MM Optimization Algorithms

Chathuranga Weeraddana

April 2022

Lecture 3: Key Inequalities for MM (Part II)

Quadratic Upper Bound Principle

Quadratic Upper Bound Principle

- key mechanisms
- majorization via gradient Lipschitz continuity
- majorization via bounded Hessian
- minorization via strong convexity

Gradient Lipschitz Continuity

- suppose
- f is differentiable
- gradient Lipschitz continuous with constant L, i.e.,

$$
\begin{equation*}
\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\| \text { for all } x, y \tag{1}
\end{equation*}
$$

- from (44) ${ }^{1}$

$$
\begin{align*}
& f(x)= f(y)+\int_{0}^{1} \nabla f(y+t(x-y))^{\top}(x-y) d t \tag{2}\\
&= f(y)+\nabla f(y)^{\top}(x-y)+ \\
& \quad \int_{0}^{1}[\nabla f(y+t(x-y))-\nabla f(y)]^{\top}(x-y) d t \tag{3}\\
& \leq f(y)+\nabla f(y)^{\top}(x-y)+ \\
& \quad \quad \int_{0}^{1}\|\nabla f(y+t(x-y))-\nabla f(y)\|\|(x-y)\| d t \tag{4}\\
& \leq f(y)+\nabla f(y)^{\top}(x-y)+L\|x-y\|^{2} \int_{0}^{1} t d t \tag{5}\\
&= f(y)+\nabla f(y)^{\top}(x-y)+(L / 2)\|x-y\|^{2}=g(x \mid y) \tag{6}
\end{align*}
$$

${ }^{1}$ See page 34 and substitute $a=y$ and $b=x-y$.

Bounded Hessian

- suppose
- f is twice differentiable
- f has bounded Hessians, i.e.,

$$
\begin{equation*}
\exists B \succ 0 \text { s.t } B-\nabla^{2} f(x) \succeq 0 \text { for all } x \tag{7}
\end{equation*}
$$

- from (46) ${ }^{2}$

$$
\begin{align*}
f(x)= & f(y)+\nabla f(y)^{\top}(x-y)+ \tag{8}\\
& \quad \int_{0}^{1} \int_{0}^{t}(x-y)^{\top} \nabla^{2} f(y+\tau(x-y))(x-y) d \tau d t \tag{9}\\
\leq & f(y)+\nabla f(y)^{\top}(x-y)+ \\
& \quad \int_{0}^{1} \int_{0}^{t}(x-y)^{\top} B(x-y) d \tau d t \tag{10}\\
= & f(y)+\nabla f(y)^{\top}(x-y)+(1 / 2)(x-y)^{\top} B(x-y) \tag{11}\\
= & g(x \mid y) \tag{12}
\end{align*}
$$

Strong Convexity

- suppose
- f is twice differentiable and strongly convex
- thus,

$$
\begin{equation*}
\exists m>0 \text { s.t } \nabla^{2} f(x)-m I \succeq 0 \text { for all } x \tag{13}
\end{equation*}
$$

- from (46)

$$
\begin{align*}
f(x)= & f(y)+\nabla f(y)^{\top}(x-y)+ \tag{14}\\
& \quad \int_{0}^{1} \int_{0}^{t}(x-y)^{\top} \nabla^{2} f(y+\tau(x-y))(x-y) d \tau d t \tag{15}\\
\geq & f(y)+\nabla f(y)^{\top}(x-y)+ \\
& m \int_{0}^{1} \int_{0}^{t}(x-y)^{\top}(x-y) d \tau d t \tag{16}\\
= & f(y)+\nabla f(y)^{\top}(x-y)+(m / 2)\|x-y\|^{2} \tag{17}\\
= & g(x \mid y) \tag{18}
\end{align*}
$$

Examples

Landweber's Method

- consider a positive definite matrix $A \in \mathbb{S}^{n}$
- we have to find the solution x^{\star} for $A x=-b$
- the task requires order of n^{3} flops
- A^{-1} is to be computed
- if n is very large the task may be computationally challending
- but we may rely on MM principle \rightarrow avoid matrix inversion
- note that

$$
\begin{equation*}
x^{\star}=\underset{x}{\arg \min } f(x)=(1 / 2) x^{\top} A x+b^{\top} x \tag{19}
\end{equation*}
$$

- moreover, we have ${ }^{3}$

$$
\begin{align*}
\|\nabla f(x)-\nabla f(y)\| & \leq \lambda_{\max }(A)\|x-y\| \tag{20}\\
& \leq\|A\|_{*}\|x-y\| \tag{21}
\end{align*}
$$

where $\|\cdot\|_{*}$ is any matrix norm
${ }^{3}$ See p. 497, Matrix Analysis and Applied Linear Algebra by C. D. Meyer, 2000.

