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Lecture 2: Key Inequalities for MM (Part I)
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Majorizations and Minorizations

▶ it involves ingenuity and skill

▶ a list helpful majorizations and minorizations

▶ next 2-3 lectures we review a few basic themes

▶ list is still growing
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Jensen’s Inequality
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Jensen’s Inequality

▶ recall: when f is convex, then we have

f
(
αx+ (1− α)y

)
≤ αf(x) + (1− α)f(y), α ∈ [0, 1]

▶ more generally

f
(∑

i αiti
)
≤
∑

i αif(ti), (1)

where
∑

i αi = 1 and αi ≥ 0 for all i
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A Different Useful Form

▶ suppose a ∈ IRN and θ ∈ IRN and all are possitive

▶ in (1), let

αi =
aiθ

(n)
i

aTθ(n)
and ti =

aTθ(n)

θ
(n)
i

θi

▶ then from (1), we get

f
(
aTθ

)
≤

N∑
i=1

aiθ
(n)
i

aTθ(n)
f

(
aTθ(n)

θ
(n)
i

θi

)
(2)

= g
(
θ|θ(n)

)
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Counting with Poisson

▶ probability model: Poisson

▶ it predicts number of events over some period of time

▶ probability that there are y events is given by

pµ(Y = y) =
µye−µ

y!

▶ let µ modeled as an affine function of u ∈ IRN , i.e., µ = θTu

▶ u : the explanatory variable, θ : the model parameter
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Counting with Poisson

▶
(
u(j), y(j)

)
, j = 1, . . . ,m: a number of observations (data)

▶ ML estimate of the model parameters θ ∈ IRN
++?

▶ the likelihood function of data has the form

pθ
(
(u(j), y(j))j

)
=

m∏
j=1

(
θTu(j)

)y(j)
e−θTu(j)

y(j)!

▶ the log-likelihood function f(θ) = log pθ
(
(u(j), y(j))j

)
▶ the log-likelihood function f should be maximized over θ
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Counting with Poisson

▶ let us compute a minorization function:

f(θ) = log pθ
(
(u(j), y(j))j

)
=
∑
j

y(j) log
(
u(j)Tθ

)
− u(j)Tθ − log(y(j)!)

(2)

≥
m∑
j=1

[
y(j)

N∑
i=1

wjin log (sjinθi)− u(j)Tθ

]
+ s

= g(θ|θ(n)),

where

wjin =
ui(j)θ

(n)
i

u(j)Tθ(n)
and sjin =

u(j)Tθ(n)

θ
(n)
i
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Counting with Poisson

▶ as a result of maximizing g(θ|θ(n)), we have

θ
(n+1)
i =

(∑m
j=1 y(j)wjin

)
/
∑m

j=1 ui(j)

▶ for an arbitrary explanatory u ∈ IRN , the Poisson model is

pθ⋆(Y = y) =

(
θ⋆Tu

)y
exp

(
−θ⋆Tu

)
y!

,

where θ⋆ is given by the MM algorithm after the convergence
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Finite Mixture Model

▶ used for 1

▶ categorizing age groups of animals

▶ medical diagnosis and prognosis

▶ latent structure analysis

▶ probability distribution is modeled as

pϕ,π(y) =
c∑

k=1

πk pkϕ(y) (3)

▶ θ = (ϕ, π) = (ϕ, π1, . . . , πc) : the model parameter

1For more examples, see § 2 of Statistical Analysis of Finite Mixture
Distributions by D. M. Titterington, A.F.M. Smith and U.E. Makov, 1985.
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Finite Mixture Model

▶ e.g., Gaussian mixture model

▶ ϕ = (µ1, . . . , µc,Σ1, . . . ,Σc)

▶ pkϕ(·) is a Gaussian density, more specifically

pkϕ(y) =
1√

(2π)l|Σk|
exp

(
−
(y − µk)

TΣ−1
k (y − µk)

2

)
(4)

▶ θ = (µ1, . . . , µc,Σ1, . . . ,Σc, π1, . . . , πc)
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Finite Mixture Model

▶
(
y(j)

)
, j = 1, . . . ,m: a number of observations (data)

▶ ML estimate of the model parameters θ?

