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Abstract—Nonconvex and structured optimization problems
arise in many engineering applications that demand scalable and
distributed solution methods. The study of the convergence prop-
erties of these methods is, in general, difficult due to the non-
convexity of the problem. In this paper, two distributed solution
methods that combine the fast convergence properties of aug-
mented Lagrangian-based methods with the separability proper-
ties of alternating optimization are investigated. The first method
is adapted from the classic quadratic penalty function method and
is called the alternating direction penalty method (ADPM). Unlike
the original quadratic penalty function method, where single-step
optimizations are adopted, ADPM uses an alternating optimiza-
tion which, in turn, makes it scalable. The second method is the
well-known alternating direction method of multipliers (ADMM).
It is shown that ADPM for nonconvex problems asymptotically
converges to a primal feasible point under mild conditions and an
additional condition ensuring that it asymptotically reaches the
standard first-order necessary conditions for local optimality is
introduced. In the case of the ADMM, novel sufficient conditions
under which the algorithm asymptotically reaches the standard
first-order necessary conditions are established. Based on this,
complete convergence of the ADMM for a class of low-dimensional
problems is characterized. Finally, the results are illustrated by
applying ADPM and ADMM to a nonconvex localization problem
in wireless-sensor networks.

Index Terms—Alternating direction method of multipli-
ers (ADMM), distributed optimization, localization, nonconvex
optimization.

I. INTRODUCTION

IN THE last few decades, increasingly rapid technologi-
cal developments have resulted in vast amounts of dis-

persed data. Optimization techniques have played a central
role in transforming the vast data sets into usable information.
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However, due to the increasing size of the related optimization
problems, it is essential that these optimization techniques
scale with data size. Fortunately, many large-scale optimization
problems in real-world applications possess appealing struc-
tural properties due to the networked nature of the problems.
Thus, increasing research efforts have been devoted to the
investigation of how these structural properties can be exploited
in the algorithm design to achieve scalability. The focal point
of these efforts has been on “well-behaved” convex problems,
rather than more challenging nonconvex problems. Neverthe-
less, large-scale nonconvex problems arise in many real-world
network applications. Examples of such nonconvex applica-
tions include matrix factorization techniques for recommender
systems (the Netflix challenge) [1], localization in wireless-
sensor networks [2], optimal power flow in smart grids [3], [4],
and LDPC decoding [5]. Interestingly, these large-scale non-
convex applications tend to have the structural advantages that
are commonly exploited to design-scalable algorithms for their
convex counterparts. This suggests that the algorithms used
for large-scale convex problems can potentially be applied to
nonconvex problems as well. However, theoretical guarantees
for these algorithms in the nonconvex regime have not yet been
established. This paper investigates convergence properties of
a class of scalable and distributed algorithms for nonconvex
structured optimization problems. Here, 1) by distributed al-
gorithms, we mean any algorithm that can be executed by at
least two entities where no single entity has access to the full
problem data and 2) by structured optimization problems, we
mean any problem with structures in the problem data that can
be exploited to achieve 1).

A. Related Literature

Many recent studies on large-scale optimization have fo-
cused on distributed subgradient methods in the context of
multiagent networks [6]–[13]. There, multiple agents, each with
a private objective function, cooperatively minimize the aggre-
gate objective function by communicating over the network. In
contrast to [6]–[11], papers [12] and [13] consider nonconvex
multiagent problems. Specifically, [12] applies distributed sub-
gradient methods to the (convex) dual problem and investigates
sufficient conditions under which the approach converges to a
pair of optimal primal/dual variables. On the other hand, [13]
studies the convergence of stochastic subgradient methods to
a point satisfying the first-order necessary conditions for local
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optimality with a probability one. A main drawback of these
gradient-based approaches is that they can only converge to an
exact optimal (or local optimal) solution when a diminishing
step size is used, which results in a poor convergence rate. The
diminishing step-size assumption is relaxed in the promising
recent work [11] while keeping the exact convergence by
introducing a correction term, which significantly improves the
convergence rate.

