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Abstract— In reactive cognitive networks, the channel access
and the transmission decisions of the cognitive terminals have a
long-term effect on the network dynamics. When multiple cog-
nitive terminals coexist, the optimization and implementation of
their strategy is challenging and may require considerable coor-
dination overhead. In this paper, such challenge is addressed by a
novel framework for the distributed optimization of transmission
and channel access strategies. The objective of the cognitive
terminals is to find the optimal action distribution depending on
the current network state. To reduce the coordination overhead,
in the proposed framework the cognitive terminals distributively
coordinate the policy, whereas the action in each individual time
slot is independently selected by the terminals. The optimization
of the transmission and channel access strategy is performed
iteratively by using the alternate convex optimization technique,
where at each iteration a cognitive terminal is selected to optimize
its own action distribution while assuming fixed those of the other
cognitive terminals. For a traditional primary–secondary user
network configuration, numerical results show that the proposed
algorithm converges to a stable solution in a small number of
iterations, and a limited performance loss with respect to the
perfect coordinated case.

Index Terms— Cognitive networks, distributed optimization,
Markov decision processes.

I. INTRODUCTION

COGNITIVE radios open new opportunities and commu-
nication paradigms to increase the efficiency of wireless

spectrum usage [1]–[3]. This area has attracted a considerable
research effort, with particular attention devoted to the study of
cognitive devices operating in the same bandwidth as primary
wireless terminals. The goal of the cognitive devices, generally
referred to as secondary users, is to maximize their perfor-
mance while bounding the performance degradation caused to
the non-cognitive primary devices, which are the legitimate
owners of the radio resource. The underlay and interweave
approaches [4] were proposed to optimize secondary users’
transmissions in this scenario. In the former approach the
secondary users are allowed to operate concurrently with the
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primary users as long as the interference at the receivers
of the primary users’ signals remains below a predefined
threshold [5], [6]. In the interweave paradigm, the secondary
users opportunistically identify and exploit time and frequency
slots left unused by the primary users for their transmissions
(the so called white space approach) [3], [7].

Most prior work on the interweave approach proposes
frameworks where the primary users generate an idle/busy
pattern over multiple radio channels. The activity of the
primary users is described by a stochastic process with a
binary state space whose statistics are assumed independent
of the secondary users’ activity. Due to this assumption,
these frameworks cannot capture the complex interactions
between the primary and the secondary users occurring
when transmission and networking protocols are implemented.
In fact, the activity of the secondary users may trigger
a reaction of the primary users and impact the distribu-
tion of the future network’s state. For instance, interference
due to secondary user’s transmissions may force the pri-
mary user to enter a backoff period if a channel sensing-
based protocol is used to regulate primary users’ access to
the wireless resource [8], or may trigger a retransmission
if the primary users implement Automatic Retransmission
reQuest (ARQ) [9]. Therefore, the assumption of indepen-
dence between the temporal evolution of the primary users’
network and the activity of the secondary users limits the
range of applications of the primary-secondary user framework
to those network scenarios where the primary users do not
implement any form of control. In [10] and [11], a framework,
namely reactive primary users, was introduced to capture these
interactions. The secondary users optimize their transmission
strategy accounting for the impact of the generated interfer-
ence on the temporal evolution of the state of the network.
Importantly, the reactive framework also allows for a more
accurate estimation of the performance degradation caused to
the primary users. Primary-secondary users’ interactions were
further studied in [12]–[16].

One of the most important features of the reactive cognitive
framework is the introduction of the notion of network state.
By capturing the internal state of the network nodes and their
protocols (see Sec. II and V for definitions and a detailed
case study), the reactive framework opens to the advance-
ment of the traditional primary-secondary user network setting
to more general cognitive network scenarios where smart
terminals optimize their transmission and channel access
strategies to achieve the desired Quality of Service (QoS).
Finite State Machines (FSM) can be defined to capture the
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dynamics of the internal state of the wireless terminals and the
implemented network mechanisms (e.g., packet buffering,
packet retransmission, cooperative transmissions), as well as to
track environmental variables (e.g., channel state). The strategy
of the cognitive terminals influences the statistics of FSM’s
state transition, and aims at steering the temporal evolution of
the state on optimal trajectories.

Prior work based on this framework considers network
scenarios focused on the primary-secondary user classification
and with one smart secondary user. Herein, we propose a
framework targeting a network setting with multiple smart
terminals sharing the same channel resource. The objective
of the smart terminals is to maximize some QoS metric
(e.g., aggregate throughput) under constraints on other QoS
metrics (e.g., packet failure). The reactive cognitive framework
is used to formulate control policies defined on the network
state, and to model the impact of transmission/interference
resulting from the individual terminals on the statistics of the
future network state. By removing the traditional primary-
secondary user classification, we open our framework to
novel network scenarios focused on the coexistence of smart,
adaptive, terminals in modern cognitive networks. However,
compared to the single smart secondary user, the presence of
multiple such users poses major analytical and optimization
challenges.

In the literature, the problem of distributively estimating
the network state has been extensively studied [17], [18].
However, relatively few studies exist focusing on the problem
of optimizing the operations of cognitive networks with
multiple cognitive terminals. In [19], the authors propose
a distributed resource management technique for such
scenario. A learning approach to the same problem is
presented in [20] and [21]. An information theoretic study is
provided in [22]. In this paper, we propose an optimization
strategy within the reactive cognitive framework specifically
addressing a scenario with multiple secondary users. To make
the implementation of the transmission strategy feasible,
the secondary users coordinate their transmission policy,
but, then, independently select their individual action (e.g.,
transmission, idleness) in each time slot. In fact, action
coordination would require an excessive amount of overhead
to distributively select a global action, that is, the vector of
all the actions, from the overall policy. To overcome this
problem, we propose an iterative optimization strategy.

The iterative optimization is based on the Regularized Alter-
nate Convex Optimization Approach (RACOA), where in a
round-robin fashion, each individual cognitive terminal solves
a local optimization problem and, then, transmits the result
to the next cognitive terminal until a shared policy is found.
Convergence to a coordinate-wise minimum of the objec-
tive function with linear convergence rate is demonstrated.
The policy computation phase is repeated if the statistics
of the stochastic process modeling the network’s dynamics
change. However, each phase requires the exchange of a
small number of control packets containing action distribu-
tions, and no further coordination is needed between policy
computation phases, where transmission actions are selected
independently by the terminals. Note that coordination phases

followed by implementation phases are explicitly or implicitly
used in related papers focusing on different scenarios, such
as [23] and [24]. The proposed technique can be used to
optimize the transmission strategy of the secondary users in
traditional primary-secondary user network where the primary
users implement networking protocols. In order to exemplify
this application of the framework, a case study is considered
where multiple secondary users distributively optimize their
transmission strategy to maximize their aggregate throughput
under a constraint on the performance loss caused to a primary
user implementing ARQ. Numerical results show a limited
performance loss incurred by the distributed uncoordinated
policy with respect to the ideal global optimum and fully
coordinated policy. However, we remark that the proposed
framework can be used in more general cognitive network
scenarios.

The rest of the paper is organized as follows. Section II
describes the considered network and defines the optimization
problem. Section III presents the distributed optimization
framework. Section IV discusses the convergence properties
of the proposed algorithm. In Section V, numerical results
are presented to assess the performance of the proposed
framework for a case study network with a primary user
implementing ARQ and multiple secondary users coordinating
their transmission strategy. Section VI concludes the paper.