▶ the likelihood function of data has the form

pθ
(
(y(j))j

)
=

m∏
j=1

pϕ,π(y(j))

=
m∏
j=1

c∑
k=1

πk pkϕ(y(j))

▶ the log-likelihood function f(θ) = log pθ
(
(y(j))j

)
▶ the log-likelihood function f should be maximized over θ
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Finite Mixture Model
▶ let us compute a minorization function:

f(θ) = log pθ
(
(y(j))j

)
=
∑
j

log

(
c∑

k=1

πk pkϕ(y(j))

)
(2)

≥
m∑
j=1

[
c∑

k=1

wjkn log

(
sjknπk pkϕ(y(j))

)]
= g(θ|θ(n)),

where

wjkn =
π
(n)
k pk,ϕ(n)(y(j))∑c

i=1 π
(n)
i pi,ϕ(n)(y(j))

and sjkn = w−1
jkn
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Finite Mixture Model

▶ let us maximize g(θ|θ(n)) which is given by 2

g(θ|θ(n)) =
c∑

k=1

m∑
j=1

wjkn log πk +

c∑
k=1

m∑
j=1

wjkn log pkϕ(y(j))

=

c∑
k=1

αkn log πk +

c∑
k=1

m∑
j=1

wjkn log pkϕ(y(j))

where αkn =
∑m

j=1wjkn

▶ ϕ and π = (π1, . . . , πc) are separate → maximize separately

2Irrelevant constants are dropped.
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Finite Mixture Model

▶ maximization with respect to π

maximize
∑c

k=1 αkn log πk
subject to

∑c
k=1 πk = 1

πk ≥ 0, k = 1, . . . , c
(5)

▶ closed form solution of the problem above is

π
(n+1)
k = αkn/(

∑c
k̄=1 αk̄n)

=
(∑m

j=1wjkn

)
/m
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Finite Mixture Model

▶ suppose pkϕ is given by (4)

▶ maximization with respect to ϕ = (µ1, . . . , µc,Σ1, . . . ,Σc)

maximize
∑c

k=1

∑m
j=1wjkn log pkϕ(y(j))

subject to Σk ⪰ 0, k = 1, . . . , c
(6)

▶ alternating optimization to solve (6) in closed form

µ
(n+1)
k = (1/m)

∑m
j=1 y(j) ← check! a mistake?

Σ
(n+1)
k =

1∑m
j=1wjkn

m∑
j̄=1

wj̄kn

(
y
(
j̄
)
−µ(n+1)

k

)(
y
(
j̄
)
−µ(n+1)

k

)T
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Finite Mixture Model

▶ as a result of maximizing g(θ|θ(n)), we have

θ
(n+1)
i =

µ
(n+1)
1 , . . . ,Σ

(n+1)
1 , . . .︸ ︷︷ ︸

ϕ(n+1)

, π
(n+1)
1 , . . . , π(n+1)

c︸ ︷︷ ︸
π(n+1)


▶ thus, the pdf model pϕ⋆,π⋆ : IRl → IR is [compare with (3)]

pϕ⋆,π⋆(y) =

c∑
k=1

π⋆
k pkϕ⋆(y)

where θ⋆ = (ϕ⋆, π⋆) is given by the MM algorithm
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Cauchy-Schwarz Inequality
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Cauchy-Schwarz Inequality

▶ suppose x, y ∈ IRN

▶ Cauchy-Schwarz inequality is given by

|yTx| ≤ ||y|| ||x||

▶ i.e., −||y|| ||x|| ≤ yTx ≤ ||y|| ||x||
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MDS

▶ MDS stands for multi dimensional scaling

▶ there are n objects

▶ we are also given their pairwise dissimilarity dij ≥ 0

▶ need to represent n objects by using points in IRp

▶ those points are given by xk ∈ IRp, k = 1, . . . , n
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MDS

▶ we want to compute X ∈ IRp×n, where

X = [x1 · · ·xn]

▶ the variable X is computed by minimizing f where

f(X) =
∑
i

∑
j ̸=i

(dij − ||xi − xj ||)2

=
∑
i

∑
j ̸=i

d2ij +
∑
i

∑
j ̸=i

||xi − xj ||2ij

− 2
∑
i

∑
j ̸=i

dij ||xi − xj ||

▶ function f should be minimized with respect to X
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MDS

▶ let us compute a majorization function to the last term

▶ we have from the Cauchy-Schwarz inequality

−dij ||xi − xj || ≤ dij

(
x
(n)
i − x

(n)
j

)T(
xi − xj

)∥∥∥x(n)i − x
(n)
j

∥∥∥
= gij(X|X(n))

▶ thus a majorization function for f is given by

f(X) ≤
∑
i

∑
j ̸=i

||xi − xj ||2ij + 2
∑
i

∑
j ̸=i

gij(X|X(n)) + d

= g(X|X(n))
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MDS

▶ f is not differentiable

▶ g( · |X(n)) is not only differentiable, but also quadratic

▶ further processing: ||xi − xj ||2 can also be majorized

▶ why?

to enable separability

▶ a small trick based on the convexity of || · ||2, i.e.,



21/32

MDS

▶ f is not differentiable
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▶ why? to enable separability

