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Abstract—We investigate a single-antenna multi-user multi-
relay interference network, where multiple source nodes simulta-
neously communicate with their respective destination nodes via
half-duplex decode-and-forward relays. To ensure fairness among
users, we consider a power allocation strategy to maximize the
worst-case energy efficiency (EE) of all users for a fixed relay
assignment. The resulting optimization problem turns out to be
non-convex. Different from those in the literature, our method
here is an iterative algorithm where two geometric programs
(GPs) are solved in each iteration, one producing an upper-
bound to the solution of the original problem and the other
providing a feasible lower-bound. Moreover, the upper-bound
GP approaches the original problem asymptotically. Our algo-
rithm also works for the problem arising in the non-interfering
(orthogonal) transmission, which was previously solved as a
fractional program. Numerical results reveal that non-orthogonal
transmission outperforms orthogonal transmission in terms of the
worst-case EE at low and medium signal-to-noise ratios.

Index Terms—Energy efficiency, interference channels, max-
min fairness, optimal solution methods, user fairness.

I. INTRODUCTION

Energy efficiency (EE) is considered a key performance
metric in the design of 5G wireless networks as it is a function
of data rate, power consumption and frequency/time resource
usage [1], [2]. On the other hand, the use of relaying with
proper resource allocation improves the outage, coverage and
connectivity with quality-of-service guarantees in multi-user
networks [3], where orthogonal transmission is often employed
to mitigate multi-user interference [4]. Due to the bandwidth
limitation, orthogonal transmission via relays might be ineffi-
cient in connecting multiple end-to-end devices, e.g., Internet-
of-Things (IoT). Thus, resource allocation for energy efficient
transmission over non-orthogonal channels in a relay network
is the focus of this paper. The non-orthogonal transmission
here forms a relay-assisted interference channel, which is
fundamentally different from non-orthogonal multiple access
(NOMA) [5]. In wireless networks, it is not uncommon that
transmissions of users with unfavorable channel conditions
suffer from at least temporary outages in order to boost some
system-wide objectives. Thus, to ensure fairness among users,
for the multi-user multi-relay network considered here, the
worst-case EE among all users is maximized.
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A. Related Work

For orthogonal transmission in relay networks, the EE
has been widely considered in different system models, e.g.,
single-user multi-relay networks, multi-user single-relay net-
works, and multi-user multi-relay networks (see [6]–[8] and
references therein). However, for non-orthogonal transmission
or interference channels, while the EE has been extensively
studied in point-to-point networks or downlink multiple-input
multiple-output (MIMO) multi-cell systems (see, e.g., [9] and
references therein), very limited work is available on the EE in
relay-assisted networks. Furthermore, in all the available work
on multi-user relay networks with non-orthogonal transmis-
sions [5], [10]–[13], the objective was to maximize the global
EE. More specifically, single-relay networks are considered for
one-way decode-and-forward (DF) relaying in [10], two-way
amplify-and-forward (AF) relaying in [11], wireless-powered
massive MIMO aided multi-way AF relaying in [12] and
NOMA full-duplex AF relaying in [5]. In contrast, a multi-
relay network is considered for energy harvesting in [13].

B. Our Contribution

Our contribution is two-fold. 1) We consider non-orthogonal
transmissions in a multi-user multi-relay network, where joint
power allocation at source transmitters and DF relays is
performed to maximize the worst-case EE or the EE fair-
ness among all users. The advantage of the proposed non-
orthogonal transmissions over the orthogonal transmissions
in [7] is explored with extensive numerical simulations. 2) The
problem under consideration does not admit a straightforward
convex formulation. The method proposed in [7], which is
based on fractional programming, does not apply directly when
non-orthogonal transmissions are employed. Thus we propose
an iterative algorithm, which computes a sequence of upper
bounds that converges to the optimal value of the problem.
The main computations of the method are based on geometric
programs (GPs), which are solved in polynomial time [14].
In addition, the proposed method terminates by returning a
feasible point with an optimality certificate. Simulation results
suggest that a feasible point of high accuracy is obtained in a
few iterations of the algorithm.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