- thus, with any $\rho>\|A\|_{*}$, we have

$$
\begin{align*}
f(x) & \leq f\left(x^{(n)}\right)+\nabla f\left(x^{(n)}\right)^{\top}\left(x-x^{(n)}\right)+\frac{\rho}{2}\left\|x-x^{(n)}\right\|^{2} \tag{22}\\
& =g\left(x \mid x^{(n)}\right) \tag{23}
\end{align*}
$$

- x can be updated as

$$
\begin{align*}
x^{(n+1)} & =x^{(n)}-(1 / \rho) \nabla f\left(x^{(n)}\right) \tag{24}\\
& =x^{(n)}-(1 / \rho)\left(A x^{(n)}+b\right) \tag{25}
\end{align*}
$$

- what if A is positive semidefinite? indefinite? not symmetric?

Jacobi Iterations

- symmetric matrix D and N with positive definite $D+N$
- we have to find the solution x^{\star} for $(D+N) x=-b$
- note that

$$
\begin{equation*}
x^{\star}=\underset{x}{\arg \min } f(x)=(1 / 2) x^{\top}(D+N) x+b^{\top} x \tag{26}
\end{equation*}
$$

- e.g., computing the Newton step for

$$
\begin{equation*}
f(x)=\sum_{i=1}^{N} f_{i}\left(x_{i}\right)+r(A x-b) \tag{27}
\end{equation*}
$$

$x \in \mathbb{R}^{M}, A \in \mathbb{R}^{p \times M}, b \in \mathbb{R}^{p}, r$ is a regularization function

- Newton's step Δx_{nt} for f at x is given by

$$
\begin{equation*}
\nabla^{2} f(x) \Delta x_{\mathrm{nt}}=-\nabla f(x) \tag{28}
\end{equation*}
$$

- the Hessian $\nabla^{2} f(x)$ is of the form

$$
\begin{equation*}
\nabla^{2} f(x)=D+N \tag{29}
\end{equation*}
$$

- identify D and $N \rightarrow$ structured matrix $+N$
- e.g., continues ..
- if N is low rank \rightarrow things can be handled efficiently
- if N is not 'sufficiently' low rank \rightarrow apply MM principle
- find $L>\|N\|_{*}$ and majorize $(1 / 2) x^{\top} N x$
- thus f is majorized
more specifically, we have

$$
\begin{align*}
f(x) & =(1 / 2) x^{\top}(D+N) x+b^{\top} x \tag{30}\\
& =(1 / 2) x^{\top} D x+b^{\top} x+(1 / 2) x^{\top} N x \tag{31}\\
& \leq(1 / 2) x^{\top} D x+b^{\top} x+g\left(x \mid x^{(n)}\right) \tag{32}
\end{align*}
$$

since $(1 / 2) x^{\top} N x \leq g\left(x \mid x^{(n)}\right)$, where

$$
g\left(x \mid x^{(n)}\right)=(\rho / 2)\left\|x-x^{(n)}\right\|^{2}+x^{(n) \top} N x-(1 / 2) x^{(n) \top} N x^{\top}
$$

- x can be updated as

$$
\begin{equation*}
x^{(n+1)}=(D+\rho I)^{-1}\left(\rho x^{(n)}-N x^{(n)}-b\right) \tag{33}
\end{equation*}
$$

- $(D+\rho I)$ is efficiently invertible \rightarrow has a rich structure
- e.g., block diagonal

Nonnegative Quadratic Programming

The Related Problem

- consider the following problem

$$
\begin{array}{ll}
\text { minimize } & (1 / 2) x^{\top} R x+s^{\top} x \\
\text { subject to } & C x \preceq d
\end{array}
$$