II. PROBLEM DEFINITION

First, we state the proposed algorithm for a general net-
work optimization problem. A specific network scenario is
instantiated in Sec. V. A network with N cognitive terminals
sharing the wireless resource is considered. As observed
in [25] and [26], the state of networking and communication
protocols, as well as of the physical environment, is described
by a finite collection of variables describing features of the
network state. The individual variables track quantities and
counters such as the number of packets in the buffers, the
number of retransmissions of the packets being served, and
the quality of the channel to the receivers,1 the backoff
countdown and transmission parameters. An exemplar of this
construction is provided in [8], where Distributed Coordination
Function (DCF) is modeled as a bi-dimensional Markov chain
tracking the backoff counter and the retransmission index of
the packet being served. Therefore, we model the operations
of the network by a Finite State Machine (FSM), where the
state of the FSM refers to the internal state of networking
mechanisms. Slotted time is assumed, where the slots are
indexed with t = 0, 1, . . ..

Denote the state space of the FSM and the state at time t
by S and S(t) ∈ S, respectively. The state S(t) ∈ S is defined
as the vector

(
X1(t), . . . , X M (t)

)
, where the variables Xm(t)

describe features of the network state and M is the number
of features. Due to the intrinsic randomness of events in the
network (e.g., packet arrival, packet decoding outcome), the
state sequence S = (S(0), S(1), . . .) is stochastic. Herein, we
model the statistics of the temporal evolution of the network

1Continuous variables are assumed to be quantized to achieve an accurate
approximation. See [27] for an example of wireless channel quantization
strategy matched to the retransmission protocol.
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state as a homogeneous Markov process. We remark that
this is a widely accepted assumption in works addressing
the modeling, analysis and control of wireless networks.
In fact, most of the technical contributions in white space-
based cognitive networks model the dynamics of the network
as a binary Markov chain.

The cognitive terminals make transmission and channel
access decisions based on the state of the network. We, then,
define U(t) ∈ U as set of the actions of the cognitive
terminals at time t . The action variable U(t) consists of
the vector U(t) = {U1(t), . . . , UN (t)}, where U j (t) ∈ U j ,
j = 1, 2, . . . , N , is a random variable associated with the
action of cognitive terminal j . For instance, the action space U
can be a collection of N binary variables associated with
transmission/idleness of the wireless terminals. However, the
action space can include variables controlling transmission
parameters and cooperative behaviors. Then, the statistics of S
are completely defined by the transition probabilities

p(s′|s, u) = Pr(S(t + 1) = s′|S(t) = s, U(t) = u), (1)

and initial state distribution p0(s), where pt (s) = Pr(S(t) = s),
where Pr(·) denotes the probability of an event.

The objective of the cognitive terminals is to define a control
sequence U = {U(0), U(1), . . .} maximizing some QoS met-
ric measuring their performance (e.g., aggregate throughput)
under a constraint on some other QoS metric (e.g., packet
delivery delay). We remark that the cognitive terminals need
to account for the interaction between their control sequence
and the statistics of the Markov process determining the
state trajectory of the FSM. QoS metrics such as throughput,
packet failure probability and service time can be expressed
as the time average of additive cost functions [28]. Define the
transition cost functions ω(s′|s, u) and φ(s′|s, u), s, s′ ∈ S,
u ∈ U, namely the cost to move from s to s′ as an effect
of the action u taken by the terminals, where the first cost
function corresponds to a QoS metric, and the second cost
function corresponds to another QoS metric. The average costs
conditioned on state s and action u are

ω(s, u) =
∑

s ′∈S

p(s′|s, u)ω(s′|s, u), (2)

φ(s, u) =
∑

s ′∈S

p(s′|s, u)φ(s′|s, u). (3)

An example of such cost functions is provided later in this
paper. However, we remark that a wide array of performance
metrics can be measured using the modeling structure adopted
in this paper [28]. Then, the problem of optimizing the
cognitive terminals control sequence is formulated as the
constrained Markov Decision Process [29]

U∗= arg min ω(U) s.t. φ(U)≤C, (4)

where ω(μ) and φ(μ) are the time averages

ω(U) = lim
T →∞

1

T

T∑

t=0

EU

[
ω(S(t), U(t))

∣
∣
∣∣S(0) = s0

]
, (5)

φ(U) = lim
T →∞

1

T

T∑

t=0

EU

[
φ(S(t), U(t))

∣
∣
∣
∣S(0) = s0

]
, (6)

and EU [·] denotes expectation conditioned on the
policy U .

If the Markov process is unichain, that is, only one recurrent
class exists, then at least one optimal policy is a randomized
past-independent policy [30], that is, the optimal policy lies
in the set of randomized maps μ:S×U→[0, 1]. Without loss
of optimality, then, we focus on this class of policies and
define μ(s, u) as the probability that the action u ∈ U is
selected given that the process is in state s ∈ S, that is

μ(u|s) = Pr(U(t) = u|S(t) = s). (7)

For any policy μ, the state sequence S = (S(0), S(1), . . .) is
a Markov process. We remark the difference between action
and policy. Action refers to the individual slot transmission
decision, whereas the policy is the distribution of actions over
the state space.

The following Linear Program (LP) can be used to find
the optimal action distribution conditioned on the network
state [30]. The optimization variables zs,u , ∀s, u, are the
steady-state joint probability that the Markov process is in
state s and action u is selected, that is zs,u = Pr(S(t) = s,
U(t) = u).

z∗ = arg min
z

∑

s∈S

∑

u∈U

zs,uω(s, u), (8a)

s.t.
∑

s∈S

∑

u∈U

zs,uφ(s, u) ≤ Ct , (8b)

∑

s∈S

∑

u∈U

zs,u = 1, (8c)

∑

u′∈U

zs ′,u′ =
∑

s∈S

∑

u∈U

zs,u p(s′|s, u), ∀s′, (8d)

with zs,u ≥ 0, ∀s, u, and where z = {z∗
s,u}s∈S,u∈U. The equality

constraints (8c) and (8d) enforce the variables zs,u to be a
valid steady-state for the transition probability set. The optimal
randomized past-independent policy μ∗ obtained by solving
the above LP, then, is μ∗(u|s) = zs,u/

∑
w∈U zs,w.

Assumption 1: Problem (8) has at least one feasible
solution. �.

In the next section, we propose a distributed approach to
the solution of problem (8).

III. UNCOORDINATED-ACTION FRAMEWORK

The formulation of the optimization problem and the found
policy presume the existence of a coordinator. In fact, not only
the LP in Eq. (8) needs to be solved centrally by one of the
terminals or a control unit, but the action in each time slot
needs to be centrally selected and then broadcast to the all
cognitive terminals in the very short lapse of time between
state identification and action deployment. These drawbacks
limit the practical implementation of reactive cognitive net-
works in real-world networks. In this section, we develop a
new framework where the optimization problem can be solved
either centrally or distributively, an whose solution does not
presume coordination of actions in each time slot. Instead, we
assume that the cognitive terminals only coordinate the policy,
i.e., they do not coordinate the actions selected in each slot.
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Fig. 1. In the proposed framework, the cognitive terminals periodically
coordinate to compute the optimal policy and, then, independently select
transmission actions in the individual slots.

Fig. 1 illustrates the operations of the cognitive terminals
in the proposed framework: the cognitive terminals period-
ically coordinate to compute the optimal action distribution
and, then, independently select transmission actions in the
individual slots. Note that the action distribution needs to
be recomputed only if the statistics of the stochastic process
capturing the network’s dynamics change. As shown later in
the paper, the policy computation phase only requires the
exchange of a small number of control packets. We refer
to the policies where the secondary users coordinate, and do
not coordinate actions, in each slot as coordinated-action and
uncoordinated-action policy, respectively.