The direct channel between a particular source and des-
tination pair, termed as the SD pair, becomes weak due
to obstacles and/or deep fading. An intermediate DF relay
node can then be employed to maintain the link. Thus, our
system model is a dual-hop wireless relay network as shown
in Fig. 1. Here the K source nodes, S1, · · · , SK , indirectly
send information to their corresponding destination nodes,
D1, · · · , DK , via a set of K DF relays, R1, · · · , RK . The
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Fig. 1: A multi-user multi-relay network model.

i-th SD pair, i.e., Si–Di, is simply referred to as user i,
i = 1, . . . ,K. Each node is equipped with a single antenna. We
assume that the relay associated with user i is pre-assigned1

and denoted as Ri, i = 1, 2, . . . ,K, without loss of generality.
The link Si–Ri–Di is termed as the i-th link.

Denote power budgets for the i-th source Si and the i-th
relay Ri as pi and qi, i = 1, . . . ,K, respectively. During
the first hop, the channel coefficient between the source Si

and relay Rj is denoted by fij , i, j = 1, . . . ,K, which
are independent and identically distributed (i.i.d.) zero-mean
complex Gaussian random variables with variance σ2

f , denoted
by CN (0, σ2

f ). Similarly, in the second hop, the channel
coefficient between the relay Rj and the destination Di is
denoted by gij , i, j = 1, . . . ,K, which are i.i.d. CN (0, σ2

g).
Note that path losses or shadowing can be subsumed into chan-
nel coefficients. The additive white Gaussian noise (AWGN)
samples at different relay nodes and destination nodes are also
mutually independent, and are i.i.d. CN (0, σ2

r) and CN (0, σ2
d),

respectively.

B. Analytical Model

Two methods of transmission are adopted.
1) Non-Orthogonal Transmission (NOT): With this trans-

mission, user pairs are transmitting simultaneously, thereby
forming an interference channel. The effective end-to-end re-
ceived signal-to-interference-plus-noise (power) ratio (SINR)
of the i-th link is given by

γNOTi (p,q) = min
(
γNOT1,i (p), γNOT2,i (q)

)
, (1)

where p = [p1, . . . , pK ]T, q = [q1, . . . , qK ]T, γNOT1,i and γNOT2,i

are the SINRs of the first and second hops, respectively, i.e.,

γNOT1,i (p)=
pi|fii|2∑K

j=1
j 6=i

pj |fji|2+σ2
r

, γNOT2,i (q)=
qi|gii|2∑K

j=1
j 6=i

qj |gij |2+σ2
d

,

i = 1, . . . ,K. The EE for user i is given by

ηNOTi (p,q) =
1

2

ln(1 + γNOTi (p,q))

(pi + qi + c)
, (2)

with its unit in nats/channel use/Joule, where the scaling factor
1/2 is due to the dual-hop half-duplex relaying, and c > 0 is
the static power dissipation to operate the communication of
user i, which is assumed the same for all the links.

1Note that in general there may be N relays, N ≥ K, available to help
maintain the K SD links. Therefore, a proper relay assignment can also be
implemented to achieve a particular objective, e.g., [15].

2) Orthogonal Transmission (OT): In this transmission,
the channels of the user pairs are orthogonal by means of
time-division multiple access (TDMA) or frequency-division
multiple access. Orthogonal transmission is more popular,
since ideally there is no interference. The effective end-to-
end received signal-to-noise ratio (SNR) of the i-th link is
given by

γOTi (pi, qi) = min
(
γOT1,i(pi), γ

OT
2,i(qi)

)
, (3)

where the SNRs of the first and second hops are given by

γOT1,i(pi) =
pi|fii|2

σ2
r

and γOT2,i(qi) =
qi|gii|2

σ2
d

, (4)

respectively. The EE for user i is given by

ηOTi (pi, qi) =
1

2K

ln(1 + γOTi (pi, qi))

(pi + qi + c)
, (5)

where the factor 1/2 is due to half-duplex relaying as in NOT.
The factor 1/K comes due to the inherent orthogonal resource
sharing in OT, which can be a major source of inefficiency.
Moreover, TDMA-based OT relies on stringent timing to avoid
multi-user interference, whereas NOT does not emphasize this
requirement.