- $x \in \mathbb{R}^{N}$, positive definite R, suppose it has some structure
- $C \in \mathbb{R}^{p \times N}, d \in \mathbb{R}^{p}$
- Lagrangian L is given by

$$
\begin{equation*}
L(x, \mu)=(1 / 2) x^{\top} R x+s^{\top} x+\mu^{\top}(C x-d) \tag{34}
\end{equation*}
$$

$\mu \in \mathbb{R}^{p}$

- minimizer $x(\mu)$ of the Lagrangian is given by

$$
\begin{equation*}
x(\mu)=-R^{-1}\left(s+C^{\top} \mu\right) \tag{35}
\end{equation*}
$$

- dual function h is given by

$$
\begin{equation*}
h(\mu)=-(1 / 2) \mu^{\top} P \mu+q^{\top} \mu+r \tag{36}
\end{equation*}
$$

where

$$
P=C R^{-1} C^{\top}, \quad q=-\left(d+C R^{-1} s\right), \quad r=-\frac{1}{2} s^{\top} R^{-1} s
$$

- P lacks any structure even if R does

Dual Problem

- dual problem is given by

$$
\begin{array}{ll}
\text { maximize } & h(\mu)=-(1 / 2) \mu^{\top} P \mu+q^{\top} \mu+r \\
\text { subject to } & \mu \succeq 0
\end{array}
$$

- how to solve the dual problem?
- interior-point methods ${ }^{4} \rightarrow$ recall P lacks any structure
- not easily implemented for large P
- coordinate descent
- MM principle
${ }^{4}$ See § 11.3.1 of Convex Optimization by S. Boyd and L. Vandenberghe, 2004.

Coordinate Descent to Solve the Dual

- restrict h to a line $\mathcal{L}_{i}=\left\{\mu^{(n)}+t e_{i} \mid t \in \mathbb{R}\right\}$
- minimize h over the restriction $\mathcal{L}_{i}{ }^{5}$

$$
\underset{t \in \mathbb{R}}{\operatorname{maximize}} \quad h_{i}(t)=h\left(\mu^{(n)}+t e_{i}\right)
$$

- we can unfold $h\left(\mu^{(n)}+t e_{i}\right)$ in a straightforward manner, i.e., ${ }^{6}$

$$
\begin{aligned}
h_{i}(t) & =-(1 / 2)\left(\mu^{(n)}+t e_{i}\right)^{\top} P\left(\mu^{(n)}+t e_{i}\right)+q^{\top}\left(\mu^{(n)}+t e_{i}\right) \\
& =-\left(P_{i i} / 2\right) t^{2}+\left(q_{i}-\sum_{k=1}^{p} P_{i k} \mu_{i}^{(n)}\right) t+\text { irrelevant const. }
\end{aligned}
$$

[^0]- compute the derivative h_{i}^{\prime} of h to determine t^{\star}, i.e.,

$$
-P_{i i} t+\left(q_{i}-\sum_{k=1}^{p} P_{i k} \mu_{i}^{(n)}\right)=0 \Longrightarrow t^{\star}=\frac{q_{i}-\sum_{k=1}^{p} P_{i k} \mu_{i}^{(n)}}{p_{i i}}
$$

- so the i th coordinate of current $\mu^{(n)}$ is updated as

$$
\begin{aligned}
\mu_{i}^{(n)} & :=\mu_{i}^{(n)}+t^{\star} \\
& =\mu_{i}^{(n)}+\frac{1}{p_{i i}}\left(q_{i}-\sum_{k=1}^{p} P_{i k} \mu_{i}^{(n)}\right)
\end{aligned}
$$

- $\mu \succeq 0$ can be assimilated as?

$$
\mu_{i}^{(n)}:=\max \left\{0, \mu_{i}^{(n)}+\frac{1}{p_{i i}}\left(q_{i}-\sum_{k=1}^{p} P_{i k} \mu_{i}^{(n)}\right)\right\}
$$

