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Lecture 3: Key Inequalities for MM (Part II)
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Quadratic Upper Bound Principle
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Quadratic Upper Bound Principle

▶ key mechanisms

▶ majorization via gradient Lipschitz continuity

▶ majorization via bounded Hessian

▶ minorization via strong convexity
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Gradient Lipschitz Continuity

▶ suppose

▶ f is differentiable

▶ gradient Lipschitz continuous with constant L, i.e.,

∥∇f(x)−∇f(y)∥ ≤ L||x− y|| for all x, y (1)
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▶ from (44) 1

f(x) = f(y) +

∫ 1

0
∇f
(
y + t(x− y)

)T
(x− y)dt (2)

= f(y) +∇f(y)T(x− y)+∫ 1

0

[
∇f
(
y + t(x− y)

)
−∇f(y)

]T
(x− y)dt (3)

≤ f(y) +∇f(y)T(x− y)+∫ 1

0
∥∇f

(
y + t(x− y)

)
−∇f(y)∥∥(x− y)∥dt (4)

≤ f(y) +∇f(y)T(x− y) + L∥x− y∥2
∫ 1

0
t dt (5)

= f(y) +∇f(y)T(x− y) + (L/2)∥x− y∥2 = g(x|y) (6)

1See page 34 and substitute a = y and b = x− y.
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Bounded Hessian

▶ suppose

▶ f is twice differentiable

▶ f has bounded Hessians, i.e.,

∃ B ≻ 0 s.t B −∇2f(x) ⪰ 0 for all x (7)
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▶ from (46) 2

f(x) = f(y) +∇f(y)T(x− y)+ (8)∫ 1

0

∫ t

0
(x− y)T∇2f

(
y + τ(x− y)

)
(x− y) dτdt (9)

≤ f(y) +∇f(y)T(x− y)+∫ 1

0

∫ t

0
(x− y)TB(x− y) dτdt (10)

= f(y) +∇f(y)T(x− y) + (1/2)(x− y)TB(x− y) (11)

= g(x|y) (12)

2See page 35 and substitute a = y and b = x− y.
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Strong Convexity

▶ suppose

▶ f is twice differentiable and strongly convex

▶ thus,
∃ m > 0 s.t ∇2f(x)−mI ⪰ 0 for all x (13)
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▶ from (46)

f(x) = f(y) +∇f(y)T(x− y)+ (14)∫ 1

0

∫ t

0
(x− y)T∇2f

(
y + τ(x− y)

)
(x− y) dτdt (15)

≥ f(y) +∇f(y)T(x− y)+

m

∫ 1

0

∫ t

0
(x− y)T(x− y) dτdt (16)

= f(y) +∇f(y)T(x− y) + (m/2)∥x− y∥2 (17)

= g(x|y) (18)
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Examples
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Landweber’s Method

▶ consider a positive definite matrix A ∈ Sn

▶ we have to find the solution x⋆ for Ax = −b

▶ the task requires order of n3 flops

▶ A−1 is to be computed

▶ if n is very large the task may be computationally challending

▶ but we may rely on MM principle → avoid matrix inversion
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▶ note that

x⋆ = argmin
x

f(x) = (1/2) xTAx+ bTx (19)

▶ moreover, we have 3

∥∇f(x)−∇f(y)∥ ≤ λmax(A) ∥x− y∥ (20)

≤ ∥A∥∗∥x− y∥ (21)

where ∥ · ∥∗ is any matrix norm

3See p. 497, Matrix Analysis and Applied Linear Algebra by C. D. Meyer,
2000.
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▶ thus, with any ρ > ∥A∥∗, we have

f(x) ≤ f
(
x(n)

)
+∇f

(
x(n)

)T(
x− x(n)

)
+

ρ

2
∥x− x(n)∥2 (22)

= g
(
x|x(n)

)
(23)

▶ x can be updated as

x(n+1) = x(n) − (1/ρ)∇f
(
x(n)

)
(24)