Another widely used approach for structured convex op-
timization is the alternating direction method of multipliers
(ADMM) [14]–[16]. ADMM is a variant of the classical
method of multipliers (MM) [17, Ch. 2] [18, Ch. 4.2], where
the primal variable update of the MM is split into subproblems,
whenever the objective is separable. This structure is common
in large-scale optimization problems that arise in practice [16].
Even problems that do not possess such a structure can often
be posed equivalently in a form appropriate for ADMM by
introducing auxiliary variables and linear constraints. These
techniques have been employed in many recent works when de-
signing distributed algorithms for convex as well as nonconvex
problems [16], [19]–[25]. A key property of ADMM compared
with other existing scalable approaches, such as subgradient
and dual descent methods (mentioned above), is its superior
convergence behavior, see [16], [20], and [26] for empirical
results. Characterizing the exact convergence rate of ADMM is
still an ongoing research topic [23], [25]–[27]. Many recent pa-
pers have also numerically demonstrated the fast and appealing
convergence behavior of ADMM even on nonconvex problems
[24], [28]–[31]. Despite these encouraging observations, there
are still no theoretical guarantees for ADMM’s convergence
in the nonconvex regime. Therefore, investigating convergence
properties of the ADMM and related algorithms in nonconvex
settings is of great importance in theory as well as in practice,
and is motivated by the many emerging large-scale nonconvex
applications.

B. Notation and Definitions

Vectors and matrices are represented by boldface lowercase
and uppercase letters, respectively. The set of real and natural
numbers is denoted by R and N, respectively. The set of real n
vectors and n×m matrices is denoted by Rn and Rn×m, re-
spectively. The ith component of the vector x is denoted by xi.
The superscript (·)T stands for transpose. We use parentheses to
construct vectors and matrices from comma separated lists as
(x1, . . . ,xn)=[xT

1 , . . . ,x
T
n ]

T and (A1, . . . ,An)=[AT
1 , . . . ,

AT
n ]

T, respectively. diag(A1, . . . ,An) denotes the diagonal
block matrix with A1, . . . ,An on the diagonal. A � 0 (A�0)
indicates that the square matrix A positive (semi)definite. ‖·‖
denotes the 2-norm. We use the following definition.

Definition 1 (FON): Consider the optimization problem

minimize
x∈Rp

f(x)

subject to φ(x) = 0, ψ(x) ≤ 0 (1)

whereφ :Rp→Rq1 and ψ :Rp→Rq2 are continuously differen-
tiable functions. We say that x�∈Rp and (λ�,μ�)∈Rq1+q2 sat-
isfy the first-order necessary (FON) conditions for problem (1),

if the following hold: 1) primal feasibility φ(x�)=0 and
ψ(x�)≤0; 2) dual feasibility μ�≥0; 3) complementary
slackness (μ�)iψi(x

�)=0, i=1, . . . q2; 4) Lagrangian van-
ishes: ∇f(x�)=∇φ(x�)λ�+∇ψ(x�)μ�. We refer to x� and
(λ�,μ�) as the primal and dual variables, respectively.

II. PROBLEM STATEMENT, RELATED BACKGROUND,
AND CONTRIBUTION OF THIS PAPER

This section is organized as follows. Section II-A intro-
duces the class of nonconvex structured problems we study.
We give the necessary background on centralized algorithms
in Section II-B, before introducing distributed algorithms
which exploit the special structures of the related problems in
Section II-C. Then we state the contribution and organization
of this paper in Section II-D.

A. Problem Statement

We consider the following optimization problem:

minimize
x∈Rp1 ,z∈Rp2

f(x) + g(z)

subject to x ∈ X , z ∈ Z
Ax+Bz = c (2)

where A ∈ Rq×p1 , B ∈ Rq×p2 , and c ∈ Rq . The use of the
variable notation x and z is consistent with the literature [16].
Functions f : X → R and g : Z → R are continuously differ-
entiable on Rp1 and Rp2 , respectively, and may be nonconvex.
We refer to the affine constraint Ax+Bz = c as the coupling
constraint. We assume that Problem (2) is feasible. Problem
(2) is general in the sense that many interesting large-scale
problems, including consensus, and sharing [16, Sec. 7], among
others can be equivalently posed in its form. Moreover, as noted
in Section I-A, problem (2) commonly appears in multiagent
networks, where x usually represents the private variable of
each node/agent, z represents the coupling between the nodes,
and the coupling constraint enforces the network consensus.
Therefore, our analytical results in subsequent sections apply
to a broad class of problems of practical importance.

Next, we discus centralized solution methods for Problem (2)
which are the basis for the distributed methods we study.