C. Problem Formulation

We consider the scenario where both energy efficiency and
user fairness are of crucial importance. In this context, a
standard objective function is the worst-case (lowest) EE
among all users with a given power budget for p and q. Thus,
the problem here is to maximize the worst-case EE among all
users, and is formulated as

maximize min
i∈{1,...,K}

ηNOTi (p,q)

subject to 0 ≤ p ≤ 1Pmax
0 ≤ q ≤ 1Qmax,

(6)

where the decision variables are p and q. Here 1 and 0 denote
the vectors with all-one and all-zero entries, respectively. The
optimization problem for the case of orthogonal transmission
is defined similarly by replacing ηNOTi (p,q) with ηOTi (pi, qi).

Our assumptions of the channel state information (CSI) are
similar to that of [7]. More specifically, at the initial stage of
the communication, a central node is assumed to have access
to global CSI via coordination, in order to solve problem (6)
and obtain the optimal p and q. The computed powers are
then fed back to the respective transmit nodes, i.e., sources in
the first hop and relays in the second hop. In the latter part
of the communication, only the individual (local) receiver-
side CSI is required at respective receivers to perform the
decoding, i.e., the individual source-relay CSI at each relay
node in the first hop and the individual relay-destination CSI
at each destination node in the second hop. Clearly, if slow
fading or block fading is assumed, the central node does not
need to frequently solve problem (6), and all the nodes can
perform transmission and/or reception independently without
coordination during most of the channel coherence time.
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The equivalent epigraph form of problem (6) is given by

maximize t
subject to 0 ≤ p ≤ 1Pmax

0 ≤ q ≤ 1Qmax

γNOT1,i (p) ≥ et(pi+qi+c)−1, i ∈ K
γNOT2,i (q) ≥ et(pi+qi+c)−1, i ∈ K,

(7)

where K = {1, . . . ,K} and the optimization variables are
t, p, and q. It is not difficult to see that problem (7) is
non-convex (e.g., see the last two constraints). Moreover, the
problem does not admit a straightforward equivalent convex
reformulation with standard tricks such as change of variables
or objective/constraint function transformations, among others.
As a result, solving problem (7) is challenging. Nevertheless,
in the sequel, we derive a method that can efficiently solve
problem (7) with a guaranteed optimality.

III. SOLUTION FOR THE OPTIMIZATION PROBLEM

The key idea of the proposed method is to generate a
sequence of asymptotically tight upper bounds for the optimal
value t? of problem (7) in an iterative manner. In each
iteration, an upper bound for t? is computed from solving
a relaxed problem, derived by loosening some constraints of
the original problem (7). As will be shown later, the algorithm
terminates in a finite number of iterations.

In addition, in each iteration, a lower bound for t? is
computed by solving a problem derived by tightening some
constraints of the original problem (7). Solving the lower-
bound problem provides a feasible point to (7). Furthermore,
the difference between t? and the optimal objective value of
the lower-bound problem is at most the difference between the
corresponding upper-bound and lower-bound values of t?.

Below we elaborate on the proposed method. While our
discussion focuses on the problem of non-orthogonal transmis-
sion, one may find that the proposed method naturally works
for the problem in orthogonal transmission considered in [7].