= x(n) − (1/ρ)
(
Ax(n) + b

)
(25)

▶ what if A is positive semidefinite? indefinite? not symmetric?
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Jacobi Iterations

▶ symmetric matrix D and N with positive definite D +N

▶ we have to find the solution x⋆ for (D +N)x = −b

▶ note that

x⋆ = argmin
x

f(x) = (1/2) xT(D +N)x+ bTx (26)
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▶ e.g., computing the Newton step for

f(x) =

N∑
i=1

fi(xi) + r(Ax− b) (27)

x ∈ IRM , A ∈ IRp×M , b ∈ IRp, r is a regularization function

▶ Newton’s step ∆xnt for f at x is given by

∇2f(x)∆xnt = −∇f(x) (28)

▶ the Hessian ∇2f(x) is of the form

∇2f(x) = D +N (29)

▶ identify D and N → structured matrix +N
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▶ e.g., continues ..

▶ if N is low rank → things can be handled efficiently

▶ if N is not ‘sufficiently’ low rank → apply MM principle

▶ find L > ∥N∥∗ and majorize (1/2) xTNx

▶ thus f is majorized
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▶ more specifically, we have

f(x) = (1/2) xT(D +N)x+ bTx (30)

= (1/2) xTDx+ bTx+ (1/2) xTNx (31)

≤ (1/2) xTDx+ bTx+ g(x|x(n)) (32)

since (1/2) xTNx ≤ g(x|x(n)), where

g(x|x(n)) = (ρ/2)∥x− x(n)∥2 + x(n)TNx− (1/2)x(n)TNxT
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▶ x can be updated as

x(n+1) = (D + ρI)−1
(
ρx(n) −Nx(n) − b

)
(33)

▶ (D + ρI) is efficiently invertible → has a rich structure

▶ e.g., block diagonal
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Nonnegative Quadratic Programming
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The Related Problem

▶ consider the following problem

minimize (1/2)xTRx+ sTx
subject to Cx ⪯ d

▶ x ∈ IRN , positive definite R, suppose it has some structure

▶ C ∈ IRp×N , d ∈ IRp

▶ Lagrangian L is given by

L(x, µ) = (1/2)xTRx+ sTx+ µT(Cx− d) (34)

µ ∈ IRp
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▶ minimizer x(µ) of the Lagrangian is given by

x(µ) = −R−1(s+ CTµ) (35)

▶ dual function h is given by

h(µ) = −(1/2)µTPµ+ qTµ+ r (36)

where

P = CR−1CT, q = −(d+ CR−1s), r = −1

2
sTR−1s

▶ P lacks any structure even if R does
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Dual Problem

▶ dual problem is given by

maximize h(µ) = −(1/2)µTPµ+ qTµ+ r
subject to µ ⪰ 0

▶ how to solve the dual problem?

▶ interior-point methods 4 → recall P lacks any structure

▶ not easily implemented for large P

▶ coordinate descent

▶ MM principle

4See § 11.3.1 of Convex Optimization by S. Boyd and L. Vandenberghe,
2004.
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Coordinate Descent to Solve the Dual

▶ restrict h to a line Li =
{
µ(n) + tei

∣∣ t ∈ IR
}

▶ minimize h over the restriction Li 5

maximize
t∈IR

hi(t) = h(µ(n) + tei)

▶ we can unfold h(µ(n)+ tei) in a straightforward manner, i.e., 6

hi(t) = −(1/2)(µ(n) + tei)
TP (µ(n) + tei) + qT(µ(n) + tei)

= −(Pii/2) t
2 +

(
qi −

∑p
k=1 Pikµ

(n)
i

)
t+ irrelevant const.

5Let us first ignore the constrain µ ⪰ 0 and assimilate it later.
6The constant r is dropped since it is irrelevant.
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▶ compute the derivative h′i of h to determine t⋆, i.e.,

−Piit+
(
qi−

∑p
k=1 Pikµ

(n)
i

)
=0 =⇒ t⋆=

qi−
∑p

k=1 Pikµ
(n)
i

pii

▶ so the ith coordinate of current µ(n) is updated as

µ
(n)
i := µ

(n)
i + t⋆

= µ
(n)
i +

1

pii

(
qi−

∑p
k=1 Pikµ

(n)
i

)
▶ µ ⪰ 0 can be assimilated as?