A. Uncoordinated-Action Policy

The key property exploited when designing the
uncoordinated-action policy is the conditional independence
of actions (u1, . . . , uN ) of secondary users when they are
in state S = s. In other words, we require the cognitive
terminals to independently select the actions. This allows us
to split the decision variable zs,u of problem (8) as follows:

zs,u = Pr
(
S = s, U = (u1, . . . , uN )

)
(9)

= Pr(S = s) Pr
(
U = (u1, . . . , uN ) | S = s

)
(10)

= Pr(S = s)
N∏

j=1

Pr
(
Ui = ui | S = s

) =
N∏

j=1

z
s,u j
j , (11)

where the equalities above follow directly from basic proba-
bility theory and

z
s,u j
j = ys

j Pr
(
Ui = ui | S = s

)
, j = 1, . . . , N (12)

for some positive ys
j , j = 1, . . . , N that conforms to

N∏

k=1

ys
k = Pr(S = s). (13)

Let us next see, how the independence property, consequently
the splitting of zs,u can be used to decompose the coordinated-
action policy μ(u | s). Recall that μ(u | s) = zs,u/

∑
w∈U zs,w,

where {zs,u}s∈S,u∈U is a feasible point of (8). With some
straightforward manipulations, together with the conditional
independence property of actions, the equality in Eq. (14),

as shown at the bottom of this page, can be derived
[see Appendix I], where μ j (u j | s) is the individual cognitive
terminal’s strategies, which we define as the uncoordinated-
action policy. In particular, as shown in Appendix I, we can
compute μ j (u j | s) as follows:

μ j (u j | s) = z
s,u j
j∑

wk∈U j

zs,wk
j

. (15)

Given the intrinsic difficulty of a coordinated-action policy,
in the following we focus on determining an uncoordinated-
action policy, which entails distributed optimization.

B. Distributed Optimization Problem

From (15), we see that the computation of the
uncoordinated-action policies {μ j (u j | s)}s∈S,u j∈U j of j th sec-
ondary user requires the knowledge of {zs,u j

j }s∈S,u j∈U j . Thus,

we simply use the splitting of zs,u , given by zs,u = ∏N
j=1 z

s,u j
j ,

for all s ∈ S and u ∈ U1 × · · · × UN [compare with (11)].
Accordingly, the objective function

∑
s∈S

∑
u∈U zs,uω(s, u) of

problem (8) becomes

∑

s∈S

∑

u1∈U1

. . .
∑

uN ∈UN

N∏

j=1

z
s,u j
j ω(s, u). (16)

To simplify the notation, we denote by zs
j the vector of

probability values associated with state s and secondary user j ,
i.e., zs

j = (z
s,u j
j )u j ∈U j . Moreover, we denote by z j the vector

of probability values associated with secondary user j , i.e.,
z j = (zs

j )s∈S. Finally, we let the decision variables of the
optimization, which recall are probability values, and precisely
z = (z j ) j=1,...,N is the steady-state state-action probabilities.
It follows that optimization problem (4) can be equivalently
expressed as

z = arg min
z

∑

s∈S

∑

u1∈U1

. . .
∑

uN ∈UN

ω(s, u)

N∏

j=1

z
s,u j
j (17a)

s.t.
1

Ct

∑

s∈S

∑

u1∈U1

. . .
∑

uN ∈UN

φ(s, u)

N∏

j=1

z
s,u j
j ≤1 (17b)

∑

s∈S

∑

u1∈U1

. . .
∑

uN ∈UN

N∏

j=1

z
s,u j
j = 1 (17c)

∑
s ′∈S

∑
y1∈U1

. . .
∑

yN ∈UN
p(s′|s,y)

∏N
j=1 z

s ′,y j
j

∑
u1∈U1

. . .
∑

uN ∈UN

∏N
j=1 z j

s,u j

=1,

(17d)

0 ≤ z
s,u j
j ≤ 1, s ∈ S, j = 1, . . ., N, u j ∈ U j , (17e)

μ(u | s) = Pr
(
U1 = u1 | S = s

)

∑

w1∈U1

Pr
(
U1 = w1 | S = s

)

︸ ︷︷ ︸
μ1(u1 | s)

× · · · × Pr
(
UN = uN | S = s

)

∑

wN ∈UN

Pr
(
UN = wN | S = s

)

︸ ︷︷ ︸
μN (uN | s)

=
N∏

j=1

μ j (u j | s). (14)
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ωs
j (z̄ j , u j , ū j ) =

∑

u1∈U1

. . .
∑

u j−1∈U j−1

∑

u j+1∈U j+1

. . .
∑

uN ∈UN

ω(s, u j , ū j )
∏

n 
= j

zs,un
n , (20)

φs
j (z̄ j , u j , ū j ) =

∑

u1∈U1

. . .
∑

u j−1∈U j−1

∑

u j+1∈U j+1

. . .
∑

uN ∈UN

φ(s, u j , ū j )
∏

n 
= j

zs,un
n , (21)

Zs
j (z̄ j , ū j ) =

∑

u1∈U1

. . .
∑

u j−1∈U j−1

∑

u j+1∈U j+1

. . .
∑

uN ∈UN

∏

n 
= j

zs,un
n , (22)

Ps ′s
j (z̄ j , u j , ū j ) =

∑

u1∈U1

. . .
∑

u j−1∈U j−1

∑

u j+1∈U j+1

. . .
∑

uN ∈UN

p(s′|s, u j , ū j )
∏

n 
= j

zs,un
n . (23)

where the optimization vector is z. One of the classic method
for decentralizing optimization problems is the decomposition
technique [31]. However the specification of the new vari-
ables gives an optimization problem which does not necessar-
ily posses structural properties (e.g., separability) favorable
for classic distributed optimization [31, Sec. III]. Therefore,
decomposition techniques do not apply for efficiently distribut-
ing the solution method for Problem (17). Nevertheless, in the
sequel we propose a method inspired from alternating convex
optimization techniques for decentralizing the solution method
for the problem. The penalty is an increase in the required
message exchanges compared to that of classic decomposition
techniques. We remark that the optimization procedure can be
performed centrally if needed.

C. Alternating Convex Optimization Approach

Based on optimization problem (17), we derive an algorithm
for the distributed computation of the vector of steady-state
state-action probabilities z. We denote by u− j the vector
obtained by eliminating the component j of u, i.e.,

u− j = (u1, . . . , u j−1, u j+1, . . . , uN ). (18)

We also denote the overall action u with (u j , u− j ) to distin-
guish the individual cognitive terminal’s action u j From the
rest of the cognitive terminals’ actions. Coherently, we use
ω(s, u) � ω(s, u j , u− j ) and p(s′|s, u)�p(s′|s, u j , u− j ) for
all j = 1, . . . , N . In a similar manner, we denote by z− j the
vector obtained by eliminating z j from z, that is,

z− j = (z1, . . . , z j−1, z j+1, . . . , zN ). (19)

To formally establish the algorithm, it is also useful to define
the functions in Eq. (20), (21), (22) and (23), as shown at the
top of this page.

The key idea of the algorithm is that the optimization
is performed with respect to different subsets of variables
in the vector z, while the others are fixed. This strategy is
based on the alternating convex optimization techniques [32].
For the reactive cognitive network considered herein, each
cognitive terminal j optimizes with respect to the associated
set of variables z j , while considering z− j fixed. Then, the
optimization token is passed to another cognitive terminal that
optimizes with respect to its own action distribution with all
the others fixed and so on. Each cognitive terminal performs
the optimization step multiple times, as every iteration is a

descent step. The algorithm is executed until there is no signif-
icant modification in the optimization variables, namely until
there is not a relevant policy modification. Interestingly, the
optimization problem in each iteration is a Linear Program that
can be solved efficiently by the individual cognitive terminal.
For technical reasons, that will be discussed in Section IV, a
regularized alternate convex optimization approach (RCOA) is
considered, where instead we consider the problem

minimize f (z1, z−1) + ∑N
j=1 ρ||z j − y j ||22 (24a)

subject to constraint (17b) (24b)

constraint (17c) (24c)

constraint (17d) (24d)

constraint (17e) (24e)

where ρ > 0 is called the regularization coefficient,

f (z1, z−1) =
∑

s∈S

∑

u1∈U1

. . .
∑

uN ∈UN

ω(s, u)

N∏

j=1

z
s,u j
j , (25)

and the optimization variables are z = (z1, z−1) =
(z1, . . . , zN ) and y = (y1, · · · , yN ).