A. Computation of the Upper Bound t(l)UB for t?

Consider the related problem

maximize t
subject to 0 ≤ p ≤ 1Pmax

0 ≤ q ≤ 1Qmax

γNOT1,i (p) ≥
l∑

n=1

[t(pi + qi + c)]n

n!
, i ∈ K

γNOT2,i (q) ≥
l∑

n=1

[t(pi + qi + c)]n

n!
, i ∈ K,

(8)

with the variables t, p, and q, where the last two inequality
constraints of problem (7) have been relaxed by using the fact
that, for all x ≥ 0 and l ∈ {1, 2, . . .}, ex − 1 ≥

∑l
n=1 x

n/n!.
Let F be the feasible set of problem (7). Moreover, let F (l)

UB

denote the feasible set of problem (8), where the superscript l
on F denotes the number of terms in the summations on the
right-hand side of the last two inequalities of problem (8). It is
straightforward to verify that F ⊂ F (l)

UB . As a result, we always
have t? ≤ t(l)UB , where t(l)UB is the optimal value of problem (8).

Interestingly, problem (8) is a geometric program (GP) [16,
§ 4.5]. This follows immediately since all the inequality
constraints of problem (8) can readily be rearranged into
the form of posynomial inequality constraints [16, § 4.5.2].
Therefore, problem (8) can be efficiently solved by using
classic interior-point polynomial algorithms [14, § 6.3.1].

B. Computation of the Lower Bound t(l)LB for t?

Recall that the lower bound t
(l)
LB is computed by solving a

problem whose constraints are tighter than those of the original
problem (7). To this end, we first invoke a simple but useful
inequality. Given r̂, let m̂ =

(
er̂ − 1

)
/r̂. Then

ex − 1 ≤ m̂x, (9)

for all 0 < x ≤ r̂. Next, we formulate a problem related
to (7), with the last two constraints of problem (7) replaced
based on (9). This idea leads to the following GP:

maximize t
subject to 0 ≤ p ≤ 1Pmax

0 ≤ q ≤ 1Qmax

γNOT1,i (p) ≥ m̂it(pi + qi + c), i ∈ K
γNOT2,i (q) ≥ m̂it(pi + qi + c), i ∈ K
t(pi + qi + c) ≤ r̂i, i ∈ K,

(10)

where the variables are t, p, and q. Here we have intro-
duced new problem parameters m̂ = [m̂1, . . . , m̂K ]T and
r̂ = [r̂1, . . . , r̂K ]T, based on the spirit of (9). Note that

m̂i = (exp(r̂i)− 1) /r̂i, i ∈ K. (11)

According to (9), the value of r̂i can be an arbitrary pos-
itive value, ∀i ∈ K. In the proposed algorithm, we set
r̂i = t

(l)
UB

(
p
(l)
i,UB+q

(l)
i,UB+c

)
, where t(l)UB , (p

(l)
i,UB, q

(l)
i,UB)i∈K are the

solution of problem (8). By doing so, problem (10) inherits
the superscript l corresponding to the l terms on the right-hand
side of the last two inequality constraints of problem (8).

Since the constraints of problem (10) are tighter than those
of problem (7) [cf. (9)], the feasible set F (l)

LB of problem (10)
and F are such that F (l)

LB ⊂ F . Therefore, the optimal value
t
(l)
LB of problem (10) is always a lower bound for t?, i.e.,
t
(l)
LB ≤ t?. More importantly, the solution t(l)LB ,

(
p
(l)
i,LB, q

(l)
i,LB

)
i∈K

of problem (10) is feasible for the original problem (7).

C. The Proposed Algorithm and Its Convergence

The proposed algorithm is summarized in Algorithm 1.
Recall that the upper limit of the summations of problem (8)

is the iteration index l of Algorithm 1. Moreover, the larger
the value of l, the higher the upper limit of the summations
aforementioned. Steps 3 to 6 are simply the iterative compu-
tations of the upper-bound and lower-bound for the optimal
value t? of problem (7).

