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LECTURE 3: KEY INEQUALITIES FOR MM (PART II)



QUADRATIC UPPER BOUND PRINCIPLE



Quadratic Upper Bound Principle

» key mechanisms

» majorization via gradient Lipschitz continuity
» majorization via bounded Hessian

» minorization via strong convexity



Gradient Lipschitz Continuity

P suppose

» fis differentiable

» gradient Lipschitz continuous with constant L, i.e.,

IVf(x) = VIl < Lljz — y|| for all z,y (1)



> from (44) 1

fm»:f@y+1;vﬂy+ux—y»Wx—yMt )
=fly) + V) (z—y)+
/ Vi +t— ) - Vi) @ —dt (3)

< f) + V)@ — )t
(/HVf@+tx_ ~ VWl — v)lde (4)
1
sﬂm+Vﬂw<m—w+Lm—m2Atdt (5)

=)+ VW) (@ —y) + (L/2)z —ylI> = glzly) (6)

1See page 34 and substitute a =y and b=z — 3.



Bounded Hessian

P suppose

» fis twice differentiable
» f has bounded Hessians, i.e.,

3B >=0stB—V?f(x) =0forall z



> from (46) 2
f@)=fy) + Vi) (= —y)+ (8)
// v — )TV f (g + (@ — y))(x —y) drdt (9)
Y) + Vi) (@ —y)+

/‘/ z—y) Bz —y) drdt (10)

V) + Vi) (@ —y) +(1/2)(z—y) Bz -y) (11)
(ﬂw (12)

2See page 35 and substitute a =y and b=z — ¥.



Strong Convexity

P> suppose

» f is twice differentiable and strongly convex

» thus,
Im>0st Vf(x) —ml =0 for all = (13)



> from (46)

fl@)=fy) + Vi) (@ —y)+

/ / W)V (y+ (@ - ) (@ -

y)+ V) (@ —y)+

m// x—y) (x—y)drdt

= f(y) + VW) (x —y) + (m/2) |z - y|
= g(zly)

(14)

y) drdt (15)

(16)

(17)
(18)



EXAMPLES



Landweber's Method

» consider a positive definite matrix A € S”
» we have to find the solution z* for Ax = —b

> the task requires order of n? flops

» A~ is to be computed

» if n is very large the task may be computationally challending

» but we may rely on MM principle — avoid matrix inversion



» note that

o = argmin f(z) = (1/2) 2 Az + bz (19)
» moreover, we have 3
IV (@) = VIl < Anax(A) [l = yll (20)
< [[Allllz =yl (21)
where || - ||« is any matrix norm

3See p. 497, Matrix Analysis and Applied Linear Algebra by C. D. Meyer,
2000.



» thus, with any p > ||A||, we have

F@) < F@) + 97 @) (@ - 2™) + Dl - 202 (22)
= g(z|=") (23)
» 2z can be updated as

2D = 2™ — (1/p)V f (1) (24)
=2 — (1/p)(Az™ +b) (25)

» what if A is positive semidefinite? indefinite? not symmetric?



Jacobi lterations

» symmetric matrix D and N with positive definite D + N
» we have to find the solution z* for (D + N)z = —b

> note that

o = argmin f(z) = (1/2) 2" (D + N)z +b'x (26)



» e.g., computing the Newton step for

N
fl@) = fil:) +r(Az —b) (27)
=1

zeRM AcRPM bcIRP, ris a regularization function

» Newton's step Axy, for f at z is given by
V2 f(2)Azny = =V f(2) (28)
> the Hessian V2f(x) is of the form
Vif(x)=D+ N (29)

» identify D and N — structured matrix +N



> e.g., continues ..