µ
(n)
i := max

{
0, µ

(n)
i +

1

pii

(
qi−

∑p
k=1 Pikµ

(n)
i

)}
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▶ iterate from i = 1 to i = p and cycles back to i = 1

Algorithm 1 Coordinate Decent

Input: µ(0) ⪰ 0, n = 0

1: while a stopping criterion true do
2: for i← 1 to p do

3: µ
(n)
i ← max

{
0, µ

(n)
i +

1

pii

(
qi−

∑p
k=1 Pikµ

(n)
i

)}
4: end for
5: µ(n+1) = µ(n) and n← n+ 1
6: end while
7: return µ(n+1)

▶ then the solution is given by (35) with µ = µ(n+1)
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MM Principle to Solve the Dual

▶ recall the objective function 7

h(µ) = −1
2

∑N
i=1 Piiµ

2
i +

∑N
i=1 qiµi

− 1
2

∑
{i,j|i ̸=j,Pij≥0} Pijµiµj − 1

2

∑
{i,j|i ̸=j,Pij<0} Pijµiµj

= −1
2

∑N
i=1 Piiµ

2
i +

∑N
i=1 qiµi

− 1
2

∑
{i,j|i ̸=j,Pij≥0} Pijµiµj +

1
2

∑
{i,j|i ̸=j,Pij<0} |Pij |µiµj

≥ −1
2

∑N
i=1 Piiµ

2
i +

∑N
i=1 qiµi

− 1
2

∑
{i,j|i ̸=j,Pij≥0}

Pij

[
µ
(n)
i

2µ
(n)
j

µ2
j +

µ
(n)
j

2µ
(n)
i

µ2
i

]
+ 1

2

∑
{i,j|i ̸=j,Pij<0}

|Pij | µ(n)
i µ

(n)
j

[
1 + ln

(
µi

µ
(n)
i

)
+ ln

(
µj

µ
(n)
j

)]
= g
(
µ|µ(n)

)
7The constant r is dropped since it is irrelevant.



24/35

▶ here the last inequality follows from

µiµj ≤
µ
(n)
i

2µ
(n)
j

µ2
j +

µ
(n)
j

2µ
(n)
i

µ2
i

and

−µiµj ≤ −µ(n)
i µ

(n)
j

[
1 + ln

(
µi

µ
(n)
i

)
+ ln

(
µj

µ
(n)
j

)]
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▶ compute the derivative g′( · |µ(n)) of g′( · |µ(n)) to yield

[ ∑
{i|Pki>0}

(
µ
(n)
i /µ

(n)
k

)
Pki

]
µk

−

[ ∑
{i|Pki<0}

µ
(n)
i µ

(n)
k |Pki|

]
1

µk
− qk = 0

=⇒ αµ2
k + βµk + γ form

=⇒ take the positive root as µ
(n+1)
k
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▶ in particular we get

µ
(n+1)
k =

qk +

√√√√q2k + 4

[ ∑
{i|Pki>0}

µ
(n)
i Pki

][ ∑
{i|Pki<0}

µ
(n)
i |Pki|

]
[ ∑
{i|Pki>0}

µ
(n)
i Pki

]
(37)
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▶ iterates can be perform in parallel

Algorithm 2 MM Principle

Input: µ(0) ⪰ 0, n = 0

1: while a stopping criterion true do

2: ∀ k, µ
(n+1)
k is computed from (37) and n← n+ 1

3: end while
4: return µ(n+1)

▶ then the solution is given by (35) with µ = µ(n+1)

▶ main differences between MM based algorithm and the
coordinate descent?
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Arithmetic-Geometric Mean Inequality
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A Majorization to Monomials

▶ weighted arithmetic-geometric mean inequality∏p
i=1 x

αi
i ≤

∑p
i=1 αixi for all x ⪰ 0 (38)

▶ αi are given, αi > 0 8 and
∑

i αi = 1

▶ (38): a majorization to
∏p

i=1 x
αi
i at {γ1 ∈ IRp | γ ∈ IR+}

▶ a majorization function to
∏p

i=1 x
βi
i at

▶ arbitrary y ⪰ 0 when β ≻ 0?