Note that Problem (24) is identical to Problem (17a) except
that (24) has additional optimization variables y and its
objective function contains an additional quadratic term. The
two problems are related in the sense that for every solution z�

of Problem (17a), (z�, z�) is a solution of (24), and for every
solution (z�, y�) of (24), z� is a solution for Problem (17a).
Application of alternating convex optimization to Problem (24)
yields an algorithm, where the optimization problem in each
iteration becomes a quadratic program (QP), which is still
solvable efficiently by the individual cognitive terminal.

The steady-state state action distribution vector evolves
along iterations, where we let z(k) be such a vector after the
k-th iteration. The algorithm can be summarized as follows in
Algorithm 1.

Step 1) initializes RACOA. Note that the initialization
can be done in an fully decentralized manner, so that each
cognitive terminal can select the value of z j according to
some probability distribution independently of the other cog-
nitive terminals. However, we assume that the value of ρ
to be used is initially agreed among the cognitive terminals.
An important question is the value of the regularization
coefficient ρ to be used. If the original problem is convex,
convexity properties (e.g., use of Lagrange multipliers and
zero duality results) can be exploited when characterizing ρ,
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Algorithm 1 Regularized Alternate Convex Optimization
Approach (RACOA)

1) Given a feasible point z(0) = (z1(0), . . . , zN (0)), reg-
ularization index ρ > 0, and an accuracy level ε. Set
cognitive terminal index j = 1, iteration index k = 1,
and objective value f (k) = ∞.

2) For fixed state-action distribution z− j (k) =
(z1(k), . . . , z j−1(k), z j+1(k − 1), . . . , zN (k − 1)),
the cognitive terminal j solves the QP

minz j f k
j (z j ) �

∑

s∈S

∑

u j ∈U j

ωs
j (z− j (k), u j , u− j )z

s,u j
j

+ρ||z j − z j (k − 1)||22 (26a)

s.t.
1

Ct

∑

s∈S

∑

u j ∈U j

ωs
j (z− j (k), u j , u− j )z

s,u j
j ≤ 1 (26b)

∑

s∈S

∑

u j ∈U j

Z s
j (z− j (k), u− j )z

s,u j
j = 1 (26c)

∑

s ′∈S

∑

u j ∈U j

Ps ′s
j (z− j (k), u j , u− j )z

s ′,u j
j

∑

u j ∈U j

Z s
j (z− j (k), u− j )z

s,u j
j

=1, s ∈S

(26d)

0 ≤ z
s,u j
j ≤ 1, s ∈ S, u j ∈ U j (26e)

where the optimization variable is only z j and not
the overall state-action vector distribution z. Denote the
solution of problem (26) by z�

j . Set z j (k) = z�
j .

3) If j = N , set k = k + 1 and go to step 4. Otherwise, set
j = j + 1 and go to step 2).

4) Stopping criterion: If | f k
N (z�

N ) − f (k − 1)| < ε, STOP.
Otherwise, set f (k) = f k

N (z�
N ), z(k) = z(k − 1), j = 1

and go to step 2.

e.g., [33, Th. 4.2]. However, when the problem becomes
nonconvex, the mechanisms used in the convex settings do
not apply anymore. However, the choice of ρ is justified in
the following sense: ρ is directly linked with the curvature of
the objective function of problem (26). Therefore, an undesired
ill-conditioning can be forced upon the QP (26) routines if a
large ρ is selected., and a common practice is to choose a mod-
erate value of ρ, possibly based on preliminary experiments,
see [34, p. 123].

In Step 2), the secondary user 1 solves the QP (26) to
compute z1. It is recommended to constraint components of
z− j to be sufficiently small (see Step 1) so that QP (26) is
feasible (in particular the constraint (26b) for the cognitive
terminal 1).2 In step 3), the QP (26) is sequentially solved
among other cognitive terminals in a round robin fashion. It is
worth pointing out that after the QP is solved by the cognitive
terminal 1, all the remaining alternating optimizations of
QP (26), remain feasible. Step 4) checks for a stopping
criterion, and repeats the round of optimization if the criterion

2Alternatively, the cognitive terminal 1 can scale z− j appropriately and
communicate the scaling factor to the next cognitive terminal.

is not satisfied. If ρ > 0, the RACOA terminates for any
nonzero accuracy level specified by ε, as we will show next.
We observe that the token passing optimization procedure may
be subject to failure if a “token” message is lost. However,
the token passing mechanisms used here is more flexible
than that traditionally used in wired and wireless networks.
In fact, the optimization order is not strictly rigid, and in
case of lost token message the current terminal could perform
another optimization round and, then, advertise a new policy.
Additionally, whereas in token passing-based channel access
the time needed to rebuild the ring directly corresponds
to wasted transmission opportunities, in the considered sce-
nario it would correspond to a suboptimal policy used until
termination.

IV. CONVERGENCE PROPERTIES OF RACOA

In this section we investigate the convergence properties
of our proposed algorithm RACOA. Some definitions and
terminologies, which are technically necessary to characterize
the convergence properties, are given in Appendix II.

A. Global Convergence and Convergent Point

Proposition 2: Let f (k) be computed according to step (4)
of RACOA. Then for every ε > 0, there is an integer K such
that | f (k) − f (k − 1)| < ε if k ≥ K . �

Proof: The objective function value of problem (24) is
bounded below, continuous over all its feasible z, and ρ > 0,
from [35, Lemma 2.2], we get

f (0) − f (n) ≥
n∑

k=1

ρ||z(k) − z(k − 1)||22, (27)

where z(k) = (z1(k), . . . , zN (k)). Note that both f (0) and
f (n) = f k

N (zN (n)) are bounded below, and therefore the
partial sum

∑n
k=1 ρ||z(k) − z(k − 1)||22 � yn is bounded

above for all n ∈ N. Thus, [36, Th. 3.24] ensures that {yn}n∈N

converges. From [36, Th. 3.23], we conclude that

||z(k) − z(k − 1)||22 → 0. (28)

Here we emphasize the importance of the use of equivalent
regularized Problem (24) instead of (17a), which in turn ensure
the convergence of {z(k) − z(k − 1)}k∈N. As a result we have

∀ε > 0, ∃m ∈ N, s. t. k≥m ⇒ |zN (k) − zN (k − 1)| < ε.

(29)

It is not difficult to show that the objective function f k
j (z j )

of problem (26) is Lipschitz continuous on X j with some
constant L j , where X j is the feasible set of problem (26).
Therefore, we have

k ≥ m ⇒ | f k
N (zN (k)) − f k−1

N (zN (k − 1))| < L N ε. (30)

Moreover, note that f (k) = f k
N (zN (k)) and f (k − 1) =

f k−1
N (zN (k − 1)) [compare with step (4) of Algorithm 1].

This together with (30) ensures the convergence, since ε was
arbitrary.

Note that (28) ensures limk→∞ (z(k) − z(k − 1)) = 0,
though there is no guarantees that the sequence {z(k)}k∈N
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will converge. However, since {z(k)}k∈N is a bounded
sequence in RN , it always has convergent subsequences
[36, Th. 3.6-(b)]. Let us next formally present the character-
istics of these convergence points.

