MM Optimization Algorithms

Chathuranga Weeraddana

April 2022

Lecture 2: Key Inequalities for MM (Part I)

Majorizations and Minorizations

- it involves ingenuity and skill
- a list helpful majorizations and minorizations
- next 2-3 lectures we review a few basic themes
- list is still growing

Jensen's Inequality

Jensen's Inequality

- recall: when f is convex, then we have

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y), \quad \alpha \in[0,1]
$$

more generally

$$
\begin{equation*}
f\left(\sum_{i} \alpha_{i} t_{i}\right) \leq \sum_{i} \alpha_{i} f\left(t_{i}\right) \tag{1}
\end{equation*}
$$

where $\sum_{i} \alpha_{i}=1$ and $\alpha_{i} \geq 0$ for all i

A Different Useful Form

- suppose $a \in \mathbb{R}^{N}$ and $\theta \in \mathbb{R}^{N}$ and all are possitive
- in (1), let

$$
\alpha_{i}=\frac{a_{i} \theta_{i}^{(n)}}{a^{\top} \theta^{(n)}} \quad \text { and } \quad t_{i}=\frac{a^{\top} \theta^{(n)}}{\theta_{i}^{(n)}} \theta_{i}
$$

- then from (1), we get

$$
\begin{align*}
f\left(a^{\top} \theta\right) & \leq \sum_{i=1}^{N} \frac{a_{i} \theta_{i}^{(n)}}{a^{\top} \theta^{(n)}} f\left(\frac{a^{\top} \theta^{(n)}}{\theta_{i}^{(n)}} \theta_{i}\right) \tag{2}\\
& =g\left(\theta \mid \theta^{(n)}\right)
\end{align*}
$$

Counting with Poisson

- probability model: Poisson
- it predicts number of events over some period of time
- probability that there are y events is given by

$$
p_{\mu}(Y=y)=\frac{\mu^{y} e^{-\mu}}{y!}
$$

- let μ modeled as an affine function of $u \in \mathbb{R}^{N}$, i.e., $\mu=\theta^{\top} u$
- u : the explanatory variable, θ : the model parameter

Counting with Poisson

- $(u(j), y(j)), j=1, \ldots, m$: a number of observations (data)
- ML estimate of the model parameters $\theta \in \mathbb{R}_{++}^{N}$?
- the likelihood function of data has the form

$$
p_{\theta}\left((u(j), y(j))_{j}\right)=\prod_{j=1}^{m} \frac{\left(\theta^{\top} u(j)\right)^{y(j)} e^{-\theta^{\top} u(j)}}{y(j)!}
$$

- the log-likelihood function $f(\theta)=\log p_{\theta}\left((u(j), y(j))_{j}\right)$
- the \log-likelihood function f should be maximized over θ

Counting with Poisson

- let us compute a minorization function:

$$
\begin{aligned}
f(\theta) & =\log p_{\theta}\left((u(j), y(j))_{j}\right) \\
& =\sum_{j} y(j) \log \left(u(j)^{\top} \theta\right)-u(j)^{\top} \theta-\log (y(j)!) \\
& \stackrel{(2)}{\geq} \sum_{j=1}^{m}\left[y(j) \sum_{i=1}^{N} w_{j i n} \log \left(s_{j i n} \theta_{i}\right)-u(j)^{\top} \theta\right]+s \\
& =g\left(\theta \mid \theta^{(n)}\right),
\end{aligned}
$$

where

$$
w_{j i n}=\frac{u_{i}(j) \theta_{i}^{(n)}}{u(j)^{\top} \theta^{(n)}} \text { and } s_{j i n}=\frac{u(j)^{\top} \theta^{(n)}}{\theta_{i}^{(n)}}
$$

Counting with Poisson

- as a result of maximizing $g\left(\theta \mid \theta^{(n)}\right)$, we have

$$
\theta_{i}^{(n+1)}=\left(\sum_{j=1}^{m} y(j) w_{j i n}\right) / \sum_{j=1}^{m} u_{i}(j)
$$

