MM Optimization Algorithms

Chathuranga Weeraddana

April 2022

Lecture 1: Introduction

Course Information

- Examiner: Carlo Fischione (carlofi@kth.se)
- Instructor: Chathuranga Weeraddanana (chatw@kth.se)
- Lectures: Wednesday ${ }^{1}$ 13:00-15:00 CET, 7 weeks
${ }^{1}$ There is one exception. See the course webpage.

Course Information

- Course Website:
- https://chathurangaw.staff.uom.lk/files/KTH/ courseinfo.html
- Textbooks:
- Kenneth Lange, MM Optimization Algorithms
- Evaluation:
- based on homeworks + take home exam + mini project
- Grade: binary

Course Information

- Any other related information:
- contact Carlo or myself

My Sincere Gratitude

- to Prof. Kenneth Lange (Computational Genetics at UCLA)
- for sharing some recently updated materials
- they were very useful when preparing the slides

History

- roots trace back to
- A.G. McKendrick (1926, epidemiology)
- F. Yates (1934, multiple classification)
- E. Weiszfeld (1937, facilities location)
- C.A.B. Smith (1957, gene counting)
- H.O. Hartley (1958, EM algorithms)
- J.M. Ortega \& W.C. Rheinboldt (1970, enunciation)
- J.D Leeuw (1977, multidimensional scaling)
- A.P. Dempster et al. (1977, EM algorithms)
- H. Voss and U. Eckhardt (1980, a firm theoretical foundation)

MM Optimization Algorithms Application Domains

Applicaton Domains

- logistic regression
- quantile regression
- discriminant analysis
- factor analysis
- matrix completion
- image restoration
- DC programming
- signomial programming
- many others

Problem

- a general formulation of an optimization problem ${ }^{2}$

$$
\begin{array}{ll}
\underset{\theta}{\operatorname{minimize}} & f(\theta) \\
\text { subject to } & \theta \in \mathcal{F}
\end{array}
$$

- the decision variable is θ
- f and \mathcal{F} depend on the application
- f encodes what we want to optimize
- \mathcal{F} encodes the underlying constraints

[^0]
Geometric Interpretation

What is MM?

- MM stands for
- majorize and minimize in a minimization problem
- minorize and maximize in a maximization problem

Majorize and Minimize

The MM Principle

- is not an algorithm
- a useful principle for constructing optimization algorithms
- the resulting algorithms are called MM algorithms
- majorize and minimize in an iterative mannar

The MM Algorithm A Geometric Interpretation

Geometric Interpretation

Geometric Interpretation

The MM Algorithm: Key Idea

- majorize and minimize in an iterative mannar

Minorize and Maximize

- applied for maximization problems in a similar mannar

Why MM Algorithms?

- MM principle simplifies optimization by
- separating the variables of a problem
- avoiding large matrix inversions
- restoring the symmetry
- turning a non-smooth problem into a smooth problem

Some Notation and Definitions

Majorization Function

- $g\left(\theta \mid \theta^{(n)}\right)$ is said to majorize $f(\theta)$ at $\theta^{(n)}$ provided

$$
\begin{aligned}
f\left(\theta^{(n)}\right) & =g\left(\theta^{(n)} \mid \theta^{(n)}\right): & & \text { tangency at } \theta^{(n)} \\
f(\theta) & \leq g\left(\theta \mid \theta^{(n)}\right) \text { for all } \theta: & & \text { domination }
\end{aligned}
$$

- $g\left(\cdot \mid \theta^{(n)}\right)$ is a majorization function of $f(\cdot)$ at $\theta^{(n)}$

Majorization Function

- majorization relation between functions is closed under
- sums
- nonnegative products
- limits
- composition with an increasing function

Minorization Function

- $g\left(\cdot \mid \theta^{(n)}\right)$ is a minorization function of $f(\cdot)$ at $\theta^{(n)}$ when
- $-g\left(\theta \mid \theta^{(n)}\right)$ majorizes $-f(\theta)$ at $\theta^{(n)}$

The MM Algorithm

MM Algorithm

Algorithm 1 MM Algorithm

Input: $\theta^{(0)} \in \mathcal{F}, n=0$
1: Compute $g\left(\cdot \mid \theta^{(n)}\right)$
2: $\theta^{(n+1)}=\underset{\theta \in \mathcal{F}}{\arg \min } g\left(\theta \mid \theta^{(n)}\right)$
3: $n:=n+1$ and go to step 1