- iterate from $i=1$ to $i=p$ and cycles back to $i=1$

Algorithm 1 Coordinate Decent

Input: $\mu^{(0)} \succeq 0, n=0$
1: while a stopping criterion true do
2: \quad for $i \leftarrow 1$ to p do
3: $\quad \mu_{i}^{(n)} \leftarrow \max \left\{0, \mu_{i}^{(n)}+\frac{1}{p_{i i}}\left(q_{i}-\sum_{k=1}^{p} P_{i k} \mu_{i}^{(n)}\right)\right\}$
4: end for
5: $\quad \mu^{(n+1)}=\mu^{(n)}$ and $n \leftarrow n+1$
6: end while
7: return $\mu^{(n+1)}$

- then the solution is given by (35) with $\mu=\mu^{(n+1)}$
- recall the objective function ${ }^{7}$

$$
\begin{array}{rl}
h(\mu)=- & \frac{1}{2} \sum_{i=1}^{N} P_{i i} \mu_{i}^{2}+\sum_{i=1}^{N} q_{i} \mu_{i} \\
& -\frac{1}{2} \sum_{\left\{i, j \mid i \neq j, P_{i j} \geq 0\right\}} P_{i j} \mu_{i} \mu_{j}-\frac{1}{2} \sum_{\left\{i, j \mid i \neq j, P_{i j}<0\right\}} P_{i j} \mu_{i} \mu_{j} \\
=- & \frac{1}{2} \sum_{i=1}^{N} P_{i i} \mu_{i}^{2}+\sum_{i=1}^{N} q_{i} \mu_{i} \\
& -\frac{1}{2} \sum_{\left\{i, j \mid i \neq j, P_{i j} \geq 0\right\}} P_{i j} \mu_{i} \mu_{j}+\frac{1}{2} \sum_{\left\{i, j \mid i \neq j, P_{i j}<0\right\}}\left|P_{i j}\right| \mu_{i} \mu_{j} \\
\geq- & \frac{1}{2} \sum_{i=1}^{N} P_{i i} \mu_{i}^{2}+\sum_{i=1}^{N} q_{i} \mu_{i} \\
& -\frac{1}{2} \sum_{\left\{i, j \mid i \neq j, P_{i j} \geq 0\right\}} P_{i j}\left[\frac{\mu_{i}^{(n)}}{2 \mu_{j}^{(n)}} \mu_{j}^{2}+\frac{\mu_{j}^{(n)}}{2 \mu_{i}^{(n)}} \mu_{i}^{2}\right] \\
& +\frac{1}{2} \sum_{\left\{i, j \mid i \neq j, P_{i j}<0\right\}}\left|P_{i j}\right| \mu_{i}^{(n)} \mu_{j}^{(n)}\left[1+\ln \left(\frac{\mu_{i}}{\mu_{i}^{(n)}}\right)+\ln \left(\frac{\mu_{j}}{\mu_{j}^{(n)}}\right)\right] \\
=g & g\left(\mu \mid \mu^{(n)}\right)
\end{array}
$$

${ }^{7}$ The constant r is dropped since it is irrelevant.

- here the last inequality follows from

$$
\mu_{i} \mu_{j} \leq \frac{\mu_{i}^{(n)}}{2 \mu_{j}^{(n)}} \mu_{j}^{2}+\frac{\mu_{j}^{(n)}}{2 \mu_{i}^{(n)}} \mu_{i}^{2}
$$

and

$$
-\mu_{i} \mu_{j} \leq-\mu_{i}^{(n)} \mu_{j}^{(n)}\left[1+\ln \left(\frac{\mu_{i}}{\mu_{i}^{(n)}}\right)+\ln \left(\frac{\mu_{j}}{\mu_{j}^{(n)}}\right)\right]
$$

- compute the derivative $g^{\prime}\left(\cdot \mid \mu^{(n)}\right)$ of $g^{\prime}\left(\cdot \mid \mu^{(n)}\right)$ to yield

$$
\begin{aligned}
& {\left[\sum_{\left\{i \mid P_{k i}>0\right\}}\left(\mu_{i}^{(n)} / \mu_{k}^{(n)}\right) P_{k i}\right] \mu_{k}} \\
& \quad-\left[\sum_{\left\{i \mid P_{k i}<0\right\}} \mu_{i}^{(n)} \mu_{k}^{(n)}\left|P_{k i}\right|\right] \frac{1}{\mu_{k}}-q_{k}=0 \\
& \Longrightarrow \alpha \mu_{k}^{2}+\beta \mu_{k}+\gamma \text { form } \\
& \Longrightarrow \text { take the positive root as } \mu_{k}^{(n+1)}
\end{aligned}
$$