- for an arbitrary explanatory $u \in \mathbb{R}^{N}$, the Poisson model is

$$
p_{\theta^{\star}}(Y=y)=\frac{\left(\theta^{\star \top} u\right)^{y} \exp \left(-\theta^{\star \top} u\right)}{y!}
$$

where θ^{\star} is given by the MM algorithm after the convergence

Finite Mixture Model

- used for ${ }^{1}$
- categorizing age groups of animals
- medical diagnosis and prognosis
- latent structure analysis
- probability distribution is modeled as

$$
\begin{equation*}
p_{\phi, \pi}(y)=\sum_{k=1}^{c} \pi_{k} p_{k \phi}(y) \tag{3}
\end{equation*}
$$

- $\theta=(\phi, \pi)=\left(\phi, \pi_{1}, \ldots, \pi_{c}\right)$: the model parameter
${ }^{1}$ For more examples, see $\S 2$ of Statistical Analysis of Finite Mixture Distributions by D. M. Titterington, A.F.M. Smith and U.E. Makov, 1985.

Finite Mixture Model

- e.g., Gaussian mixture model
- $\phi=\left(\mu_{1}, \ldots, \mu_{c}, \Sigma_{1}, \ldots, \Sigma_{c}\right)$
- $p_{k \phi}(\cdot)$ is a Gaussian density, more specifically

$$
\begin{equation*}
p_{k \phi}(y)=\frac{1}{\sqrt{(2 \pi)^{l}\left|\Sigma_{k}\right|}} \exp \left(-\frac{\left(y-\mu_{k}\right)^{\top} \Sigma_{k}^{-1}\left(y-\mu_{k}\right)}{2}\right) \tag{4}
\end{equation*}
$$

- $\theta=\left(\mu_{1}, \ldots, \mu_{c}, \Sigma_{1}, \ldots, \Sigma_{c}, \pi_{1}, \ldots, \pi_{c}\right)$

Finite Mixture Model

- $(y(j)), j=1, \ldots, m$: a number of observations (data)
- ML estimate of the model parameters θ ?
- the likelihood function of data has the form

$$
\begin{aligned}
p_{\theta}\left((y(j))_{j}\right) & =\prod_{j=1}^{m} p_{\phi, \pi}(y(j)) \\
& =\prod_{j=1}^{m} \sum_{k=1}^{c} \pi_{k} p_{k \phi}(y(j))
\end{aligned}
$$

- the log-likelihood function $f(\theta)=\log p_{\theta}\left((y(j))_{j}\right)$
- the \log-likelihood function f should be maximized over θ

Finite Mixture Model

- let us compute a minorization function:

$$
\begin{aligned}
f(\theta) & =\log p_{\theta}\left((y(j))_{j}\right) \\
& =\sum_{j} \log \left(\sum_{k=1}^{c} \pi_{k} p_{k \phi}(y(j))\right) \\
& \stackrel{(2)}{\geq} \sum_{j=1}^{m}\left[\sum_{k=1}^{c} w_{j k n} \log \left(s_{j k n} \pi_{k} p_{k \phi}(y(j))\right)\right] \\
& =g\left(\theta \mid \theta^{(n)}\right),
\end{aligned}
$$

where

$$
w_{j k n}=\frac{\pi_{k}^{(n)} p_{k, \phi^{(n)}}(y(j))}{\sum_{i=1}^{c} \pi_{i}^{(n)} p_{i, \phi^{(n)}}(y(j))} \text { and } s_{j k n}=w_{j k n}^{-1}
$$

Finite Mixture Model

- let us maximize $g\left(\theta \mid \theta^{(n)}\right)$ which is given by ${ }^{2}$

$$
\begin{aligned}
g\left(\theta \mid \theta^{(n)}\right) & =\sum_{k=1}^{c} \sum_{j=1}^{m} w_{j k n} \log \pi_{k}+\sum_{k=1}^{c} \sum_{j=1}^{m} w_{j k n} \log p_{k \phi}(y(j)) \\
& =\sum_{k=1}^{c} \alpha_{k n} \log \pi_{k}+\sum_{k=1}^{c} \sum_{j=1}^{m} w_{j k n} \log p_{k \phi}(y(j))
\end{aligned}
$$

where $\alpha_{k n}=\sum_{j=1}^{m} w_{j k n}$

- ϕ and $\pi=\left(\pi_{1}, \ldots, \pi_{c}\right)$ are separate \rightarrow maximize separately