Descent Property

- MM (minimize/majorize) algorithm is a descent algorithm
- i.e., $f\left(\theta^{(n+1)}\right) \leq f\left(\theta^{(n)}\right)$ for all $n \in \mathbb{Z}$
- simple to verify the descent property

$$
\begin{align*}
f\left(\theta^{(n+1)}\right) & \leq \inf _{\theta \in \mathcal{F}} g\left(\theta \mid \theta^{(n)}\right) \tag{1}\\
& \leq g\left(\theta^{(n)} \mid \theta^{(n)}\right) \tag{2}\\
& =f\left(\theta^{(n)}\right) \tag{3}
\end{align*}
$$

Some Common Tricks with Convexity and Lipschitz Continuity

Affine Lower Bound

- suppose f is convex and differentiable
- then we have

$$
\begin{aligned}
f(\theta) & \geq f\left(\theta^{(n)}\right)+\nabla f\left(\theta^{(n)}\right)^{\top}\left(\theta-\theta^{(n)}\right) \\
& =g\left(\theta \mid \theta^{(n)}\right)
\end{aligned}
$$

- $g\left(\theta \mid \theta^{(n)}\right)$ minorizes $f(\theta)$ at $\theta^{(n)}$
- e.g., $f(\theta)=-\log \theta \geq-\log \theta^{(n)}-\left(1 / \theta^{(n)}\right)\left(\theta-\theta^{(n)}\right)$

Jensen's Inequality

- suppose f is convex
- then we have

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y), \quad \alpha \in[0,1]
$$

Jensen's Inequality

- let $u, v>0$ and let

$$
\alpha=\frac{u^{(n)}}{u^{(n)}+v^{(n)}}, \quad x=\frac{u^{(n)}+v^{(n)}}{u^{(n)}} u, \quad y=\frac{u^{(n)}+v^{(n)}}{v^{(n)}} v
$$

- thus, from the Jennsen's inequality, we get

$$
f(u+v) \leq \frac{u^{(n)}}{u^{(n)}+v^{(n)}} f\left(\frac{u^{(n)}+v^{(n)}}{u^{(n)}} u\right)+\frac{v^{(n)}}{u^{(n)}+v^{(n)}} f\left(\frac{u^{(n)}+v^{(n)}}{v^{(n)}} v\right)
$$

- u and v can be positive functions of θ, e.g., $u(\theta)$ and $v(\theta)$

Jensen's Inequality

- i.e.,

$$
\begin{aligned}
f(u(\theta)+v(\theta)) \leq & \frac{u\left(\theta^{(n)}\right)}{u\left(\theta^{(n)}\right)+v\left(\theta^{(n)}\right)} f\left(\frac{u\left(\theta^{(n)}\right)+v\left(\theta^{(n)}\right)}{u\left(\theta^{(n)}\right)} u(\theta)\right) \\
& +\frac{v\left(\theta^{(n)}\right)}{u\left(\theta^{(n)}\right)+v\left(\theta^{(n)}\right)} f\left(\frac{u\left(\theta^{(n)}\right)+v\left(\theta^{(n)}\right)}{v\left(\theta^{(n)}\right)} v(\theta)\right) \\
= & g\left(\theta \mid \theta^{(n)}\right)
\end{aligned}
$$

- $g\left(\theta \mid \theta^{(n)}\right)$ majorizes $f(u(\theta)+v(\theta))$ at $\theta^{(n)}$
- e.g., $f(\theta)=-\log \theta=$?

Quadratic Upper Bound

- suppose f is twice differentiable and gradient Lipschitz continuous ${ }^{3}$, i.e.,

$$
\|\nabla f(\theta)-\nabla f(\beta)\|_{2} \leq L\|\theta-\beta\|_{2} \quad \text { for all } \theta, \beta
$$

- then we have

$$
\begin{aligned}
f(\theta) & \leq f\left(\theta^{(n)}\right)+\nabla f\left(\theta^{(n)}\right)^{\top}\left(\theta-\theta^{(n)}\right)+\frac{L}{2}\left\|\theta-\theta^{(n)}\right\|_{2}^{2} \\
& =g\left(\theta \mid \theta^{(n)}\right)
\end{aligned}
$$

- $g\left(\theta \mid \theta^{(n)}\right)$ majorizes $f(\theta)$ at $\theta^{(n)}$
- e.g.,. $\cos \theta \leq \cos \theta^{(n)}-\left(\sin \theta^{(n)}\right)\left(\theta-\theta^{(n)}\right)+(1 / 2)\left(\theta-\theta^{(n)}\right)^{2}$
${ }^{3}$ The following condition is equivalent to a bound on the Hessian $\nabla^{2} f(\theta)$ of f. For example, $L I-\nabla^{2} f(\theta) \succeq 0$ is positive semidefinite $\left(L I-\nabla^{2} f(\theta) \succeq 0\right)$.