» if N is low rank — things can be handled efficiently

» if N is not ‘sufficiently’ low rank — apply MM principle
» find L > ||N||, and majorize (1/2) 2" Nz

» thus f is majorized



» more specifically, we have

fx)=1/2) 2"(D+ N)z+b'x (30)
=(1/2) 2" Dz +b"z+ (1/2) "Nz (31)
< (1/2) 2" Dx + bz + g(x|z™) (32)

since (1/2) 2" Nz < g(z|z(™), where

g(efz™) = (p/2)l|lz — 2™ |? + 2™ TN — (1/2)e TN



» x can be updated as
") = (D + pI) ™! (px(") — Nz™ — b) (33)
» (D + pl) is efficiently invertible — has a rich structure

> e.g., block diagonal



NONNEGATIVE QUADRATIC PROGRAMMING



The Related Problem

> consider the following problem

minimize  (1/2)z" Rz +s'x
subject to Czx <d

» 2 € RY, positive definite R, suppose it has some structure
> C e RPN, deRP
» Lagrangian L is given by
L(z,p) = (1/2)z"Re + s x + " (Cx — d) (34)

u e R?P



» minimizer z(u) of the Lagrangian is given by
#(p) = =R~ (s +CTp)
» dual function h is given by
h(p) = =(1/2)p " Pu+q p+r

where

P=CR'CT, ¢g=—-(d+CR™s), r=—=

» P lacks any structure even if R does



DuaL PROBLEM

» dual problem is given by

maximize h(p) = —(1/2)u"Pu+q p+r
subjectto p© >0

» how to solve the dual problem?
» interior-point methods # — recall P lacks any structure
» not easily implemented for large P

» coordinate descent

» MM principle

*See § 11.3.1 of Convex Optimization by S. Boyd and L. Vandenberghe,
2004.



COORDINATE DESCENT TO SOLVE THE DUAL
P restrict h to a line £; = {,u(”) + te; ’ t e ]R}

» minimize h over the restriction £; °

maximize h;(t) = h(u™ + te;)
teR

» we can unfold h(u(”) +te;) in a straightforward manner, i.e., ©

hi(t) = =(1/2) (1" +te) TP(u™ +teg) + ¢ (ut™ + te;)
= —(P;/2) t* + (qi -3 Pikul(-")> t + irrelevant const.

®Let us first ignore the constrain 1 > 0 and assimilate it later.
®The constant r is dropped since it is irrelevant.



» compute the derivative h; of h to determine t*, i.e.,

qi— Zi:l Pik//«gn)

—Pt+ (Qi_ Zizl Rk#gn)) =0 = t*= i
it

> so the ith coordinate of current 1™ is updated as

,U,Z(»n) = ugn) +t*
n 1 n
=i+ o <Qi_ Py P )>

» 1 > 0 can be assimilated as?

" n 1 n
,UE ) = maX{O,ME ) +— (CZi_ ZZ:1 Pikﬂg )>}

K24



P iterate from ¢ =1 to ¢ = p and cycles back to i =1

Algorithm 1 Coordinate Decent

Input: ,u(o) =0,n=0

1: while a stopping criterion true do

2: for i < 1 to p do

n n 1 n
3: i max {O,ME ot o (Qi_ S0 P ))}
4 end for

5: p D = 4™ and no—n +1
6: end while
7: return (D)

> then the solution is given by (35) with = p(+1)



MM PRINCIPLE TO SOLVE THE DUAL

» recall the objective function ’
h(p) = —3 Sy P+ 0 i
= 2 i glins Py 20) Pittitti = 3 X iz, Py <o) Piittitt
= 5 i Pand + 0L dir
— 5 (il Py>0y Pty F 3 2 g iy <oy | Pl
-3 SNy P + o0 i

)
*% > Pij [ ) “J + }
{i,4]i#4,P;; >0}

+% > ’Pw“‘z [14—111( (n)>+1n<

{i,31i#3,P;;<0}

= g(plu™)

v

)

"The constant r is dropped since it is irrelevant.