Finite Mixture Model

- maximization with respect to π

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{k=1}^{c} \alpha_{k n} \log \pi_{k} \\
\text { subject to } & \sum_{k=1}^{c} \pi_{k}=1 \tag{5}\\
& \pi_{k} \geq 0, k=1, \ldots, c
\end{array}
$$

- closed form solution of the problem above is

$$
\begin{aligned}
\pi_{k}^{(n+1)} & =\alpha_{k n} /\left(\sum_{\bar{k}=1}^{c} \alpha_{\bar{k} n}\right) \\
& =\left(\sum_{j=1}^{m} w_{j k n}\right) / m
\end{aligned}
$$

Finite Mixture Model

- suppose $p_{k \phi}$ is given by (4)
- maximization with respect to $\phi=\left(\mu_{1}, \ldots, \mu_{c}, \Sigma_{1}, \ldots, \Sigma_{c}\right)$

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{k=1}^{c} \sum_{j=1}^{m} w_{j k n} \log p_{k \phi}(y(j)) \tag{6}\\
\text { subject to } & \Sigma_{k} \succeq 0, k=1, \ldots, c
\end{array}
$$

- alternating optimization to solve (6) in closed form

$$
\begin{aligned}
\mu_{k}^{(n+1)} & =(1 / m) \sum_{j=1}^{m} y(j) \leftarrow \text { check! a mistake? } \\
\Sigma_{k}^{(n+1)} & =\frac{1}{\sum_{j=1}^{m} w_{j k n}} \sum_{\bar{j}=1}^{m} w_{\bar{j} k n}\left(y(\bar{j})-\mu_{k}^{(n+1)}\right)\left(y(\bar{j})-\mu_{k}^{(n+1)}\right)^{\top}
\end{aligned}
$$

Finite Mixture Model

- as a result of maximizing $g\left(\theta \mid \theta^{(n)}\right)$, we have

$$
\theta_{i}^{(n+1)}=(\underbrace{\mu_{1}^{(n+1)}, \ldots, \Sigma_{1}^{(n+1)}, \ldots, \underbrace{\pi_{1}^{(n+1)}, \ldots, \pi_{c}^{(n+1)}}_{\pi^{(n+1)}}), ~)}_{\phi^{(n+1)}}
$$

- thus, the pdf model $p_{\phi^{\star}, \pi^{\star}}: \mathbb{R}^{l} \rightarrow \mathbb{R}$ is [compare with (3)]

$$
p_{\phi^{\star}, \pi^{\star}}(y)=\sum_{k=1}^{c} \pi_{k}^{\star} p_{k \phi^{\star}}(y)
$$

where $\theta^{\star}=\left(\phi^{\star}, \pi^{\star}\right)$ is given by the MM algorithm

Cauchy-Schwarz Inequality

Cauchy-Schwarz Inequality

- suppose $x, y \in \mathbb{R}^{N}$
- Cauchy-Schwarz inequality is given by

$$
\left|y^{\top} x\right| \leq\|y\|\|x\|
$$

- i.e., $-\|y\|\|x\| \leq y^{\top} x \leq\|y\|\|x\|$

MDS

- MDS stands for multi dimensional scaling
- there are n objects
- we are also given their pairwise dissimilarity $d_{i j} \geq 0$
- need to represent n objects by using points in \mathbb{R}^{p}
- those points are given by $x_{k} \in \mathbb{R}^{p}, k=1, \ldots, n$

MDS

- we want to compute $X \in \mathbb{R}^{p \times n}$, where

$$
X=\left[x_{1} \cdots x_{n}\right]
$$

- the variable X is computed by minimizing f where

$$
\begin{aligned}
& f(X)= \sum_{i} \sum_{j \neq i}\left(d_{i j}-\left\|x_{i}-x_{j}\right\|\right)^{2} \\
&=\sum_{i} \sum_{j \neq i} d_{i j}^{2}+\sum_{i} \sum_{j \neq i}\left\|x_{i}-x_{j}\right\|_{i j}^{2} \\
&-2 \sum_{i} \sum_{j \neq i} d_{i j}\left\|x_{i}-x_{j}\right\|
\end{aligned}
$$