▶ a small trick based on the convexity of || · ||2, i.e.,
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MDS

▶ how?

||xi − xj ||2 =
∥∥∥xi − xj + (1/2)

(
x
(n)
i − x

(n)
i + x

(n)
j − x

(n)
j

)∥∥∥2
=
∥∥∥(xi−(1/2)(x(n)i +x

(n)
j

))
−
(
xj−(1/2)

(
x
(n)
i +x

(n)
j

))∥∥∥2
=

∥∥∥∥12(2xi−(x(n)i +x
(n)
j

))
−1

2

(
2xj−

(
x
(n)
i +x

(n)
j

))∥∥∥∥2
≤ 2

∥∥∥∥xi−1

2

(
x
(n)
i +x

(n)
j

)∥∥∥∥2 + 2

∥∥∥∥xj−1

2

(
x
(n)
i +x

(n)
j

)∥∥∥∥2
= g̃ij(X|X(n))



23/32

MDS

▶ thus the new majorization function for f is given by

f(X) ≤
∑
i

∑
j ̸=i

g̃ij(X|X(n)) + 2
∑
i

∑
j ̸=i

gij(X|X(n)) + d

= h(X|X(n))

▶ h( · |X(n)) is quadratic and separable

▶ minimize h( · |X(n))

▶ closed form: up to each element xim of xi, i.e.,

x
(n+1)
im = ri(x

(n)
im )

▶ you may compute ri
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Supporting Hyperplane Inequality
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Supporting Hyperplane Inequality

▶ for a convex function it produces an affine minorization

▶ for a concave function it produces an affine majorization

▶ suppose f is convex, then

f(x) ≥ f
(
x(n)

)
+ v(n)T

(
x− x(n)

)
= g
(
x|x(n)

)
where v(n) ∈ ∂f

(
x(n)

)
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Maximizing a Convex over Compact Set

▶ maximizing a convex f over compact C ⊂ IRn

▶ not a convex problem

▶ however, the maximizing g
(
· |x(n)

)
turns out to be promising

▶ related to the well-known support function σC of C given by

σC(y) = sup
x∈C

yTx
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Maximizing a Convex over Compact Set

▶ e.g.,
maximize (1/2)(x− a)TP (x− a)
subject to ||x|| = 1

▶ P is positive semidefinite and a ∈ IRn

▶ the solution of the problem above is

x(n+1) =
1∥∥P (x(n) − a

)∥∥ P
(
x(n) − a

)
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Concave-Convex Principle

▶ minimizing a difference of convex functions f and h

▶ i.e., f − h is to be minimized

▶ not a convex problem

▶ consider the following majorization for −h

−h(x) ≤ −h
(
x(n)

)
− v(n)T

(
x− x(n)

)
where v(n) ∈ ∂h

(
x(n)

)
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Concave-Convex Principle

▶ thus a majorization function for f − h is given by

f(x)− h(x) ≤ f(x)− h
(
x(n)

)
− v(n)T

(
x− x(n)

)
= g(x|x(n))

▶ note that g( · |x(n)) is convex and we have

x(n+1) = argmin
x

g
(
x|x(n)

)
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Concave-Convex Principle

▶ e.g., minimizing a quadratic over a compact and convex set

▶ let P be symmetric and indefinite, C compact and convex

▶ consider the problem

minimize xTPx
subject to x ∈ C

▶ not a convex problem

▶ we can express xTPx in the form f(x)− h(x), f, h convex
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Concave-Convex Principle
▶ the spectral decomposition of P

P = V ΛV T =
∑

{i|λi>0}

λiviv
T
i︸ ︷︷ ︸

Q

−
∑

{j|λj<0}

|λj |vjvTj︸ ︷︷ ︸
R

= Q−R

where Q,R ⪰ 0

▶ as a result, we have

xTPx = xTQx− xTRx

≤ xTQx− 2x(n)TRx+ c

= g
(
x|x(n)

)
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Concave-Convex Principle

▶ thus the following problem is to be solved

maximize g
(
x|x(n)

)
= xTQx− 2x(n)TRx+ c

subject to x ∈ C

▶ this is a constrained (convex) quadratic problem where

x(n+1) = argmin
x∈C

g
(
x|x(n)

)
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Concave-Convex Principle

▶ another example: weighted sum-rate maximization

maximize
∑N

i=1 log [1 + SINRi(p)]
subject to Ap ⪯ b

p ⪰ 0

where p = [p1 . . . pN ]T, A ∈ IRM×N , b ∈ IRM , and

SINRi(p) =
αipi

σ2 +
∑

j ̸=i αipj

▶ you will try this in homework