- in particular we get

$$
\mu_{k}^{(n+1)}=\frac{q_{k}+\sqrt{q_{k}^{2}+4\left[\sum_{\left\{i \mid P_{k i}>0\right\}} \mu_{i}^{(n)} P_{k i}\right]\left[\sum_{\left\{i \mid P_{k i}<0\right\}} \mu_{i}^{(n)}\left|P_{k i}\right|\right]}}{\left[\sum_{\left\{i \mid P_{k i}>0\right\}} \mu_{i}^{(n)} P_{k i}\right]}
$$

- iterates can be perform in parallel

Algorithm 2 MM Principle
Input: $\mu^{(0)} \succeq 0, n=0$
1: while a stopping criterion true do
2: $\quad \forall k, \mu_{k}^{(n+1)}$ is computed from (37) and $n \leftarrow n+1$
3: end while
4: return $\mu^{(n+1)}$

- then the solution is given by (35) with $\mu=\mu^{(n+1)}$
- main differences between MM based algorithm and the coordinate descent?

Arithmetic-Geometric Mean Inequality

A Majorization to Monomials

- weighted arithmetic-geometric mean inequality

$$
\begin{equation*}
\prod_{i=1}^{p} x_{i}^{\alpha_{i}} \leq \sum_{i=1}^{p} \alpha_{i} x_{i} \quad \text { for all } \quad x \succeq 0 \tag{38}
\end{equation*}
$$

- α_{i} are given, $\alpha_{i}>0^{8}$ and $\sum_{i} \alpha_{i}=1$
- (38): a majorization to $\prod_{i=1}^{p} x_{i}^{\alpha_{i}}$ at $\left\{\gamma 1 \in \mathbb{R}^{p} \mid \gamma \in \mathbb{R}_{+}\right\}$
- a majorization function to $\prod_{i=1}^{p} x_{i}^{\beta_{i}}$ at
- arbitrary $y \succeq 0$ when $\beta \succ 0$?
${ }^{8}$ If $\alpha_{i}=0$, the corresponding x_{i} is irrelevant.

A General Majorization Function

- let $\beta_{\text {sum }}=\sum_{i} \beta_{i}$
- substitute $x_{i} \leftarrow\left(x_{i} / y_{i}\right)^{\beta_{\text {sum }}}$ and $\alpha_{i} \leftarrow \beta_{i} / \beta_{\text {sum }}$ in (38)
- thus, we get

$$
\begin{aligned}
\prod_{i=1}^{p} x_{i}^{\beta_{i}} & \leq\left[\prod_{i=1}^{p} y_{i}^{\beta_{i}}\right]\left[\sum_{i=1}^{p} \frac{\beta_{i}}{\beta_{\text {sum }}}\left(\frac{x_{i}}{y_{i}}\right)^{\beta_{\mathrm{sum}}}\right] \text { for all } x \succeq 0 \\
& =g(x \mid y) \quad \text { for all } x \succeq 0
\end{aligned}
$$

A Minorization to Monomials

- we rely on the supporting hyperplane inequality

$$
\begin{equation*}
\log z \leq z-1 \quad \text { for } \quad \text { all } \quad z \in \mathbb{R}_{++} \tag{39}
\end{equation*}
$$

- suppose $\beta \succeq 0$ is given, $x_{i}>0$
- substitute $z=\prod_{i=1}^{p}\left(x_{i} / y_{i}\right)^{\beta_{i}}$ in (39), i.e.,

$$
\begin{aligned}
\prod_{i=1}^{p} x_{i}^{\beta_{i}} & \geq \prod_{i=1}^{p} y_{i}^{\beta_{i}}\left[1+\sum_{i=1}^{p} \beta_{i} \ln \left(x_{i} / y_{i}\right)\right] \quad \text { for all } x \succ 0 \\
& =\prod_{i=1}^{p} y_{i}^{\beta_{i}}\left[1+\sum_{i=1}^{p} \beta_{i} \ln x_{i}-\sum_{i=1}^{p} \beta_{i} \ln y_{i}\right] \\
& =g(x \mid y)
\end{aligned}
$$