B. Penalty and Augmented Lagrangian Methods

Nonconvex problems of the form (2) can be gracefully
handled by penalty and augmented Lagrangian methods, such
as the quadratic penalty function method and method of mul-
tipliers [17, Ch. 2] [18, Ch. 4.2]. The main ingredient of these
methods is the augmented Lagrangian, given by

Lρ(x, z,y) = f(x) + g(z) + yT(Ax+Bz− c)

+
(ρ
2

)
‖Ax+Bz− c‖2.

Here, x and z are the primal variables of Problem (2), and
y ∈ Rq and ρ ∈ R refer to the multiplier vector and the penalty
parameter, respectively.
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The penalty and augmented Lagrangian methods consist of
iteratively updating the variables x, z, y, and ρ. An update
common to all of the methods is the primal variable update,
i.e.,

(x(t+ 1), z(t+ 1)) = argmin
(x,z)∈X×Z

Lρ(t) (x, z,y(t)) (3)

where t ∈ N is the iteration index. The main difference between
the two methods lies in the y and ρ updates. For example,
in the case of the quadratic penalty method, the penalty pa-
rameter ρ(t) is chosen such that limt→∞ ρ(t) = ∞ with the
intention of enforcing the limit points of {(x(t), z(t))}t∈N to
satisfy the coupling constraint. It turns out that if the Lagrange
multipliers are bounded, that is, there exists M ∈ R such that
‖y(t)‖ < M for all t ∈ N, then every limit point of the se-
quence {(x(t), z(t))}t∈N is a global minimum of Problem (2)
[17, Prop. 2.1].

The motive of the method of multipliers is to choose the
sequence of multipliers {y(t)}t∈N intelligently to enable con-
vergence to local or global optima of (2) without needing
limt→∞ ρ(t) = ∞. The well-known choice of {y(t)}t∈N in the
method of multipliers follows the recursion:

y(t+ 1) = y(t) + ρ(t) (Ax(t+ 1) +Bz(t+ 1)− c) . (4)

The motivation for (4) is that when (x(t+ 1), z(t+ 1)) is lo-
cally optimal for Problem (3) and satisfies the FON conditions
(Definition 1)1 then (x(t+ 1), z(t+ 1)) and y(t+ 1) satisfy
conditions 2), 3), and 4) of the FON conditions for the original
Problem (2), all except 1) primal feasibility. Furthermore, under
mild conditions, the method of multipliers converges to a
local optimal point (x�, z�) and to a corresponding optimal
Lagrangian multiplier y� [17, Prop. 2.4]. In addition to the local
convergence, when (x(t), z(t)) is a global optima of (3), then
(4) is a gradient ascent step for the dual problem. However, due
to nonzero duality gap in most nonconvex problems, the solu-
tion to (2) cannot be recovered from the dual problem. Hence,
the method of multipliers can generally only be considered a
local method.

In general, the penalty and augmented Lagrangian methods
mentioned before are very reliable and effective for handling
problems of the form (2). However, these methods entail cen-
tralized solvers, especially in the (x, z)-update (3), even if the
objective function of problem (2) has a desirable separable
structure in x and z. More specifically, these methods do
not allow the possibility of performing the (x, z)-update in
two steps: first x-update and then z-update. Otherwise, the
assertions on the convergence of the algorithms do not hold
anymore. Therefore, the penalty and augmented Lagrangian
methods are not applicable in distributed settings, whenever the
problems possess decomposition structures. Such restrictions
have motivated an adaptation of the classical penalty and aug-
mented Lagrangian methods that have excellent potential for a
parallel/distributed implementation which we discussed now.

1We do not include the multipliers related to the constraint X × Z to
simplify the presentation, but it is easily checked that the claim holds when
they are included.

C. Alternating Direction Lagrangian Methods

Recall that problem (2) has a linear coupling constraint
and an objective function that is separable in x and z. This
motivates potential solution approaches to Problem (2), where
the optimization in (3) is performed in two steps, first in the x
coordinate and then in the z coordinate, i.e.,

x(t+ 1) = argmin
x∈X

Lρ(t) (x, z(t),y(t)) (5)

z(t+ 1) = argmin
z∈Z

Lρ(t) (x(t+ 1), z,y(t)) . (6)

Let us refer to these approaches as alternating direction la-
grangian methods (ADLM). We consider two ADLM vari-
ants. The first variant is analogous to the quadratic penalty
approach, where the sequence of penalty parameters {ρ(t)}t∈N
and the multiplier vectors {y(t)}t∈N are taken to be nonde-
creasing/divergent and bounded, respectively. We refer to this
novel approach as the alternating direction penalty method
(ADPM). The second variant is the classic ADMM itself, the
analog of the method of multipliers. We now pose the ques-
tion: can the convergence of the considered ADLM variants,
ADPM and ADMM, still be guaranteed when Problem (2)
is nonconvex?