8If αi = 0, the corresponding xi is irrelevant.
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A General Majorization Function

▶ let βsum =
∑

i βi

▶ substitute xi ← (xi/yi)
βsum and αi ← βi/βsum in (38)

▶ thus, we get

p∏
i=1

xβi
i ≤

[
p∏

i=1

yβi
i

][
p∑

i=1

βi
βsum

(
xi
yi

)βsum
]

for all x ⪰ 0

= g(x|y) for all x ⪰ 0
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A Minorization to Monomials

▶ we rely on the supporting hyperplane inequality

log z ≤ z − 1 for all z ∈ IR++ (39)

▶ suppose β ⪰ 0 is given, xi > 0

▶ substitute z =
∏p

i=1(xi/yi)
βi in (39), i.e.,∏p

i=1 x
βi
i ≥

∏p
i=1 y

βi
i [1 +

∑p
i=1 βi ln (xi/yi)] for all x ≻ 0

=
∏p

i=1 y
βi
i [1 +

∑p
i=1 βi lnxi −

∑p
i=1 βi ln yi]

= g(x|y)



30/35

Examples
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A Majorization to A Signomial

▶ consider the signomial f

f(x) =
1

x31
+

3

x1x22
+ x1x2 −

√
x1x2 (40)

▶ majorization function to f at y?

▶ 1/(x1x
2
2) ≤ y21/(3y

2
2x

3
1) + (2y2)/(3y1x

3
2)

▶ x1x2 ≤ (y2x
2
1)/(2y1) + (y1x

2
2)/(2y2)

▶ √x1x2 ≥ (1/2)
√
y1y2

(
2 + lnx1 + lnx2 − ln y1 − ln y2

)
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Appendices
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Composition with Affine Function

▶ suppose f : IRn → IR is differentiable

▶ then define f̃ : IR→ IR by

f̃(τ) = f(a+ τb)

is differentiable and 9

f̃ ′(τ) =
df̃(τ)

dτ
= ∇f(a+ τb)Tb (41)

9see § A.4.2 of Convex Optimization by S. Boyd and L. Vandenberghe, 2004.
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Composition with Affine Function

▶ suppose f : IRn → IR is twice differentiable

▶ then f̃ [cf. (41)] is twice differentiable and 10

f̃ ′′(τ) =
d2f̃(τ)

dτ2
= bT∇2f(a+ τb)b (42)

10see § A.4.4 of Convex Optimization by S. Boyd and L. Vandenberghe, 2004.
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Newton-Leibniz Formula

▶ recall f̃(τ) = f(a+ τb)

▶ let us apply Newton-Leibniz formula 11

f̃(1) = f̃(0) +

∫ 1

0
f̃ ′(t) dt (43)

▶ thus from (41), (43) becomes

f(a+ b) = f(a) +∇f(a)Tb+
∫ 1

0
∇f(a+ tb)Tb dt (44)

11Based on elementary classical analysis.
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Taylor with the Integral Remainder

▶ Taylor formula with the integral remainder

▶ recall f̃(τ) = f(a+ τb)

▶ we have 12

f̃(1) = f̃(0) + f̃ ′(0) +

∫ 1

0

∫ t

0
f̃ ′′(τ) dτdt (45)

▶ thus from (41) and (42), (45) becomes

f(a+b) = f(a)+∇f(a)Tb+
∫ 1

0

∫ t

0
bT∇2f(a+τb)b dτdt (46)

12Based on elementary classical analysis.