- function f should be minimized with respect to X

MDS

- let us compute a majorization function to the last term
- we have from the Cauchy-Schwarz inequality

$$
\begin{aligned}
-d_{i j}\left\|x_{i}-x_{j}\right\| & \leq d_{i j} \frac{\left(x_{i}^{(n)}-x_{j}^{(n)}\right)^{\top}\left(x_{i}-x_{j}\right)}{\left\|x_{i}^{(n)}-x_{j}^{(n)}\right\|} \\
& =g_{i j}\left(X \mid X^{(n)}\right)
\end{aligned}
$$

- thus a majorization function for f is given by

$$
\begin{aligned}
f(X) & \leq \sum_{i} \sum_{j \neq i}\left\|x_{i}-x_{j}\right\|_{i j}^{2}+2 \sum_{i} \sum_{j \neq i} g_{i j}\left(X \mid X^{(n)}\right)+d \\
& =g\left(X \mid X^{(n)}\right)
\end{aligned}
$$

MDS

- f is not differentiable
- $g\left(\cdot \mid X^{(n)}\right)$ is not only differentiable, but also quadratic
- further processing: $\left\|x_{i}-x_{j}\right\|^{2}$ can also be majorized
- why?

MDS

- f is not differentiable
- $g\left(\cdot \mid X^{(n)}\right)$ is not only differentiable, but also quadratic
- further processing: $\left\|x_{i}-x_{j}\right\|^{2}$ can also be majorized
- why? to enable separability
- a small trick based on the convexity of $\|\cdot\|^{2}$, i.e.,

MDS

how?

$$
\begin{aligned}
\left\|x_{i}-x_{j}\right\|^{2} & =\left\|x_{i}-x_{j}+(1 / 2)\left(x_{i}^{(n)}-x_{i}^{(n)}+x_{j}^{(n)}-x_{j}^{(n)}\right)\right\|^{2} \\
& =\left\|\left(x_{i}-(1 / 2)\left(x_{i}^{(n)}+x_{j}^{(n)}\right)\right)-\left(x_{j}-(1 / 2)\left(x_{i}^{(n)}+x_{j}^{(n)}\right)\right)\right\|^{2} \\
& =\left\|\frac{1}{2}\left(2 x_{i}-\left(x_{i}^{(n)}+x_{j}^{(n)}\right)\right)-\frac{1}{2}\left(2 x_{j}-\left(x_{i}^{(n)}+x_{j}^{(n)}\right)\right)\right\|^{2} \\
& \leq 2\left\|x_{i}-\frac{1}{2}\left(x_{i}^{(n)}+x_{j}^{(n)}\right)\right\|^{2}+2\left\|x_{j}-\frac{1}{2}\left(x_{i}^{(n)}+x_{j}^{(n)}\right)\right\|^{2} \\
& =\tilde{g}_{i j}\left(X \mid X^{(n)}\right)
\end{aligned}
$$

MDS

- thus the new majorization function for f is given by

$$
\begin{aligned}
f(X) & \leq \sum_{i} \sum_{j \neq i} \tilde{g}_{i j}\left(X \mid X^{(n)}\right)+2 \sum_{i} \sum_{j \neq i} g_{i j}\left(X \mid X^{(n)}\right)+d \\
& =h\left(X \mid X^{(n)}\right)
\end{aligned}
$$

- $h\left(\cdot \mid X^{(n)}\right)$ is quadratic and separable
- minimize $h\left(\cdot \mid X^{(n)}\right)$
- closed form: up to each element $x_{i m}$ of x_{i}, i.e.,

$$
x_{i m}^{(n+1)}=r_{i}\left(x_{i m}^{(n)}\right)
$$

- you may compute r_{i}

Supporting Hyperplane Inequality

Supporting Hyperplane Inequality

- for a convex function it produces an affine minorization
- for a concave function it produces an affine majorization
- suppose f is convex, then

$$
\begin{aligned}
f(x) & \geq f\left(x^{(n)}\right)+v^{(n) \mathrm{T}}\left(x-x^{(n)}\right) \\
& =g\left(x \mid x^{(n)}\right)
\end{aligned}
$$

where $v^{(n)} \in \partial f\left(x^{(n)}\right)$

Maximizing a Convex over Compact Set

- maximizing a convex f over compact $\mathcal{C} \subset \mathbb{R}^{n}$
- not a convex problem
- however, the maximizing $g\left(\cdot \mid x^{(n)}\right)$ turns out to be promising
- related to the well-known support function $\sigma_{\mathcal{C}}$ of \mathcal{C} given by

$$
\sigma_{\mathcal{C}}(y)=\sup _{x \in \mathcal{C}} y^{\top} x
$$

Maximizing a Convex over Compact Set

- e.g.,

$$
\begin{array}{ll}
\operatorname{maximize} & (1 / 2)(x-a)^{\top} P(x-a) \\
\text { subject to } & \|x\|=1
\end{array}
$$

