now
Foundations and Trends in Optimization 2013.

8/17

▶ why compute a sequence of proximal operators?

▶ subproblems usually admits easy closed-form solutions

▶ can be solved sufficiently quickly

▶ minimizing of (f+ quadratic) is easier than minimizing f

▶ handle ill-conditioned situations → higher reliability

▶ fewer iterations or faster convergence

▶ amenable to distributed optimization

▶ an application: iterative refinement → a homework exercise

9/17

Schur Compliment Majorization

▶ more specifically

▶ we are given a vector x

▶ we have a parameter matrix D given by

D =

[
A B
BT C

]
▶ now it is useful to bound

1) xTA−1x 2) ln |A|

10/17

Bounding xTA−1x

▶ we have 3

f(x) = inf
z

g(x, z)

= inf
x

[
x
z

]T [
A B
BT C

]−1 [
x
z

]
= xTA−1x

=

[
x

BTA−1x

]T [
A B
BT C

]−1 [
x

BTA−1x

]

3See § A.5.5, Convex Optimization by S. Boyd and L. Vandenberghe, 2004.

11/17

▶ from the last two equations we get for all A,B and C

xTA−1x =

[
x

BTA−1x

]T [
A B
BT C

]−1 [
x

BTA−1x

]
≤

[
x

z(n)

]T [
A B
BT C

]−1 [
x

z(n)

]
(3)

with z(n) = B(n)T
(
A(n)

)−1
x

▶ note that the inequality holds with equality when

A = A(n), B = B(n), C = C(n)

12/17

Bounding ln |A|

▶ the Schur complement of A in the matrix D is given by

C −BTA−1B

▶ for clarity let us define G as

G = (C −BTA−1B)−1

▶ we have the following determinant identity

|D| = |A| × |C −BTA−1B| = |A|/|G|

13/17

▶ now we can bound ln |A| as follows:

ln |A| = ln |D|+ ln |G|
≤ ln |D|+ ln |G(n)|+ Tr

[
(G(n))−1(G−G(n))

]
= ln |D|+ ln |G(n)| − Tr(I) + Tr

[
(G(n))−1G

]
= ln |D|+ ln |G(n)| − Tr(I) + Tr

[
D−1F (n)

]
(4)

▶ the last equality follows from that F (n) ≜

[
0 0

0 (G(n))−1

]
and

D−1 =

[
A−1 +A−1BGBTA−1 −A−1BG

−GBTA−1 G

]
▶ note that the inequality holds with equality when

A = A(n), B = B(n), C = C(n)

14/17

Fenchel Conjugate

▶ Fenchel conjugate 4 of a function f

f∗(x) = sup
y

{xTy − f(y)} (5)

▶ in general we have for

f∗(x) = sup
y

{xTy − f(y)} (6)

≥ ȳTx− f(ȳ) (7)

= g
(
x|x(n)

)
(8)

where ȳ ∈ ∂f∗(x(n)) = argmax
y

{x(n)Ty − f(y)}

4For more details see pages 15-17.

14/17

Appendices

15/17

Legendre-Fenchel Transform

▶ for any function f : IRN → ĪR define 5

f∗(x) = sup
y

{xTy − f(y)} (9)

▶ f∗ is called the conjugate to f

▶ biconjugate to f is given by f∗∗ =
(
f∗)∗, where

f∗∗(y) = sup
x

{yTx− f∗(x)} (10)

5ĪR = IR ∪ {∞}.

16/17

▶ the mapping f → f∗ from fcns(RN) 6 into fcns(IRN)

▶ is called the Legendre-Fenchel Transform 7

▶ if f is proper, lsc, and convex, so is f∗ and f∗∗ = f

6fcns(IRN): the collection of all extended-real-valued functions on IRN

7See pp. 473-476 Variational Analysis by R. T. Rockafellar and R. J-B
Wets, 3rd printing 2009.

17/17

▶ for any proper, lsc, convex function f

x̄ ∈ ∂f(ȳ) ⇐⇒ ȳ ∈ ∂f∗(̄x) ⇐⇒ f(ȳ) + f∗(x̄) = x̄Tȳ

where

∂f(ȳ) = argmax
x

{ȳTx−f∗(x)} ∂f∗(x̄) = argmax
y

{x̄Ty−f(y)}

▶ in general,

f(y) + f∗(x) ≥ xTy for all x, y

▶ see Proposition 11.3, R. T. Rockafellar