When
∣∣t(l−1)UB − t(l)UB

∣∣ is within the specified tolerance given
by ε [cf. step 6], the algorithm terminates by returning the
best feasible point [cf. step 7] computed so far. Let us define
the accuracy of the feasible point by

∣∣t? − t
(l?)
LB

∣∣, which is
clearly upper-bounded by

∣∣t(l?)UB − t
(l?)
LB

∣∣. Below we establish
the convergence results of the algorithm.
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Algorithm 1 : Power Allocation for Fair Energy-Efficiency
(PA-FEE)

1: Initialization: Set the iteration index l = 0 and the
tolerance ε > 0. l also denotes the number of terms in
the summations of problem (8). t(0)UB = 0.

2: repeat
3: Set l := l + 1.
4: Upper Bound: Solve problem (8) to yield the solution(

t
(l)
UB ,p

(l)
UB ,q

(l)
UB

)
.

5: Lower Bound: Solve problem (10) with problem pa-
rameters (11) and r̂i=t

(l)
UB

(
p
(l)
i,UB+q

(l)
i,UB+c

)
,∀i∈K to

yield solution
(
t
(l)
LB ,p

(l)
LB ,q

(l)
LB

)
. Set l? = arg max

n∈{1,...,l}
t
(n)
LB .

6: until
∣∣t(l−1)UB − t(l)UB

∣∣ < ε

7: Output: Return t(l
?)

LB ,
(
p
(l?)
i,LB, q

(l?)
i,LB

)
i∈K as the solution.

Lemma 1. Consider the indexed collection of sets
{
F (l)
UB

}
l∈N.

The intersection of the collection is simply F , i.e., F =⋂
l∈N F

(l)
UB .

Proof: ∀x ≥ 0, lim
l→∞

∑l
n=1(xn/n!) = ex − 1. Further-

more, for l ≤ l′ and x ≥ 0,
∑l

n=1(xn/n!) ≤
∑l′

n=1(xn/n!) ≤
ex − 1, which means that l ≤ l′ =⇒ F (l)

UB ⊃ F
(l′)
UB ⊃ F .

Corollary 1. Consider the sequence {t(l)UB}l∈N, where t(l)UB is the
first component of the solution

(
t
(l)
UB ,p

(l)
UB ,q

(l)
UB

)
of problem (8)

[cf. step 4 of Algorithm 1]. Then, lim
l→∞

t
(l)
UB = t?, where t? is

the optimal value of problem (7).

Proof: Note that the sets F and F (l)
UB , l ∈ N in R2K+1 are

compact and this property is implicitly applied in the rest of
the proof. From the proof of Lemma 1, the collection of sets{
F (l)
UB

}
l∈N constitutes a monotone sequence in the sense that

F (l)
UB ⊃ F

(l+1)
UB ⊃ · · · . Moreover, F (l)

UB ⊃ F for all l ∈ N. Thus,
the sequence {t(l)UB}l∈N is monotonic and bounded below, i.e.,
t
(l)
UB ≥ t

(l+1)
UB ≥ · · · and t(l)UB ≥ t? for all l ∈ N. Then it follows

from [17, Theorem 3.14] that the sequence converges. Let t̄
be the limit of the sequence, i.e., t̄ = lim

l→∞
t
(l)
UB . It remains to

show that t̄ = t?. Clearly, t̄ < t? is impossible since t(l)UB ≥ t?
for all l ∈ N. Suppose that t̄ > t?. Then

lim sup
l→∞

F (l)
UB is a proper superset of F , (12)

where the lim sup operator is used to define the outer limit of
the set sequence

{
F (l)
UB

}
l∈N (cf. [18, 4.1 Definition]). However,

lim
l→∞

F (l)
UB

(a)
=
⋂
l∈N
F (l)
UB

(b)
= lim sup

l→∞
F (l)
UB

(c)
= F , (13)

where in the above (a) follows from the results pertaining
to monotone sequences of set (cf. [18, p. 111]), (b) follows
immediately from [18, 4.1 Definition], and (c) follows by
Lemma 1. Thus, (12) and (13) stand in contradiction.

Proposition 1. The Algorithm 1 (PA-FEE) terminates in a
finite number of iterations.