- P is positive semidefinite and $a \in \mathbb{R}^{n}$
- the solution of the problem above is

$$
x^{(n+1)}=\frac{1}{\left\|P\left(x^{(n)}-a\right)\right\|} P\left(x^{(n)}-a\right)
$$

Concave-Convex Principle

- minimizing a difference of convex functions f and h
- i.e., $f-h$ is to be minimized
- not a convex problem
- consider the following majorization for $-h$

$$
-h(x) \leq-h\left(x^{(n)}\right)-v^{(n) \mathrm{T}}\left(x-x^{(n)}\right)
$$

where $v^{(n)} \in \partial h\left(x^{(n)}\right)$

Concave-Convex Principle

- thus a majorization function for $f-h$ is given by

$$
\begin{aligned}
f(x)-h(x) & \leq f(x)-h\left(x^{(n)}\right)-v^{(n) \mathrm{T}}\left(x-x^{(n)}\right) \\
& =g\left(x \mid x^{(n)}\right)
\end{aligned}
$$

- note that $g\left(\cdot \mid x^{(n)}\right)$ is convex and we have

$$
x^{(n+1)}=\underset{x}{\arg \min } g\left(x \mid x^{(n)}\right)
$$

Concave-Convex Principle

- e.g., minimizing a quadratic over a compact and convex set
- let P be symmetric and indefinite, \mathcal{C} compact and convex
- consider the problem

$$
\begin{array}{ll}
\operatorname{minimize} & x^{\top} P x \\
\text { subject to } & x \in \mathcal{C}
\end{array}
$$

- not a convex problem
- we can express $x^{\top} P x$ in the form $f(x)-h(x), f, h$ convex

Concave-Convex Principle

- the spectral decomposition of P

$$
\begin{aligned}
P=V \Lambda V^{\top} & =\underbrace{\sum_{\left\{i \mid \lambda_{i}>0\right\}} \lambda_{i} v_{i} v_{i}^{\top}}_{Q}-\underbrace{\sum_{\left\{j \mid \lambda_{j}<0\right\}}\left|\lambda_{j}\right| v_{j} v_{j}^{\top}}_{R} \\
& =Q-R
\end{aligned}
$$

where $Q, R \succeq 0$

- as a result, we have

$$
\begin{aligned}
x^{\top} P x & =x^{\top} Q x-x^{\top} R x \\
& \leq x^{\top} Q x-2 x^{(n) \top} R x+c \\
& =g\left(x \mid x^{(n)}\right)
\end{aligned}
$$

Concave-Convex Principle

- thus the following problem is to be solved

$$
\begin{array}{ll}
\text { maximize } & g\left(x \mid x^{(n)}\right)=x^{\top} Q x-2 x^{(n) \top} R x+c \\
\text { subject to } & x \in \mathcal{C}
\end{array}
$$

- this is a constrained (convex) quadratic problem where

$$
x^{(n+1)}=\underset{x \in \mathcal{C}}{\arg \min } g\left(x \mid x^{(n)}\right)
$$

Concave-Convex Principle

- another example: weighted sum-rate maximization

$$
\begin{array}{ll}
\text { maximize } & \sum_{i=1}^{N} \log \left[1+\operatorname{SINR}_{i}(p)\right] \\
\text { subject to } & A p \preceq b \\
& p \succeq 0
\end{array}
$$

where $p=\left[p_{1} \ldots p_{N}\right]^{\top}, A \in \mathbb{R}^{M \times N}, b \in \mathbb{R}^{M}$, and

$$
\operatorname{SINR}_{i}(p)=\frac{\alpha_{i} p_{i}}{\sigma^{2}+\sum_{j \neq i} \alpha_{i} p_{j}}
$$

- you will try this in homework