» here the last inequality follows from

(n) (n)
\ 7y

Pitty < 'ul(n) 15+ J(n)
24 24

1—|—ln< lé;) +In (%)]
w; My

I

and

— ity < —ugn)pé-”)




> compute the derivative ¢'( - |u™) of ¢/( - |u(™) to yield

(5™ ™) P | e

> ™™ Pl
(i| P <0}

= au% + Buk +y  form

1
— —q =0
Kk

— take the positive root as u,(cnﬂ)



P in particular we get

qr + J qﬁ +4
M(n+1) _

{il P >0}

Z MER)P ki

> ME”) | Pl
{i| Pr; <0}

k

|

> ME”) Py;
{i|Px;>0}

(37)



> iterates can be perform in parallel

Algorithm 2 MM Principle

Input: ,u,(o) ~0,n=0

while a stopping criterion true do

vk, u,(C"H) is computed from (37) and n +n + 1
end while
return p (1)

Sl

> then the solution is given by (35) with p = p(*+1)

» main differences between MM based algorithm and the
coordinate descent?



ARITHMETIC- GEOMETRIC MEAN INEQUALITY



A Majorization to Monomials

> weighted arithmetic-geometric mean inequality

P aft <SP oumy for all z=0 (38)
> «; are given, o;; > 0 8 and Yua=1
> (38): a majorization to [[%_; 2" at {71 € R? | v € R4}

» a majorization function to [[;_, ;

» arbitrary y = 0 when 3 > 07

8f iy = 0, the corresponding x; is irrelevant.



A GENERAL MAJORIZATION FUNCTION

> let Bsunm = Zz Bi
> substitute z; < (x;/y;)%= and a; < B;/Psun in (38)

P thus, we get

p p 4 8 "y Bsun
fo’ < [H%BZ] lzﬁl (l> ] for all x>0
g

i Yi
(z|ly) for all z >0



A Minorization to Monomials

P> we rely on the supporting hyperplane inequality

logz<z-—1 for all z€ R4y (39)
» suppose 8 = 0 is given, z; > 0
> substitute z = [[b_, (zi/y;)% in (39), i.e

1T >H7, 1yz TP Biln(xi/yi)]  for all =0
= f lyz [ +Z 161 Inz; — Eizl Bi lnyz]
9(zly)



EXAMPLES



A Majorization to A Signomial

> consider the signomial f

1 3
f(I) = ;? + Fx% + 2129 — \/T1T2 (40)

» majorization function to f at y?

> 1/(z123) < y7/Bysa}) + (2y2)/(Byra3)
> z1wy < (y227)/(201) + (1123)/ (2y2)

> Jrizs > (1/2)/yyz2(2+ Inzy + Inzg — Iny; — Inys)



APPENDICES



Composition with Affine Function

» suppose f : IR™ — IR is differentiable
> then define f : IR — IR by

f(r) = fla+7b)

is differentiable and °

fl(r) = =Vf(a+7b)"b (41)

%see § A.4.2 of Convex Optimization by S. Boyd and L. Vandenberghe, 2004.



Composition with Affine Function

» suppose f: IR™ — R is twice differentiable
> then f [cf. (41)] is twice differentiable and °

_2f(r)

g =0TV f(at Thb (42)

()

Vsee § A.4.4 of Convex Optimization by S. Boyd and L. Vandenberghe, 2004.



Newton-Leibniz Formula

> recall f(7) = f(a+ 7b)
» let us apply Newton-Leibniz formula 1

=i+ [ 7o @3)
» thus from (41), (43) becomes

f(a+b) = f(a)+ Vf(a) b+ /01 Vila+th)Tbdt (44)

1Based on elementary classical analysis.



Taylor with the Integral Remainder

» Taylor formula with the integral remainder

> recall f(7) = f(a+ 7b)

» we have 12

1) = f(0) / / J'(r) drat  (45)

» thus from (41) and (42), (45) becomes

1 t
Fla+d) = F(a)+V F(a)Tb+ /0 /0 bTV2f(at7b)b drdt (46)

12Based on elementary classical analysis.