Proposition 3: Let {z(kn)}n∈N be a subsequence of
{z(k)}k∈N computed from RACOA with limn→∞ z(kn) =
z̄:=(z̄ j , z̄− j ). The limit point z̄ is a coordinatewise minimum
(see Definition 6, Appendix II) of the objective function of
problem (17a) �

Proof: We start by introducing some compact notations for
clarity. Without loss of generality, we denote by {z(k)}k∈N the
convergent subsequence {z(kn)}n∈N. Recall that the objective
function (26a) is linear in z j and has the form a j (z− j (k))

ᵀ
z j ,

where a j (z− j (k)) is a column vector of appropriate length
that can be constructed in a straight forward manner [compare
with (20)]. Moreover, let the constraints (26b), (26c), and (26d)
be expressed as b j (z− j (k))

ᵀ
z j ≤ 1, c j (z− j (k))

ᵀ
z j = 1,

and D j (z− j (k))z j = 0, respectively, where b j (z− j (k)),
c j (z− j (k)) are a column vector of appropriate length and
D j (z− j (k)) is a matrix of appropriate size. Note that for
all j ∈ {1, . . . , Ns }, the vector valued functions b j (z− j ),
c j (z− j ), and the matrix valued function D j (z− j ) are continu-
ous functions of z− j over Rm− j , where m− j is the number of
components of z− j . Moreover, note that the constraint (26e)
has the compact form 0 ≤ z j ≤ 1. Therefore, the feasible set
of problem (26) is given by X j (z− j (k)), where

X j (z− j ) = {z j | b j (z− j )
ᵀ

z j ≤ 1, c j (z− j )
ᵀ

z j = 1,

D j (z− j )z j = 0, 0 ≤ z j ≤ 1}, j ∈ {1, . . . , N}. (31)

From Lemma 11 (see Appendix III), we have

lim
k→∞ X j (z− j (k)) = X j (z̄− j ), j ∈ {1, . . . , N}. (32)

We refer the reader to Appendix II, Definition 8 for formal
set limit definitions. This combined with [35, Th. 2.3] yields
the result, which we outline next for the completeness.

The set convergence (31) ensures that ∀y j ∈ X j (z̄− j ), ∀ j ∈
{1, . . . , N}, there exist a sequence {y j (k) ∈ X j (z− j (k))}k∈N

such that limk∈N y j (k) = y j , see Appendix II, Definition 8.
Moreover, by noting that z j (k) is the minimizer of function
f k

j (z j ) [see (26a)], we have ∀ j ∈ {1, . . . , N}
a j (z− j (k))

ᵀ
z j (k) + ρ||z j (k) − z j (k − 1)||22

≤ a j (z− j (k))
ᵀ

y j (k) + ρ||y j (k) − z j (k − 1)||22, (33)

y j (k) ∈ X j (z− j (k)). Now let k −→ ∞ to yield

a j (z̄− j )
ᵀ

z̄ j ≤ a j (z̄− j )
ᵀ

y j + ρ||y j − z̄ j ||22, y j ∈ X j (z̄− j ).

(34)

From the inequality above we get that z̄ j is the minimizer of
a j (z̄− j )

ᵀ
y j +ρ||y j − z̄ j ||22 over y j ∈ X j (z̄− j ). This combined

with that X j (z̄− j ) is convex, we have, a j (z̄− j )
ᵀ
(y j − z̄ j ) ≥

0∀y j ∈ X j (z̄− j ), which in turn ensures that

z̄ j = arg min
y j ∈ X j (z̄− j )

a j (z̄− j )
ᵀ

y j . (35)

Finally, we note that

f (z̄1, . . . , z̄N ) = a j (z̄− j )
ᵀ

z̄ j , j ∈ {1, . . . , N}, (36)

where f is the objective function of problem (17a). This
combined with (35) yields the required result concluding the
proof.

Proposition 3 characterizes the properties of the subse-
quence limits of the sequence {z(k)}k∈N generated by RACOA.
The proposition claims that the subsequence limits are opti-
mal in the sense that, just with independent minimizations
performed at the secondary users, the overall cost incurred by
the secondary users are not further improved. We note there is
no guarantee that z(k) given at the end of RACOA is a limit
point. The termination of RACOA is based on the criterion
| f (k) − f (k − 1) < ε, see step 4 of the algorithm. Therefore,
when RACOA terminates, it simply settles on the current z(k)
values, which is not necessarily a limit point. However, via
extensive numerical evaluations, we empirically observed that
the termination point z(k) from RACOA resembles properties
of a limit point. This suggests the relevance of the assertions
of Proposition 2 for RACOA in practice.

It is worth pointing out that ∀ j ∈ {1, . . . , N}, the subse-
quence limits of the sequence {(z j (k), z− j (k))}k∈N, denoted z̄
is a feasible point for problem (17a). This follows immediately
from that the feasible set X of problem problem (17a) is
compact and the feasible set of problem (26) is a compact
subset of X .

Note that the algorithm RACOA has considered a regular-
ized objective function, where the regularization coefficient ρ
is positive. Therefore, the optimization problem that is to be
solved at every iteration of RACOA is a QP. A choice of ρ = 0
corresponds to an algorithm, where the optimization problem
that is to be solved at every iteration of the algorithm is an LP.
Such an algorithm may be preferred to RACOA, because
solving an LP is computationally less intensive compared to
solving a QP. However, such a computational gain is achieved
at the cost of certain convergence properties. In particular, only
the convergence of the resulting algorithm is proved and char-
acteristics of the convergence point is not. Therefore, if one
wants to trade-off convergent point characteristics with com-
putational burden, a choice of ρ = 0 is suggestive ensures that
the RACOA terminates. Let us now establish the convergence
properties of the algorithm RACOA with a choice of ρ = 0.

Proposition 4: Let f (k) be computed according to Step (4)
of RACOA with the exception that ρ = 0 at Step (1). Then for
every ε > 0, there is an integer K such that | f (k)− f (k−1)| <
ε if k ≥ N . �

Proof: When ρ = 0 in the RACOA, we note that the
sequence { f (k)}k∈N is monotonically decreasing (compare
with [36, Deinition 3.13]). Moreover, the sequence is bounded
below. Therefore, from [36, Th. 3.14], we conclude that
sequence { f (k)} converges. Hence the sequence { f (k)} is a
Cauchy sequence [36, Th. 3.11]. More specifically, for every
ε > 0, there is an integer � such that | f (k) − f (l)| < ε if
k ≥ � and l ≥ �, (compare with [36, Deinition 3.8]). This
means | f (k) − f (k − 1)| < ε as required at the Step 4 of
RACOA if k ≥ � + 1 = K .

B. Convergence Rate

Characterizing the global convergence rate in the
case of RACOA (see Proposition 3) is challenging.
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Reference [35, Sec. 2.3] derived global convergence rate
results for alternating optimization problems under certain
conditions. However, these assertions (see [35, Th. 2.8])
are not applied for RACOA, because the feasible set of
Problem (17a) is compact. In the sequel, we show q-linear
convergence (see Definition 9, Appendix II) of RACOA,
which is a direct consequence of [37, Th. 2]. It is worth
pointing that the aforementioned q-linear convergence is
associated to local convergence properties of RACOA, which
holds if iterates get near a local minimizer (see Definition 10,
Appendix II) of Problem (24).

