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Optimization
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What is Optimization

▶ in its abstraction, optimization is to minimize a function f0
over a set F

▶ e.g., LASSO

▶ f0(x) = ||y −Ax||2 : the objective function

▶ F = {x | ||x||1 ≤ r}: the feasible set

▶ x ∈ IRn is called the decision variable

▶ y ∈ IRn, A ∈ IRn×n, and r ∈ IR are given
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Problem Formulation

▶ a general formulation of an optimization problem

minimize
x

f0(x)

subject to x ∈ F

▶ the decision variable is x

▶ f0 and F depend on the application

▶ f0 encodes what we want to optimize

▶ F encodes the underlying constraints
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Geometric Interpretation
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Geometric Interpretation
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Solving the Problem

▶ can all optimization problems be efficiently solved ?

▶ No !

▶ there is a general class of problems which are efficiently solved

▶ called convex optimization problems
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Convex Optimization
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Convex Optimization Problems

▶ what makes an optimization problem a convex optimization
problem ?

▶ determined by the characteristics of

▶ F

▶ f0
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Characteristics of F

▶ the line segment through any distinct points in F should lie
in F

▶ condition above holds → F is said to be convex

▶ set in the left is convex, set in the right is not convex
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Characteristics of f0(x)

x x

▶ domain of f0 should be convex

▶ the chord through any distinct points on the graph of f0
should lie above the graph

▶ conditions above hold → f0 is said to be convex

▶ function in the left is convex, the one in the right is not convex
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Convex Optimization Problems

▶ thus, roughly speaking, if

▶ F is convex

▶ f0 is convex

▶ then the underlying optimization problem is convex
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Importance of Convexity
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Importance of Convexity

▶ a fundamental property of convex optimization problems:

▶ any local solution is also a global solution

▶ optimality criterions can be specified

▶ by using the optimality criterions, closed form solutions are
achieved in many circumstances

▶ e.g., water-filling algorithm
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Importance of Convexity

▶ by using the optimality criterions, efficient algorithms can be
designed to find the solution

▶ e.g.,

▶ unconstrained optimization: gradient descent algorithm,
steepest descent algorithm, Newton’s method

▶ equality constrained optimization: Newton’s method with
equality constraints

▶ constrained optimization: interior-point method
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Importance of Convexity

▶ iterative algorithms can be designed to find the solution, even
in the case of large scale problems

▶ ADMM

▶ proixmal algorithms

▶ iterative algorithms can be designed to for decentralized the
solution methods

▶ decomposition methods

▶ ADMM

▶ proixmal algorithms
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Importance of Convexity

▶ the algorithms aforementioned are gracefully implemented in
many software packages

▶ a popular one is

▶ CVX, matlab software for convex optimization

▶ for a complete list, you may refer to the stanford website,
http://web.stanford.edu/~boyd/software.html

http://web.stanford.edu/~boyd/software.html
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Many Application Domains

▶ machine learning

▶ information retrieval

▶ engineering design

▶ economics

▶ finance

▶ management
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Why Convex Optimization

▶ many application domains

▶ massive data sets =⇒ optimization is a crucial component of
the emerging field of data science

▶ many problems in statistics and machine learning =⇒ in the
framework of convex optimization

▶ can be considered as ‘must know’ area for engineers
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An Application: LASSO
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Image Compression

▶ consider the 225× 225 gray-scale 1 image

original image

1Each pixel in the image is represented by an integer value yi in the range
[0, 255].
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Image Compression
▶ least absolute shrinkage and selection operator (LASSO) to

compress the image

original image compressed factor = 1% compressed factor = 8%

compressed factor = 26% compressed factor = 50% compressed factor = 78%
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LASSO

▶ how the LASSO is designed ?

▶ the underlying mathematics

▶ OPTIMIZATION !
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LASSO as an Optimization Problem
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LASSO: Problem Formulation

▶ so roughly speaking, the problem is to

▶ ‘approximate’ y by Ax

▶ by letting x to be sparse

▶ sparsity of x is the key to image compression

▶ technically, the optimization problem is

minimize
x

||y −Ax||2
subject to ||x||1 ≤ r,

where r ∈ IR is a parameter to decide the level of compression
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LASSO: Problem Formulation

▶ recall, we have a 225× 225 gray-scale image

▶ it is represented by a vector y = [y1, y2, . . . , yn]
T ∈ IRn

▶ note that n = 50625

▶ for an appropriate dictionary matrix, one can represent y as

y = Ax,

▶ A is a n× n matrix, x is a n-vector

▶ simply y is obtained by linearly combining columns of A, the
recipe is x !
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LASSO: Problem Formulation

▶ linearly combining columns of A to form y, the recipe is x

y

= ×

A

x



23/25

LASSO: Problem Formulation
▶ do we really need all the columns of A to reconstruct the

image y ? YES !, if no losses are allowed

y

= ×

A

x
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LASSO: Problem Formulation
▶ however, we may get an approximation to y if columns of

insignificant contribution are eliminated

y

≈ ×

A

0

0

0

x
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Some References
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