D. Contribution and Structure of this Paper

We start by investigating the convergence behavior of the
ADPM in Section III when Problem (2) is nonconvex. We
consider a) an unconstrained case in Section III-B, that is,
where X = Rp1 and Z = Rp2 , and b) a constrained case in
Section III-C where X and Z are compact sets. The analysis
in case a) is based on assumptions on (2) which highlight
the situation when the x- and z-updates of ADLM are used
to achieve distributed algorithms over networks and the cou-
pling constraint expresses the network consensus. Under these
assumptions, we show that if y(t) = 0 and limt→ ρ(t) = ∞,
then the primal feasibility of (2) is asymptotically achieved
as ADPM proceeds. In addition, if the sequence 1/ρ(t) is
also nonsummable and (x(t), z(t)) converges to (x�, z�), then
(x�, z�) satisfies the FON conditions (Definition 1) of (2). In
case b), we consider more general assumptions on (2) and allow
y(t) to be any bounded sequence. Under these assumptions, we
show that if X and Z are convex and the sequence 1/ρ(t) is
summable, then the primal feasibility of (2) is asymptotically
achieved as ADPM proceeds. Moreover, we give an intuitive
example showing why we need the sets X and Z to be convex
in general.

Next, we investigate the convergence behavior of the ADMM
when (2) is nonconvex in Section IV. We assume that the
penalty parameter is fixed, that is, ρ(t) = ρ. We consider gen-
eral assumptions on Problem (2) where the sets X and Z can
even be nonconvex. We show that when y(t) converges, then
any limit point of x(t), z(t)) satisfies the FON conditions of
Problem (2). We note that the condition can be checked a pos-
teriori or at runtime by inspecting some algorithm parameters
as the algorithm proceeds (online). Moreover, we show how our
results can be used to completely characterize the convergence
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of ADMM for a class of problems, that is, to determine to which
point ADMM converges given an initialization. In comparison
to [12], we consider ADMM, whereas therein the standard
Lagrangian dual function is maximized.

Finally, we illustrate how the considered methods can be
applied to design distributed algorithms for cooperative local-
ization in wireless-sensor networks.

III. ALTERNATING DIRECTION PENALTY METHOD

In this section, we study convergence properties of the
ADPM for addressing Problem (2). In Section III-A, we give
an explicit algorithm description and in Section III-B and C, we
investigate properties of the ADPM when X × Z = Rp1 × Rp2

and when X × Z � Rp1 × Rp2 , respectively.

A. Algorithm Description

The steps of ADPM are shown in Algorithm 1

Algorithm 1: ALTERNATING DIRECTION PENALTY METHOD

(ADPM)

1) Initialization: Set t = 0 and initialize z(0), y(0),
and ρ(0).

2) x-update: x(t+ 1) = argmin
x∈X

Lρ(t)(x, z(t),y(t)).

3) z-update: z(t+ 1) = argmin
z∈Z

Lρ(t)(x(t+ 1), z,y(t)).

4) ρ/y-update: Update ρ(t+ 1) and y(t+ 1).
5) Stopping criterion: If stopping criterion is met terminate,

otherwise set t = t+ 1 and go to step 2.

The algorithm parameters ρ(t) and y(t) are chosen such that
limt→∞ ρ(t) = ∞ and the sequence {y(t)}t∈N is taken to be
bounded. The x- and z- updates (steps 2 and 3) are the main
steps of the algorithm where the augmented Lagrangian is
minimized in two steps.

Nonconvexities of f and g suggest potential difficulties in the
implementation of the x- and z- updates (see steps 2 and 3).
However, it is worth noting that problems encountered in
practice often contain structures that can be exploited to suc-
cessfully implement the x- and z-updates. Several examples are
given next.