Proof: The sequence {t(l)UB}l∈N is convergent, cf. Corol-
lary 1. Thus, the sequence {t(l)UB}l∈N is a Cauchy sequence,
cf. [17, Theorem 3.11-(a)], which ensures the termination of
PA-FEE at step 6 of the algorithm.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In all the simulations, we set Pmax = Qmax and σ2
f =

σ2
g = 1. We assume σ2

r = σ2
d = σ2, and define the

signal-to-noise-ratio as SNR = Pmax/σ
2. We consider two

static power dissipation models: i) c = 0.01Pmax and ii)
c = 0.01 (W). The upper- and lower-bounds of the worst-
case EE for non-orthogonal transmission are obtained from
solving (8) and (10), respectively.
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Lower bound
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0.01915
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Lower bound

Fig. 2: (Worst-case) EE vs. number of iterations (K = 5, 15)
For a single channel (fading) realization, Fig. 2 plots the

(worst-case) EE values of the upper- and lower-bounds versus
the number of iterations when SNR = 10 dB, c = 0.01Pmax

and ε = 10−8. It can be seen that 5 and 4 iterations are
required for K = 5 and 15, respectively. When ε = 10−6,
however, 4 and 3 iterations are required for K = 5 and 15,
respectively. Results show that PA-FEE yields a feasible point
with high accuracy within only a few iterations, for all cases
we have considered given that ε ≥ 10−8. Since PA-FEE has
fast convergence, it suits for practical implementations.

Next, for accuracy within 10−8 of the optimum, we obtain
the average worst-case EE over 2000 channel realizations
in Figs. 3 and 4. For both non-orthogonal and orthogonal
transmissions with K = 2 and K = 10, Figs. 3a and 3b show
the average worst-case EE vs. SNR for c = 0.01Pmax and
c = 0.01 W, respectively. Several observations are in order.
i) Both upper- and lower-bounds tightly match in all cases.
ii) For c = 0.01Pmax, the worst-case EE decreases when
SNR increases and the decrease is larger for non-orthogonal
transmission. For c = 0.01 W, the worst-case EE increases
with SNR and reaches a plateau. iii) For c = 0.01Pmax, while
the non-orthogonal transmission outperforms the orthogonal
transmission at low or medium SNRs, the opposite is ob-
served at high SNRs. iv) For c = 0.01 W, the non-orthogonal
transmission always outperforms the orthogonal transmission.

Figs. 4a and 4b show the average worst-case EE vs. the
number of users (K) for c = 0.01Pmax and c = 0.01 W,
respectively. For both methods of transmission, the worst-
case EE decreases when K increases. For non-orthogonal
transmissions, the decrease in the worst-case EE is caused by
the increased interference. For orthogonal transmissions, the
decrease comes from the inherent inefficiency of the transmis-
sion, cf. the ratio 1/K in (5). For c = 0.01Pmax, at SNR =
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Fig. 3: Average (worst-case) EE vs. SNR (K = 2, 10).
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Fig. 4: Average (worst-case) EE vs. number of users.

10 dB, when K increases from 2 to 20, the worst-case EE
reduces by 89% for non-orthogonal transmissions and by 96%
for orthogonal transmissions. However, at SNR = 32 dB, for
K < 14, the orthogonal transmission has a better performance
than the non-orthogonal transmission. Interestingly, for fixed
c = 0.01 W, the non-orthogonal transmission outperforms the

orthogonal transmission in the entire simulated SNR region.
V. CONCLUSION

The worst-case energy efficiency (EE) among all the links
designated by source-relay-destination triads was maximized
with respect to the transmit powers at sources and relays in a
multi-user multi-relay interference network. A novel iterative
algorithm based on geometric programming was proposed to
find a feasible point with guaranteed optimality for the result-
ing non-convex problem. Convergence of the algorithm was
analytically established. Simulations show that convergence
to within 10−8 of the optimum is achieved within a few
iterations. In terms of the worst-case EE, the non-orthogonal
transmission performs better at low to medium SNR values
than the orthogonal transmission.
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