Proposition 5: Let z̄ be a local minimum of Problem (24)
for which the Hessian of f evaluated at z̄ is positive definite.
Moreover let X denote the feasible region of Problem (24).
Then ∃ ε > 0 such that for any z(0) ∈ N (z̄, ε) =
{z| ||z − z̄||2 < ε, z ∈ X}, the corresponding RACOA iteration
sequence {z(k)}k∈N converges q-linearly to z̄. �

Proof: Note that the objective function f of Problem (24)
is twice differentiable. In addition, in every iteration step (2)
of RACOA yields a unique minimizer, because the associated
objective function [see (26a)] is strictly convex. Application
of [37, Th. 2] completes the proof.

V. CASE STUDY AND NUMERICAL RESULTS

In this section, we illustrate the proposed optimization
framework with a case of relevant practical interest. For such
a case, we then present numerical results. In order to show
the application of the proposed framework to the traditional
primary-secondary user scenario, we consider a network with
one primary user implementing finite ARQ and Ns secondary
users. In this case, the primary user’s packet service consists of
consecutive retransmissions that terminate with packet delivery
or packet drop after F unsuccessful transmissions. After
packet service is terminated, the primary user remains idle
until a new packet arrives and the service of a new packet
starts. The probability that a new packet service initiates in an
otherwise idle slot is α. This model corresponds to a buffer
with size 1 packets, where the probability that one or more
packets arrive in each slot equal to α. We remark that the
proposed approach can be seamlessly applied to a non-binary
buffer model. An extensive discussion on the optimal policy
for a case with non-binary buffer can be found in [25] and [28].
The secondary users are assumed backlogged, and in every
slot t each individual secondary user makes a binary trans-
mission/idleness decision, where U j (t) = 0 and U j (t) = 1
correspond to secondary user j being idle and transmitting in
slot t , respectively. We remark that the proposed framework
can be applied to general networks modeled as a Markov
process, without any assumption regarding the number of
primary users. However, a limitation could be imposed by
optimization complexity and time if many primary users are
active, due to state space explosion.

The state space of the primary user is S = {0, 1, . . . , F},
where S(t) = 0 corresponds to an idle slot and S(t) = f
to the f –th transmission of the packet being served in slot t .
From state 0, the Markov chain tracking the primary user’s
state moves to 1 and remains in 0 with probability α and
1 − α, respectively. From state S(t) = f , 0 < f < F , if

Fig. 2. State space of the primary user: 0 and f > 0 correspond to idle
state and f –th retransmission of the packet currently being served. Arrows
correspond to state transitions with non-zero probability.

packet decoding fails at the primary receiver, then the Markov
chain moves to S(t) = f + 1. If packet decoding succeed,
then the process moves either to state 0 or 1 depending on
packet arrival. If the current state is S(t) = F , then packet
service terminates both in case of successful or unsuccessful
packet decoding, and the process returns either to state 0 or 1
depending on packet arrival (probability 1 − α and α, respec-
tively). Fig. 2 depicts the state space and the state transitions
with non-zero probability for the considered case.

For the sake of clear and readable results, we assume a
symmetric network, where the packet decoding probability
at the primary and secondary receivers in slot t is only a
function of the number of active transmitters, determined by
the primary user’s state S(t) and secondary user’s action U(t).
In state s ∈ S and action vector u = {u1, . . . , u2}, the number
of active transmitter is A(s, u) = �(s > 0) + ∑

j=1,...,Ns
u j ,

where �(·) is the indicator function. We, then, define as
θp(A(s, u)) and θs(A(s, u)) the failure probability of the
primary and secondary users, respectively, conditioned on the
number of active transmitters.

We measure the performance of the primary user in terms of
average throughput, and we define the cost function in Eq. (2)

ω(s, u) =
{

θp(A(s, u)) if s > 0

1 otherwise.
(37)

The performance of the secondary users is measured in terms
of average aggregate throughput expressed in delivered packets
per time slot. Then, we define the cost function in Eq. (3) as
φ(s, u) = ∑

j=1,...,Ns
φ j (s, u), where

φ j (s, u) =
{

θs(A(s, u)) if u j > 0

1 otherwise.
(38)

A. Physical Layer

In order to address the wide interest on multiantenna
networks, we consider nodes equipped with multiple
antennas [38], [39]. The Layered Space-Time MUltiuser
Detector (LASTMUD) [40] is used at the receiving nodes to
provide resilience to interference by means of interference
cancellation.

Assume that the receivers are equipped with arrays com-
posed of NA antennas. Assuming that NTx nodes with
indices {1, 2, . . . , NTx} are transmitting (each using 1 trans-
mission antenna), let us define the column vector s′(k) =
[s′

1(k), . . . , s′
NTx

(k)]T whose entry s′
i (k) is the symbol trans-

mitted from user i at time kT , where T is the symbol period
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Fig. 3. Packet Error Rate (PER) as a function of the SNR. The antenna array
at the receiver is composed of 4 antennas.

and T denotes the transpose operation. The power of the
transmitted data signal from each transmitter i is σ 2

s ′(i) =
E[|s′

i (k)|2] = PTx. For the sake of a simpler notation, we omit
in the following the time index k in all signals.

The receivers use all the NA antennas, and the column vec-
tor of the NA received samples can be written as r = Hs′ + ν′,
where ν′ is the column noise vector of length NA, and H is
the NA × NTx channel matrix whose entry Hg,m represents
the complex baseband channel gain between the transmitter m
and the g-th receive antenna.

In order to extract a sufficient statistics for detection, the
receive node multiplies the vector of the received samples by
a matrix matched to the channel. By defining the NA × NA
matrix R = HH H, where H is the Hermitian operator, the
obtained vector is z = HH r = Rs + ν, where ν = HHν′.

The LASTMUD receiver performs the detection of the
streams in stages. At each stage the stream with the highest
signal to noise plus interference ratio (SNIR) is detected, and
its contribution is removed from the vector z before the next
stage [41], [42]. Further details on the LASTMUD receiver
can be found in [40].

Fig. 3 depicts the Packet Error Rate (PER) of the
LASTMUD receiver for a 4-element antenna array as a
function of the Signal to Noise Ratio of the received signals.
The the Gaussian approximation proposed in [43] is used to
capture the residual noise in interference cancellation process.
The packet size is set to 1000 bits.

B. Performance

In the following, the SNR of the received signals at
the primary users is set to 15 dB, and the arrival rate
is α = 0.8. The quadrature coefficient used in the simula-
tions is ρ = 0.01. Results not included here show that the
throughput of the primary and cognitive terminals present
minor variations as ρ is changed.

Fig. 4 depicts the average aggregate throughput achieved by
the secondary users as a function of the SNR at the secondary
users’ receivers. Dashed lines correspond to the centralized
solution obtained assuming that there is an ideal solver capable
to compute in centralized manner the solution to optimization
problem Eq. (8a), referred to as bound in the plots. Solid
lines correspond to the solution of the proposed RACOA
algorithm averaged over different initializations. The aggregate

Fig. 4. Average aggregate throughput of the secondary users as a function
of the SNR at the secondary users’ receivers. The SNR at the primary user’s
receiver is set to 15 dB. The antenna array at the receiver is composed
of 4 antennas.

throughput is shown for a number of secondary users Ns equal
to 2, 4 and 6. The number of antennas at the receivers is set
to NA = 2.