Example 1: Let X (or Z) be convex, let f (or g) be twice
continuously differentiable, and suppose there exists α ∈ R
such that ∇2f(x) > α for all x ∈ X , where α < 0 if f is
nonconvex on X . Moreover, suppose A (or B) has full-
column rank. Then, the optimization problem in the x-update
(or z-update) is strongly convex for sufficiently large ρ(t) >
−α/λmin(A

TA). This can be seen by looking at the Hessian
∇2

xLρ(t)(x, z(t),y(t)) and using that ATA is positive definite.
Example 2: Let f(x) = xTQx+ qTx where Q ∈ Rp1×p1

is a symmetric indefinite matrix. Then, if xTQx > 0 for all
x ∈ Rp1 \ {0} in the null space of A, then there exists ρ̄ ∈ R
such that Lρ(t)(·, z(t),y(t)) is convex in x for all ρ(t) ≥ ρ̄, see
[18, Lemma 3.2.1 and Fig. 3.2.1].

Example 3: A potential feature of the multiagent setting is
that the x- update is separable into low-dimensional problems.
More specifically, suppose the variable x is partitioned into
low-dimensional subvectors as x = (x1, . . . ,xN ), where there
is no coupling between xi and xj in the constraints, for all
i, j = 1, . . . , N such that i �= j. Suppose also that the objec-
tive function is separable with respect to the partition, that
is, f(x) =

∑N
i=1 fi(xi). Then, the objective function in the

x-update is also separable with respect to the partition. Thus,
provided that each subvector xi is of low dimension, global
methods, such as branch and bound, can be efficiently used to
optimally solve the optimization problem in the x-update.

B. Algorithm Properties: Unconstrained Case

In this section, we derive the convergence properties of the
ADPM algorithm when X = Rn and Z = Rm. Our conver-
gence results assert that 1) primal feasibility of problem (2)
is satisfied and 2) if the sequence 1/ρ(t) is nonsummable and
(x(t), z(t)) converges to a point (x�, z�), then (x�, z�) satisfies
the FON conditions (Definition 1) of Problem (2). To establish
this result precisely, let us first make the following assumptions.

Assumption 1: g(x) = 0, A = I, c = 0, B has full-column
rank.

Assumption 2: At least one of the following conditions holds
true:

a) f is continuously differentiable with bounded gradient,
that is, there exists κ ∈ R such that ‖∇f(x)‖ ≤ κ for all
x ∈ Rn.

b) ‖B‖∞ = 1 and ‖(BTB)
−1
BT‖∞ = 1. Moreover, there

exist a scalar c > 0 such that: (b.i) [∇f(x)]i < 0 if xi <
−c, for component i ∈ {1, . . . , p1} and (b.ii) [∇f(x)]i >
0 if xi > c, for i ∈ {1, . . . , p1}.

Assumption 1 naturally arises when designing distributed
algorithm over networks, where x represents private variables
of each node/agent and z represents the coupling between the
nodes. Assumption 2.a is standard in the literature, for example,
in relation to (sub)gradient methods [6], [10], [18]. In addition,
Assumption 2.b ensures that our results hold for more general
classes of practical problems than covered by Assumption 2.a,
for example, when f is a polynomial of even degree with
positive leading coefficient. (See Problem (58) in Section V.)
We note that ‖B‖∞ = 1 and ‖(BTB)−1BT‖∞ = 1 naturally
hold when x and z represent private and coupling variables
of each node/agent in a connected network, for example, see
Section V. The main implication of Assumption 2.b is that it
ensures that the sequence (x(t), z(t)) is bounded as we show in
the following lemma.

Lemma 1: Suppose Assumption 2.b holds true and
‖z(t)‖∞ ≤ c, then ‖x(t+ 1)‖∞ ≤ c and ‖z(t+ 1)‖∞ ≤ c.

Proof: Let us start by showing that ‖x(t+ 1)‖∞ ≤ c by
using contradiction. Without loss of generality, we assume
that xi(t+ 1) < −c for some i = 1, . . . , p1 (the other cases
follow symmetrical arguments). Then, [∇f(x(t))]i < 0, from
Assumption 2.b, which, in turn, implies that∥∥∥∥

(
1

ρ

)
∇f (x(t+ 1)) + x(t+ 1)

∥∥∥∥
∞

> c. (7)
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However, using the FON conditions of the x-update and that
‖B‖∞ = 1 and ‖z(t)‖∞ ≤ c, we also have∥∥∥∥

(
1

ρ

)
∇f (x(t+ 1)) + x(t+ 1)

∥∥∥∥
∞

= ‖Bz(t)‖∞ ≤ c. (8)

