
1/34

MM Optimization Algorithms

Chathuranga Weeraddana

April 2022



1/34

Lecture 1: Introduction
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Course Information

▶ Examiner: Carlo Fischione (carlofi@kth.se)

▶ Instructor: Chathuranga Weeraddanana (chatw@kth.se)

▶ Lectures: Wednesday 1 13:00-15:00 CET, 7 weeks

1There is one exception. See the course webpage.
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Course Information

▶ Course Website:

▶ https://chathurangaw.staff.uom.lk/files/KTH/

courseinfo.html

▶ Textbooks:

▶ Kenneth Lange, MM Optimization Algorithms

▶ Evaluation:

▶ based on homeworks + take home exam + mini project

▶ Grade: binary

https://chathurangaw.staff.uom.lk/files/KTH/courseinfo.html
https://chathurangaw.staff.uom.lk/files/KTH/courseinfo.html
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Course Information

▶ Any other related information:

▶ contact Carlo or myself



5/34

My Sincere Gratitude

▶ to Prof. Kenneth Lange (Computational Genetics at UCLA)

▶ for sharing some recently updated materials

▶ they were very useful when preparing the slides
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History

▶ roots trace back to

▶ A.G. McKendrick (1926, epidemiology)
▶ F. Yates (1934, multiple classification)
▶ E. Weiszfeld (1937, facilities location)
▶ C.A.B. Smith (1957, gene counting)
▶ H.O. Hartley (1958, EM algorithms)

▶ J.M. Ortega & W.C. Rheinboldt (1970, enunciation)

▶ J.D Leeuw (1977, multidimensional scaling)

▶ A.P. Dempster et al. (1977, EM algorithms)

▶ H. Voss and U. Eckhardt (1980, a firm theoretical foundation)
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MM Optimization Algorithms
Application Domains
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Applicaton Domains

▶ logistic regression

▶ quantile regression

▶ discriminant analysis

▶ factor analysis

▶ matrix completion

▶ image restoration

▶ DC programming

▶ signomial programming

▶ many others
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Problem

▶ a general formulation of an optimization problem 2

minimize
θ

f(θ)

subject to θ ∈ F

▶ the decision variable is θ

▶ f and F depend on the application

▶ f encodes what we want to optimize

▶ F encodes the underlying constraints

2see under the Additional Reading: A Brief on Optimization.



9/34

Geometric Interpretation

θ
0

p⋆

p⋆: optimal value

θ⋆: solution

F
θ⋆

graph of f
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What is MM?

▶ MM stands for

▶ majorize and minimize in a minimization problem

▶ minorize and maximize in a maximization problem
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Majorize and Minimize

θ
0

p⋆

g(θ|θ(0))

F
θ⋆

graph of f

θ(0)θ(1)
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The MM Principle

▶ is not an algorithm

▶ a useful principle for constructing optimization algorithms

▶ the resulting algorithms are called MM algorithms

▶ majorize and minimize in an iterative mannar
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The MM Algorithm
A Geometric Interpretation
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Geometric Interpretation

θ
0

p⋆

g(θ|θ(0))

F
θ⋆

graph of f

θ(0)θ(1)
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Geometric Interpretation

θ
0

p⋆

g(θ|θ(0))
g(θ|θ(1))

F
θ⋆

graph of f

θ(0)θ(1)θ(1)
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The MM Algorithm: Key Idea

▶ majorize and minimize in an iterative mannar
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Minorize and Maximize

▶ applied for maximization problems in a similar mannar
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Why MM Algorithms?

▶ MM principle simplifies optimization by

▶ separating the variables of a problem

▶ avoiding large matrix inversions

▶ restoring the symmetry

▶ turning a non-smooth problem into a smooth problem
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Some Notation and Definitions
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Majorization Function

▶ g
(
θ|θ(n)

)
is said to majorize f(θ) at θ(n) provided

f
(
θ(n)

)
= g
(
θ(n)|θ(n)

)
: tangency at θ(n)

f(θ) ≤ g
(
θ|θ(n)

)
for all θ : domination

▶ g
(

· |θ(n)
)
is a majorization function of f(·) at θ(n)
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Majorization Function

▶ majorization relation between functions is closed under

▶ sums

▶ nonnegative products

▶ limits

▶ composition with an increasing function
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Minorization Function

▶ g
(

· |θ(n)
)
is a minorization function of f(·) at θ(n) when

▶ −g
(
θ|θ(n)

)
majorizes −f(θ) at θ(n)
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The MM Algorithm
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MM Algorithm

Algorithm 1 MM Algorithm

Input: θ(0) ∈ F , n = 0

1: Compute g
(

· |θ(n)
)

2: θ(n+1) = argmin
θ∈F

g
(
θ|θ(n)

)
3: n := n+ 1 and go to step 1
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Descent Property

▶ MM (minimize/majorize) algorithm is a descent algorithm

▶ i.e., f
(
θ(n+1)

)
≤ f

(
θ(n)

)
for all n ∈ ZZ

▶ simple to verify the descent property

f
(
θ(n+1)

)
≤ inf

θ∈F
g
(
θ|θ(n)

)
(1)

≤ g
(
θ(n)|θ(n)

)
(2)

= f
(
θ(n)

)
(3)
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Some Common Tricks with Convexity and
Lipschitz Continuity
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Affine Lower Bound