The aggregate throughput monotonically increases as the
SNR increases at the secondary users receivers. In fact, as
shown in Fig. 3, a larger SNR implies that a larger number of
transmitters can simultaneously access the channel achieving
the same PER. It can be observed that there is a significant
gap between the throughput with 2 and 4 secondary users,
whereas the upper bound throughput for 4 and 6 overlap. For
a given SNR regime and number of antennas, there is a specific
number of transmitting users that maximizes the average
number of packets delivered in a slot. The fully-coordinated
implementation of the optimal policy can directly control the
number of transmitters to match that number. In the proposed
scheme, actions are determined by the individual users, and the
overall number of transmitting users in a slot is controlled by a
state-dependent distribution where sub-optimal global actions
have positive probability. It can be seen that the degradation
introduced by sub-optimal actions is more pronounced if the
number of users present in the system exceeds the number of
transmitters whose simultaneous transmission would maximize
the average number of packets delivered in one slot. Finally,
low SNR regimes further increase the degradation, as the
number of transmitting users which maximizes the average
number of delivered packets is smaller. We remark that the
considerable communication overhead necessary to coordinate
action in each slot would heavily penalize the performance
of the centralized approach. Herein, we do not consider that
overhead when computing the performance of the centralized
approach to provide a comparison on the effectiveness of the
transmission policy.

Fig. 5 shows the same plot where the secondary receivers’
antenna arrays are composed of 4 antennas. In this case
the receivers can successfully decouple a larger number of
transmissions and a larger number of users corresponds to
a larger throughput both in the optimal coordinated policy
and in the proposed frameworks where secondary users do
not coordinate actions. We emphasize that the performance of
the proposed distributed solution is a function of the physical
layer, as well as of the network setting.
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Fig. 5. Average aggregate throughput of the secondary users as a function
of the SNR at the secondary users’ receivers. The SNR at the primary user’s
receiver is set to 15 dB. The antenna array at the receiver is composed
of 4 antennas.

Fig. 6. Average aggregate throughput of the secondary users as a function
of the iteration index. The SNR at the primary user’s and secondary users’
receivers is set to 15 dB. The antenna array at the receiver is composed
of 4 antennas.

Fig. 6 shows the average throughput as a function of the
iteration index for a setting with 2 antennas at the receivers,
and where the the SNR at the receivers is set to 15 dB (primary
user’s receiver) and 10 dB (secondary users’ receivers). The
plots are averaged over different initialization points. It can
be observed that the plot corresponding to 2 secondary users
converges in a very small number of iterations to a stable
solution, whereas convergence requires a larger number of
iterations when a larger number of secondary users are present
in the system. Intuitively, a larger number of secondary users
results into a larger number of iterations to run the optimiza-
tion problem a given number of times at each users.

VI. CONCLUSIONS

In this paper, we presented a novel framework for the
distributed optimization of transmission and channel access
strategies in cognitive networks. The objective of the cognitive
terminals is to find the optimal action distribution conditioned
on the current network state. In the proposed framework,
the smart users distributively compute the policy, but do not
coordinate actions in each slot in order to avoid a communi-
cation overhead. The algorithm is based on alternate convex
optimization, where the smart users sequentially improve
the current global solution. A traditional primary-secondary
user scenario was considered to assess the performance of
the proposed framework. Results show that the gap between
the optimal centralized solution and the proposed distributed
solution is a function of the number of smart users, as well as
on the characteristics of the physical layer. Furthermore, the

proposed algorithm presents fast converge to a stable solution.
We remark that the framework presented in this paper finds
application in any smart network where the policy of the
cognitive terminals is a function of the network state.

APPENDIX I
DECOMPOSITION OF THE COORDINATED-ACTION POLICY

Recall that μ(u | s) = zs,u/
∑

w∈U zs,w, where {zs,u}s∈S,u∈U
is a feasible point of (8). This, together with the conditional
independence of actions, yields Eq. (1), as shown at the top
of the next page, where where the equalities (2)-(3), as shown
at the top of the next page, follow from straightforward
manipulations, (4), as shown at the top of the next page,
follows from (12), and (5), as shown at the top of the next
page, is obtained by cancelling the common factors. The
final equality follows from the definition of μ j (u j | s),
the uncoordinated-action policy of the secondary user j .
From (3)-(5), we note that

μ j (u j | s) = z
s,u j
j∑

wk∈U j
zs,wk

j

. (I.1)

APPENDIX II
PRELIMINARY DEFINITIONS

Definition 6 (Coordinatewise Minimum of a Function):
Let f be a scalar valued function with dom( f ) ⊆ Rn and
(x1, . . . , xm) be a partition of x ∈ Rn such that xi ∈ Rni and∑m

i=1 ni = n. Moreover, let yi = (0, . . . , xi , . . . , 0) ∈ Rn .
We call a point z ∈ dom( f ) a coordinatewise minimum of f
with respect to the coordinates 1, . . . , m if

f (z + yi) ≥ f (z), ∀yi ∈ Rn with (z + yi ) ∈ dom( f )

for all i ∈ {1, . . . , m}. �
Definition 7 (Distance of a Point From a Set): Let X be a

subset of Rn and x denote a point in Rn . We denote by

dis(x, X):=
{

infz∈X ||x − z||2 X 
= ∅
∞ otherwise

the distance from x to X . �
Definitions 6 and 7 are self-explanatory. For the complete-

ness and the clarity of our subsequent convergence proofs,
let us now formally express the convergence of sequences
of sets, where we stick to the notations and the definitions
of [44, Ch. 4].3

To this end we first denote by N∞ the subsequences of N

containing all k sufficiently large, i.e., N∞:={N ⊆ N | N \
N finite}. Moreover, we denote by N #∞ all the subsequences
of N, i.e., N #∞:={N ⊆ N | N infinite}.

Definition 8 (Limit of a Sequence of Subsets): Let
{X(k)}k∈N be a sequence of subsets of Rn . We call the set

lim inf
k→∞ X(k)

:=
{

x
∣
∣
∣ lim sup

k→∞
dis(x, X(k)) = 0

}

=
{

x
∣
∣
∣∃N ∈ N∞, ∃x(k) ∈ X(k)(k ∈ N ) with x(k) −→

N
x
}

3We refer the reader to [44, Ch. 4] and [45, Ch. 1] for details.
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μ(u | s) = zs,u∑
w∈U zs,w

= zs,u∑
w1∈U1

∑
w2∈U2

· · · ∑wN ∈UN
zs,w

(1)

=
∏N

j=1 z
s,u j
j

∑
w1∈U1

∑
w2∈U2

· · · ∑wN ∈UN

∏N
j=1 z

s,w j
j

(2)

= zs,u1
1∑

w1∈U1
zs,w1

1
× zs,u2

2∑
w2∈U2

zs,w2
2

× · · · × zs,uN
N∑

wN ∈UN
zs,wN

N

(3)

= y1
s Pr

(
U1 = u1 | S = s

)

y1
s
∑

w1∈U1
Pr

(
U1 = w1 | S = s

) × · · · × y N
s Pr

(
UN = uN | S = s

)

y N
s

∑
wN ∈UN

Pr
(
UN = wN | S = s

) (4)

= Pr
(
U1 = u1 | S = s

)

∑
w1∈U1

Pr
(
U1 = w1 | S = s

)

︸ ︷︷ ︸
μ1(u1 | s)

× · · · × Pr
(
UN = uN | S = s

)

∑
wN ∈UN

Pr
(
UN = wN | S = s

)

︸ ︷︷ ︸
μN (uN | s)

=
N∏

j=1

μ j (u j | s), (5)

the inner limit of the sequence {X(k)}k∈N and the set

lim sup
k→∞

X(k)

:=
{

x
∣
∣
∣ lim inf

k→∞ dis(x, X(k)) = 0
}

=
{

x
∣
∣
∣ ∃N ∈ N #∞, ∃x(k) ∈ X(k)(k ∈ N ) with x(k) −→

N
x
}

the outer limit of the sequence {X(k)}k∈N, where x(k) −→
N

x

designates the convergence of sequence {x(k)}k∈N to x . The
limit of the sequence {X(k)}k∈N exists if the outer and inner
limit sets are equal, i.e.,

lim
k→∞ X(k):= lim sup

k→∞
X(k) = lim inf

k→∞ X(k).

