MM Optimization Algorithms

Chathuranga Weeraddana

March 2022

Lecture 4: Key Inequalities for MM (Part III)

Majorization and Partial Optimization

Partial Minimization

- variety of functions can be represented as partial minima ${ }^{1}$

$$
\begin{equation*}
f(x)=\min _{y \in \mathcal{Y}} g(x, y) \tag{1}
\end{equation*}
$$

- such a function f can readily be majorized at $x^{(n)} \in \mathbb{R}^{p}$, i.e.,

$$
\begin{align*}
f(x) & =\min _{y \in \mathcal{Y}} g(x, y) \tag{2}\\
& \leq g\left(x, y^{(n)}\right)=h\left(x \mid x^{(n)}\right)
\end{align*}
$$

where $y^{(n)}=\underset{y \in \mathcal{Y}}{\arg \min } g\left(x^{(n)}, y\right)$

- $h\left(x \mid x^{(n)}\right)$ is the restriction of g to set $\left\{\left(x, y^{(n)}\right) \mid x \in \mathbb{R}^{p}\right\}$

[^0]ExAmples

Block Descent

- suppose you are given the problem

$$
\begin{array}{ll}
\text { minimize } & g(x, y) \\
\text { subject to } & x \in \mathcal{X} \\
& y \in \mathcal{Y}
\end{array}
$$

- the problem is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize} & f(x)=\min _{y \in \mathcal{Y}} g(x, y) \\
\text { subject to } & x \in \mathcal{X}
\end{array}
$$

- MM principle: $f(x) \leq h\left(x \mid x^{(n)}\right)=g\left(x, y^{(n)}\right)$
- can the constraint be of the form $(x, y) \in \mathcal{Z}$?

A Simple Problem

- consider the following problem

$$
\begin{array}{ll}
\operatorname{minimize} & \|A x-y\| \\
\text { subject to } & y \in \mathcal{Y}
\end{array}
$$

where the decision variables are x, y

- the iterative algorithm reduces to:

$$
x^{(n+1)}=\left(A^{\top} A\right)^{-1} A^{\top} P_{\mathcal{Y}}\left(A x^{(n)}\right)
$$

where $P_{\mathcal{Y}}(\cdot)$ is the projection onto \mathcal{Y}

Distance Between Two Sets

- $\mathcal{X}, \mathcal{Y} \rightarrow$ two disjoint closed sets
- compute $\operatorname{dist}(\mathcal{X}, \mathcal{Y})$ the optimal value of

$$
\begin{array}{ll}
\operatorname{minimize} & \|x-y\| \\
\text { subject to } & x, \in \mathcal{X}, y \in \mathcal{Y}
\end{array}
$$

where the decision variables are x, y

- the iterative algorithm reduces to:

$$
x^{(n+1)}=P_{\mathcal{X}}\left(P_{\mathcal{Y}}\left(x^{(n)}\right)\right)
$$

- optimality if \mathcal{X} (or both sets) is nonconvex?

Proximal Minimization Algorithm

- suppose you are given the problem

$$
\underset{x}{\operatorname{minimize}} \quad f(x)
$$

- trivial to see: $f(x)=\min _{y}\left[f(x)+(1 / 2 \mu)\|x-y\|^{2}\right], \mu>0$
- thus a majorization function of f is given by $h\left(x \mid x^{(n)}\right)$ where

$$
h\left(x \mid x^{(n)}\right)=f(x)+(1 / 2 \mu)\left\|x-x^{(n)}\right\|^{2}
$$

- output of $h\left(\cdot \mid x^{(n)}\right)$ minimization compromises between
- minimizing f and being near to $x^{(n)}$ (controlled by μ)
- the algorithm if MM principle is applied

$$
x^{(n+1)}=\operatorname{prox}_{\mu f}\left(x^{(n)}\right)
$$

where $\operatorname{prox}_{\mu f}$ is called the proximal operator of μf,

$$
\operatorname{prox}_{\mu f}(v)=\underset{x}{\arg \min } f(x)+(1 / 2 \mu)\|x-v\|^{2}
$$