▶ suppose f is convex and differentiable

▶ then we have

f(θ) ≥ f
(
θ(n)

)
+∇f

(
θ(n)

)T(
θ − θ(n)

)
= g
(
θ|θ(n)

)
▶ g

(
θ|θ(n)

)
minorizes f(θ) at θ(n)

▶ e.g., f(θ) = − log θ ≥ − log θ(n) −
(
1/θ(n)

)(
θ − θ(n)

)
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Jensen’s Inequality

▶ suppose f is convex

▶ then we have

f
(
αx+ (1− α)y

)
≤ αf(x) + (1− α)f(y), α ∈ [0, 1]
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Jensen’s Inequality

▶ let u, v > 0 and let

α =
u(n)

u(n) + v(n)
, x =

u(n) + v(n)

u(n)
u, y =

u(n) + v(n)

v(n)
v

▶ thus, from the Jennsen’s inequality, we get

f
(
u+v

)
≤ u(n)

u(n)+v(n)
f

(
u(n)+v(n)

u(n)
u

)
+

v(n)

u(n)+v(n)
f

(
u(n)+v(n)

v(n)
v

)

▶ u and v can be positive functions of θ, e.g., u(θ) and v(θ)
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Jensen’s Inequality

▶ i.e.,

f
(
u(θ) + v(θ)

)
≤ u(θ(n))

u(θ(n)) + v(θ(n))
f

(
u(θ(n)) + v(θ(n))

u(θ(n))
u(θ)

)

+
v(θ(n))

u(θ(n)) + v(θ(n))
f

(
u(θ(n)) + v(θ(n))

v(θ(n))
v(θ)

)
= g(θ|θ(n))

▶ g
(
θ|θ(n)

)
majorizes f

(
u(θ) + v(θ)

)
at θ(n)

▶ e.g., f(θ) = − log θ = ?
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Quadratic Upper Bound

▶ suppose f is twice differentiable and gradient Lipschitz
continuous 3, i.e.,

∥∇f(θ)−∇f(β)∥2 ≤ L∥θ − β∥2 for all θ, β

▶ then we have

f(θ) ≤ f(θ(n)) +∇f(θ(n))T(θ − θ(n)) +
L

2
∥θ − θ(n)∥22

= g
(
θ|θ(n)

)
▶ g

(
θ|θ(n)

)
majorizes f(θ) at θ(n)

▶ e.g.,. cos θ ≤ cos θ(n)−(sin θ(n))(θ−θ(n))+(1/2)(θ−θ(n))2

3The following condition is equivalent to a bound on the Hessian ∇2f(θ) of
f . For example, LI −∇2f(θ) ⪰ 0 is positive semidefinite (LI −∇2f(θ) ⪰ 0).
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Some Related MM Examples
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Minimize cos θ

▶ cos (·) is twice differentiable and gradient Lipschitz
continuous with constant 1

▶ i.e.,

f(θ) = cos θ

≤ cos θ(n) − (sin θ(n))(θ − θ(n)) + (1/2)(θ − θ(n))2

= g(θ|θ(n))

▶ minimize the majorization function g
(

· |θ(n)
)

▶ thus we have
θ(n+1) = θ(n) + sin θ(n)
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Bradley–Terry Model

▶ prob. model: predicts the outcome of a paired comparison

▶ let us consider a sports league with m teams

▶ ith team’s skill level is parameterized by θi, i = 1, . . . ,m

▶ probability that i beats j is given by

pij(θ) =
θi

θi + θj
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Bradley–Terry Model

▶ let bij be the number of times i has beaten j (data)

▶ ML estimate 4 of the model parameters θ ∈ IRm
++?

▶ the likelihood function of data has the form

pθ(b) =
∏
i,j

(pij(θ))
bij

▶ the log-likelihood function f(θ) = log pθ(b)

▶ the log-likelihood function f should be maximized over θ

4For a concise description of ML estimation, see § 7.1.1 Convex
Optimization by S. Boyd and L. Vandenberghe, 2004.
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Bradley–Terry Model
▶ let us find a minorization function:

f(θ) = log pθ(b) = log
∏
i,j

(pij(θ))
bij

=
∑
i,j

bij log

(
θi

θi + θj

)
=
∑
i,j

bij [log θi − log (θi + θj)]

≥
∑
i,j

bij

[
log θi + gij

(
θ|θ(n)

)]
,

where

gij
(
θ|θ(n)

)
= − log

(
θ
(n)
i +θ

(n)
j

)
− 1

θ
(n)
i + θ

(n)
j

(
θi+θj−θ

(n)
i −θ

(n)
j

)
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Bradley–Terry Model

▶ as a result

f(θ) ≥
∑
i,j

bij

[
log θi − log

(
θ
(n)
i + θ

(n)
j

)
− θi + θj

θ
(n)
i + θ

(n)
j

+ 1

]
= g
(
θ|θ(n)

)
▶ maximize the minorization function g

(
· |θ(n)

)
▶ thus we have

θ
(n+1)
i =

∑
j ̸=i bij∑

j ̸=i(bij + bji)/(θ
(n)
i + θ

(n)
j )
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An example Based on Jensen’s

▶ you will be solving a problem in your homework

▶ based on the inequalities discussed in page 26
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Key Themes

▶ helpful majorizations and minorizations techniques?

▶ next 2-3 lectures