Some Related MM Examples

Minimize $\cos \theta$

- $\cos (\cdot)$ is twice differentiable and gradient Lipschitz continuous with constant 1
- i.e.,

$$
\begin{aligned}
f(\theta) & =\cos \theta \\
& \leq \cos \theta^{(n)}-\left(\sin \theta^{(n)}\right)\left(\theta-\theta^{(n)}\right)+(1 / 2)\left(\theta-\theta^{(n)}\right)^{2} \\
& =g\left(\theta \mid \theta^{(n)}\right)
\end{aligned}
$$

- minimize the majorization function $g\left(\cdot \mid \theta^{(n)}\right)$
- thus we have

$$
\theta^{(n+1)}=\theta^{(n)}+\sin \theta^{(n)}
$$

Bradley-Terry Model

- prob. model: predicts the outcome of a paired comparison
- let us consider a sports league with m teams
- i th team's skill level is parameterized by $\theta_{i}, i=1, \ldots, m$
- probability that i beats j is given by

$$
p_{i j}(\theta)=\frac{\theta_{i}}{\theta_{i}+\theta_{j}}
$$

Bradley-Terry Model

- let $b_{i j}$ be the number of times i has beaten j (data)
- ML estimate ${ }^{4}$ of the model parameters $\theta \in \mathbb{R}_{++}^{m}$?
- the likelihood function of data has the form

$$
p_{\theta}(b)=\prod_{i, j}\left(p_{i j}(\theta)\right)^{b_{i j}}
$$

- the log-likelihood function $f(\theta)=\log p_{\theta}(b)$
- the log-likelihood function f should be maximized over θ

[^1]
Bradley-Terry Model

- let us find a minorization function:

$$
\begin{aligned}
f(\theta) & =\log p_{\theta}(b)=\log \prod_{i, j}\left(p_{i j}(\theta)\right)^{b_{i j}} \\
& =\sum_{i, j} b_{i j} \log \left(\frac{\theta_{i}}{\theta_{i}+\theta_{j}}\right) \\
& =\sum_{i, j} b_{i j}\left[\log \theta_{i}-\log \left(\theta_{i}+\theta_{j}\right)\right] \\
& \geq \sum_{i, j} b_{i j}\left[\log \theta_{i}+g_{i j}\left(\theta \mid \theta^{(n)}\right)\right]
\end{aligned}
$$

where

$$
g_{i j}\left(\theta \mid \theta^{(n)}\right)=-\log \left(\theta_{i}^{(n)}+\theta_{j}^{(n)}\right)-\frac{1}{\theta_{i}^{(n)}+\theta_{j}^{(n)}}\left(\theta_{i}+\theta_{j}-\theta_{i}^{(n)}-\theta_{j}^{(n)}\right)
$$

Bradley-Terry Model

- as a result

$$
\begin{aligned}
f(\theta) & \geq \sum_{i, j} b_{i j}\left[\log \theta_{i}-\log \left(\theta_{i}^{(n)}+\theta_{j}^{(n)}\right)-\frac{\theta_{i}+\theta_{j}}{\theta_{i}^{(n)}+\theta_{j}^{(n)}}+1\right] \\
& =g\left(\theta \mid \theta^{(n)}\right)
\end{aligned}
$$

- maximize the minorization function $g\left(\cdot \mid \theta^{(n)}\right)$
- thus we have

$$
\theta_{i}^{(n+1)}=\frac{\sum_{j \neq i} b_{i j}}{\sum_{j \neq i}\left(b_{i j}+b_{j i}\right) /\left(\theta_{i}^{(n)}+\theta_{j}^{(n)}\right)}
$$

An example Based on Jensen's

- you will be solving a problem in your homework
- based on the inequalities discussed in page 26

Key Themes

- helpful majorizations and minorizations techniques?
- next 2-3 lectures

[^0]: ${ }^{2}$ see under the Additional Reading: A Brief on Optimization.

[^1]: ${ }^{4}$ For a concise description of ML estimation, see \S 7.1.1 Convex Optimization by S. Boyd and L. Vandenberghe, 2004.