ExAmples

A Majorization to A Signomial

- consider the signomial f

$$
\begin{equation*}
f(x)=\frac{1}{x_{1}^{3}}+\frac{3}{x_{1} x_{2}^{2}}+x_{1} x_{2}-\sqrt{x_{1} x_{2}} \tag{40}
\end{equation*}
$$

- majorization function to f at y ?

$$
\begin{aligned}
& \text { - } 1 /\left(x_{1} x_{2}^{2}\right) \leq y_{1}^{2} /\left(3 y_{2}^{2} x_{1}^{3}\right)+\left(2 y_{2}\right) /\left(3 y_{1} x_{2}^{3}\right) \\
& -x_{1} x_{2} \leq\left(y_{2} x_{1}^{2}\right) /\left(2 y_{1}\right)+\left(y_{1} x_{2}^{2}\right) /\left(2 y_{2}\right) \\
& -\sqrt{x_{1} x_{2}} \geq(1 / 2) \sqrt{y_{1} y_{2}}\left(2+\ln x_{1}+\ln x_{2}-\ln y_{1}-\ln y_{2}\right)
\end{aligned}
$$

Appendices

Composition with Affine Function

- suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable
- then define $\tilde{f}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\tilde{f}(\tau)=f(a+\tau b)
$$

is differentiable and ${ }^{9}$

$$
\begin{equation*}
\tilde{f}^{\prime}(\tau)=\frac{d \tilde{f}(\tau)}{d \tau}=\nabla f(a+\tau b)^{\top} b \tag{41}
\end{equation*}
$$

[^1]
Composition with Affine Function

- suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice differentiable
- then $\tilde{f}\left[c f\right.$. (41)] is twice differentiable and ${ }^{10}$

$$
\begin{equation*}
\tilde{f}^{\prime \prime}(\tau)=\frac{d^{2} \tilde{f}(\tau)}{d \tau^{2}}=b^{\top} \nabla^{2} f(a+\tau b) b \tag{42}
\end{equation*}
$$

Newton-Leibniz Formula

- recall $\tilde{f}(\tau)=f(a+\tau b)$
- let us apply Newton-Leibniz formula ${ }^{11}$

$$
\begin{equation*}
\tilde{f}(1)=\tilde{f}(0)+\int_{0}^{1} \tilde{f}^{\prime}(t) d t \tag{43}
\end{equation*}
$$

- thus from (41), (43) becomes

$$
\begin{equation*}
f(a+b)=f(a)+\nabla f(a)^{\top} b+\int_{0}^{1} \nabla f(a+t b)^{\top} b d t \tag{44}
\end{equation*}
$$

${ }^{11}$ Based on elementary classical analysis.

Taylor with the Integral Remainder

- Taylor formula with the integral remainder
- recall $\tilde{f}(\tau)=f(a+\tau b)$
- we have ${ }^{12}$

$$
\begin{equation*}
\tilde{f}(1)=\tilde{f}(0)+\tilde{f}^{\prime}(0)+\int_{0}^{1} \int_{0}^{t} \tilde{f}^{\prime \prime}(\tau) d \tau d t \tag{45}
\end{equation*}
$$

- thus from (41) and (42), (45) becomes

$$
\begin{equation*}
f(a+b)=f(a)+\nabla f(a)^{\top} b+\int_{0}^{1} \int_{0}^{t} b^{\top} \nabla^{2} f(a+\tau b) b d \tau d t \tag{46}
\end{equation*}
$$

[^0]: ${ }^{5}$ Let us first ignore the constrain $\mu \succeq 0$ and assimilate it later.
 ${ }^{6}$ The constant r is dropped since it is irrelevant.

[^1]: ${ }^{9}$ see § A.4.2 of Convex Optimization by S. Boyd and L. Vandenberghe, 2004.