- the resulting algorithm is a proximal minimization algorithm
- also called: proximal iteration or the proximal point algorithm ${ }^{2}$
${ }^{2}$ See § 4.1 of Proximal Algorithms by N. Parikh and S. Boyd, now Foundations and Trends in Optimization 2013.
- why compute a sequence of proximal operators?
- subproblems usually admits easy closed-form solutions
- can be solved sufficiently quickly
- minimizing of ($f+$ quadratic) is easier than minimizing f
- handle ill-conditioned situations \rightarrow higher reliability
- fewer iterations or faster convergence
- amenable to distributed optimization
- an application: iterative refinement \rightarrow a homework exercise

Schur Compliment Majorization

- more specifically
- we are given a vector x
- we have a parameter matrix D given by

$$
D=\left[\begin{array}{cc}
A & B \\
B^{\top} & C
\end{array}\right]
$$

- now it is useful to bound

$$
\text { 1) } x^{\top} A^{-1} x \quad \text { 2) } \quad \ln |A|
$$

Bounding $x^{\top} A^{-1} x$

- we have ${ }^{3}$

$$
\begin{aligned}
f(x) & =\inf _{z} g(x, z) \\
& =\inf _{x}\left[\begin{array}{l}
x \\
z
\end{array}\right]^{\top}\left[\begin{array}{cc}
A & B \\
B^{\top} & C
\end{array}\right]^{-1}\left[\begin{array}{l}
x \\
z
\end{array}\right] \\
& =x^{\top} A^{-1} x \\
& =\left[\begin{array}{c}
x \\
B^{\top} A^{-1} x
\end{array}\right]^{\top}\left[\begin{array}{cc}
A & B \\
B^{\top} & C
\end{array}\right]^{-1}\left[\begin{array}{c}
x \\
B^{\top} A^{-1} x
\end{array}\right]
\end{aligned}
$$

${ }^{3}$ See § A.5.5, Convex Optimization by S. Boyd and L. Vandenberghe, 2004.

- from the last two equations we get for all A, B and C

$$
\begin{align*}
x^{\top} A^{-1} x & =\left[\begin{array}{c}
x \\
B^{\top} A^{-1} x
\end{array}\right]^{\top}\left[\begin{array}{cc}
A & B \\
B^{\top} & C
\end{array}\right]^{-1}\left[\begin{array}{c}
x \\
B^{\top} A^{-1} x
\end{array}\right] \\
& \leq\left[\begin{array}{c}
x \\
z^{(n)}
\end{array}\right]^{\top}\left[\begin{array}{cc}
A & B \\
B^{\top} & C
\end{array}\right]^{-1}\left[\begin{array}{c}
x \\
z^{(n)}
\end{array}\right] \tag{3}
\end{align*}
$$

with $z^{(n)}=B^{(n) \top}\left(A^{(n)}\right)^{-1} x$

- note that the inequality holds with equality when

$$
A=A^{(n)}, B=B^{(n)}, C=C^{(n)}
$$

Bounding $\ln |A|$

- the Schur complement of A in the matrix D is given by

$$
C-B^{\top} A^{-1} B
$$

- for clarity let us define G as

$$
G=\left(C-B^{\top} A^{-1} B\right)^{-1}
$$

- we have the following determinant identity

$$
|D|=|A| \times\left|C-B^{\top} A^{-1} B\right|=|A| /|G|
$$

- now we can bound $\ln |A|$ as follows:

$$
\begin{align*}
\ln |A| & =\ln |D|+\ln |G| \\
& \leq \ln |D|+\ln \left|G^{(n)}\right|+\operatorname{Tr}\left[\left(G^{(n)}\right)^{-1}\left(G-G^{(n)}\right)\right] \\
& =\ln |D|+\ln \left|G^{(n)}\right|-\operatorname{Tr}(I)+\operatorname{Tr}\left[\left(G^{(n)}\right)^{-1} G\right] \\
& =\ln |D|+\ln \left|G^{(n)}\right|-\operatorname{Tr}(I)+\operatorname{Tr}\left[D^{-1} F^{(n)}\right] \tag{4}
\end{align*}
$$