�
Definition 8 is an extending concepts of limits and limit points
of sequences of elements to sequences of sets. Technically,
the inner limit is the set of limits of sequences {x(k) ∈
X(k)}k∈N and the outer limit is the set of limit points of
sequences {x(k) ∈ X(k)}k∈N, which follows immediately from
the definition, compare with [45, Proposition 1.1.2].

Definition 9 (q-Linear Convergence [37]): We say a
sequence {z(k)}k∈N converges q-linearly to z̄ if and
only if ∃n0 ≥ 0, ∃β ∈ [0, 1) such that ∀k ≥ n0
||z(k + 1) − z̄||2 ≤ β||z(k) − z̄||2.

Definition 10 (Local Minimum): Let X denote the feasible
region of a constrained optimization problem P and f denote
the objective function. A vector x� ∈ X is a local minimum
of f over the set X , if ∃ ε > 0 such that f (x�) ≤ f (x) for
all x ∈ X with ||x − x�||2 < ε.

APPENDIX III
LEMMA 11

In this appendix, we present an intermediate result required
for the proof of Proposition 3, see Section IV. Recall that,
without loss of generality, we denote by {z(k)}k∈N the conver-
gent subsequence {z(kn)}n∈N to improve the notational clarity.

Lemma 11: Let j ∈ {1, . . . , N}, (z̄1, . . . , z̄N ) be the limit
point of {(z1(k), . . . , z j (k), z j+1(k − 1), . . . , zN (k − 1))}n∈N,
where z j (k) is the steady-state action frequencies computed

by j th secondary user at outer loop k of RACOA. Then
X j (z− j (k)) −→

N

X j (z̄− j ). �
Proof: We first prove that limk∈N dis(x, X j (z− j (k))) =

dis(x, X j (z̄− j )) for all x ∈ Rm j , where m j is the number
of components of z j . Then the result follows directly from
[44, Corollary 4.7].

Since the problem (26) is feasible for all RACOA iterations
[compare with Assumption 1] and X j (z− j (k)) is compact,
dis(x, X j (z− j (k))) is the optimal value of the following
optimization problem:

min
z j

(1/2)||z j − x ||22 (III.1a)

s.t. b j (z− j (k))
ᵀ

z j ≤ 1 (III.1b)

c j (z− j (k))
ᵀ

z j = 1 (III.1c)

D j (z− j (k))z j = 0 (III.1d)

0 ≤ z j ≤ 1. (III.1e)

Let us denote by g(λ, z− j (k)) the dual function of prob-
lem (III.1a), where λ is the vector of all Lagrange multipliers
associated with the constraints (III.1b)-(III.1e). Strong duality
holds for problem (III.1a), and thus

dis(x, X j (z− j (k))) = max
λ∈�

g(λ, z− j (k)), (III.2)

where � is the closed feasible set of the dual problem.
Similarly, we can show that

dis(x, X j (z̄)) = max
λ∈�

g(λ, z̄− j ). (III.3)

Note that arguments that maximize the right hand sides of
(III.2) and (III.3) exist, see [46, Proposition 5.2.2]. From
the minimizer of the associated Lagrangian function over z j ,
which can be computed in closed-form, one can readily
conclude that g(λ, z− j (k)) is continuous in (λ, z− j (k)).
Therefore, we have limk∈N g(λ, z− j (k)) = g(λ, z̄− j ) for all
λ ∈ �. More specifically, g(λ, z− j (k))−→g(λ, z̄− j ) uni-
formly, see [36, Definition 7.7]. The uniform convergence
ensures the desired result, i.e., limk∈N dis(x, X j (z− j (k))) =
dis(x, X j (z̄)), see Lemma 12. This concludes the proof.

Lemma 12: Let {gk}k∈N be a sequence of concave
functions that converges uniformly on � to a function g.
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Moreover, suppose for all k and for all λ ∈ �, gk(λ) is
bounded above and the set arg max

λ∈�
gk(λ) is nonempty. Then

limk∈N supλ∈� gk(λ) = supλ∈� g(λ). �
Proof: Let λk denote the maximizer of gk(λ) over �, i.e.,

gk(λk) = supλ∈� gk(λ). We start by showing that the sequence
{gk(λk)}k∈N converges, i.e., it has only one limit point.

Suppose to the contrary that {gk(λk)}k∈N has at least two
distinct limit points denoted ǵ and g̀, with |ǵ − g̀| = δ > 0.
By the properties of limit points we have

∀ε > 0, ∀N ∈ N, ∃n ≥ N such that |gn(λn) − g̀| ≤ ε,

(III.4)

∀ε > 0, ∀N ∈ N, ∃m ≥ N such that |gm(λm) − ǵ|≤ε.

(III.5)

Moreover, without loss of generality we can assume that
gm(λm) ≥ gn(λn). By combining (III.4)-(III.5), we get
∀ε ∈ (0, δ),∀N ∈ N, ∃n, m ≥ N such that |gn(λn)− g̀| ≤ ε/2
and |gm(λm) − ǵ| ≤ ε/2, which implies

ε ≥ |(gm(λm) − gn(λn)) + (g̀ − ǵ)| (III.6)

≥ |g̀ − ǵ| − |gm(λm) − gn(λn)| (III.7)

≥ |g̀ − ǵ| − |gm(λm) − gn(λm)| (III.8)

= δ − |gm(λm) − gn(λm)|, (III.9)

where (III.6) and (III.7) follow from the triangular inequality,
and (III.8) follows from that gm(λm) ≥ gn(λn) and gn(λn) ≥
gn(λm) [λn is the maximizer of gn]. Therefore, from (III.9) and
by making ε arbitrarily small, we have ∀N ∈ N, ∃n, m ≥ N
such that |gm(λm)−gn(λm)| ≥ δ. This contradicts the fact that
|gm(λm) − gn(λm)| can be made arbitrarily small by choosing
n, m sufficiently large [36, Th. 7.8]. Therefore, {gk(λk)}k∈N

has only one limit point. Let us denote by ĝ the associated
limit, i.e., limk∈N gk(λk) = ĝ. To complete the proof, we
finally show that ĝ = supλ∈� g(λ).

Because gk is concave and λk is the maximizer of gk(λ)
over �, it is not difficult to see that

gk(λk) ≥ gk(λ), ∀λ ∈ �. (III.10)

Now let k −→ ∞ to yield

ĝ ≥ g(λ), ∀λ ∈ �. (III.11)

Moreover, the definition of ĝ claims

∀ε > 0, ∃L ∈ N, ∀i, i ≥ L �⇒ |gi (λi ) − ĝ| ≤ ε. (III.12)

Furthermore, the definition of uniform convergence
[36, Definition 7.7], claims

∀ε > 0, ∃M ∈ N, ∀i, i ≥ M �⇒ |gi(λ) − g(λ)| ≤ ε,

(III.13)

for all λ ∈ �. Let N = max{L, M}. By combining
(III.12)-(III.13), we have ∀ε > 0, ∃N ∈ N, ∀i , i ≥ N �⇒
|gi(λi ) − ĝ| ≤ ε/2 and |gi(λi ) − g(λi )| ≤ ε/2, which implies

ε ≥ |(gi(λi ) − ĝ) + (g(λi ) − gi(λi ))| (III.14)

= |g(λi ) − ĝ|, (III.15)

where (III.14) follows from the triangular inequality. As ε > 0
was chosen arbitrarily, we conclude that g(λ) = ĝ for some
λ ∈ �. This combined with (III.11) yields ĝ = supλ∈� g(λ),
which concludes the proof.
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