- the last equality follows from that $F^{(n)} \triangleq\left[\begin{array}{cc}0 & 0 \\ 0 & \left(G^{(n)}\right)^{-1}\end{array}\right]$ and

$$
D^{-1}=\left[\begin{array}{cc}
A^{-1}+A^{-1} B G B^{\top} A^{-1} & -A^{-1} B G \\
-G B^{\top} A^{-1} & G
\end{array}\right]
$$

- note that the inequality holds with equality when

$$
A=A^{(n)}, B=B^{(n)}, C=C^{(n)}
$$

Fenchel Conjugate

- Fenchel conjugate ${ }^{4}$ of a function f

$$
\begin{equation*}
f^{*}(x)=\sup _{y}\left\{x^{\top} y-f(y)\right\} \tag{5}
\end{equation*}
$$

- in general we have for

$$
\begin{align*}
f^{*}(x) & =\sup _{y}\left\{x^{\top} y-f(y)\right\} \tag{6}\\
& \geq \bar{y}^{\top} x-f(\bar{y}) \tag{7}\\
& =g\left(x \mid x^{(n)}\right) \tag{8}
\end{align*}
$$

where $\bar{y} \in \partial f^{*}\left(x^{(n)}\right)=\underset{y}{\arg \max }\left\{x^{(n) \top} y-f(y)\right\}$
${ }^{4}$ For more details see pages $15-17$.

Appendices

Legendre-Fenchel Transform

- for any function $f: \mathbb{R}^{N} \rightarrow \overline{\mathbb{R}}$ define ${ }^{5}$

$$
\begin{equation*}
f^{*}(x)=\sup _{y}\left\{x^{\top} y-f(y)\right\} \tag{9}
\end{equation*}
$$

- f^{*} is called the conjugate to f
- biconjugate to f is given by $f^{* *}=\left(f^{*}\right)^{*}$, where

$$
\begin{equation*}
f^{* *}(y)=\sup _{x}\left\{y^{\top} x-f^{*}(x)\right\} \tag{10}
\end{equation*}
$$

${ }^{5} \overline{\mathbb{R}}=\mathbb{R} \cup\{\infty\}$.

- the mapping $f \rightarrow f^{*}$ from $\mathrm{fcns}\left(R^{N}\right)^{6}$ into $\mathrm{fcns}\left(\mathbb{R}^{N}\right)$
- is called the Legendre-Fenchel Transform ${ }^{7}$
- if f is proper, Isc, and convex, so is f^{*} and $f^{* *}=f$
${ }^{6} \mathrm{f} \operatorname{cns}\left(\mathbb{R}^{N}\right)$: the collection of all extended-real-valued functions on \mathbb{R}^{N}
${ }^{7}$ See pp. 473-476 Variational Analysis by R. T. Rockafellar and R. J-B Wets, 3rd printing 2009.
- for any proper, Isc, convex function f

$$
\left.\bar{x} \in \partial f(\bar{y}) \Longleftrightarrow \bar{y} \in \partial f^{*} \bar{x} x\right) \Longleftrightarrow f(\bar{y})+f^{*}(\bar{x})=\bar{x}^{\top} \bar{y}
$$

where
$\partial f(\bar{y})=\underset{x}{\arg \max }\left\{\bar{y}^{\top} x-f^{*}(x)\right\} \quad \partial f^{*}(\bar{x})=\underset{y}{\arg \max }\left\{\bar{x}^{\top} y-f(y)\right\}$

- in general,

$$
f(y)+f^{*}(x) \geq x^{\top} y \quad \text { for all } x, y
$$

- see Proposition 11.3, R. T. Rockafellar

[^0]: ${ }^{1}$ It is assumed that the minimum over $y \in \mathcal{Y}$ is attained for each x.