Clearly, (7) and (8) contradict each other. Hence,‖x(t+1)‖∞≤c.
Let us next show that ‖z(t+ 1)‖ ≤ c. From the FON con-

ditions of the z-update, we get that z(t+ 1) = (BTB)−1

BTx(t+ 1) which, together with ‖(BTB)
−1
BT‖∞ = 1,

ensures that ‖z(t+ 1)‖ ≤ ‖x(t+ 1)‖∞ ≤ c. �
We are now ready to derive the main result of this subsection.
Proposition 1: Suppose assumptions 1 and 2 hold. Let r(t)

be the residual at iteration t of the ADPM defined as r(t) =
‖x(t) +Bz(t)‖. Then

1) If y(t) = 0 for all t ∈ N, then limt→∞ r(t) = 0.
2) If in addition

∑
t=0 1/ρ(t) = ∞ and limt→∞(x(t),

z(t)) = (x�, z�), then (x�, z�) satisfies the FON condi-
tions of Problem (2).

Proof: i) Note that Assumption 2 implies that the se-
quence ∇f(x(t)) is bounded, when 2.a holds, then the result is
obvious and when 2.b holds, the result follows from Lemma 1.
In particular, there exists M ∈ R such that ‖∇f(x(t))‖ < M
for all t ∈ N.

Using the FON conditions of the x- and y- updates, we
obtain

0 =∇f (x(t+ 1)) + ρ(t) (x(t+ 1) +Bz(t)) (9)
0 =BT (x(t+ 1)−Bz(t+ 1)) (10)

and rearranging (9) and (10), we obtain

z(t)=(BTB)
−1
BT

(
x(t+1)+

1

ρ(t)
∇f(x(t+1))

)
(11)

z(t+1)=(BTB)
−1
BTx(t+ 1). (12)

Using (11), (12), and that ∇f(x(t)) is bounded, we obtain

‖z(t+1)−z(t)‖= 1

ρ(t)

∥∥∥(BTB)
−1
BT∇f(x(t+1)))

∥∥∥ (13)

≤ M

ρ(t)

∥∥∥(BTB)
−1
BT

∥∥∥ . (14)

Similarly, using (9) and that ∇f(x(t)) is bounded, we obtain

‖x(t+ 1) +Bz(t)‖ =
1

ρ(t)
‖∇f (x(t+ 1))‖ ≤ M

ρ(t)
. (15)

Finally, by using (14), (15) and the triangle inequality give

‖x(t+1)+Bz(t+1)‖≤‖x(t+ 1) +Bz(t)‖
+ ‖B (z(t+ 1)− z(t))‖

≤ M

ρ(t)

(
1+

∥∥∥B(BTB)
−1
BT

∥∥∥). (16)

Since ρ(t) diverges to ∞, (16) converges to zero, which con-
cludes the proof.

ii) We need to show that (x�, z�) satisfies the FON conditions
(Definition 1) for Problem (2) together with some Lagrangian
multiplier. Note that condition 1) of the FON conditions (Primal
feasibility) holds because of part i) of this proposition and

conditions 2) and 3) of the FON conditions (dual feasibility
and complementary slackness) trivially hold since there are no
inequality constraints, since X = Rp1 and Z = Rp2 . Hence, we
only need to show condition 4) that the Lagrangian vanishes.
We note that the gradient of the Lagrangian is

∇f(x�) + λ = 0 and BTλ = 0 (17)

where λ ∈ Rn is the dual variable. If ∇f(x�) is in the null
space of BT, then (17) is satisfied by setting λ = −∇f(x�),
which would conclude the proof. Therefore, in the sequel, we
show that BT∇f(x�) = 0.

Using (11) and (12) gives

∞∑
t=0

(BTB)(z(t+1)−z(t))=

∞∑
t=0

1

ρ(t)
BT∇f(x(t+ 1)). (18)

The left-hand side of (18) is a telescopic series, hence

∞∑
t=0

1

ρ(t)
BT∇f (x(t+ 1)) = (BTB) (z� − z(0)) (19)

which, in turn, ensures the convergence of (19) and

∞∑
t=0

1

ρ(t)

∥∥BT∇f (x(t+ 1))
∥∥ . (20)

Set L = limt→∞ ‖BT∇f(x(t))‖ = ‖BT∇f(x�)‖. Let us next
use the contraction to show that L = 0 which, in turn, shows
that BT∇f(x�) = 0. Without of loss of generality, suppose
L > 0. Choose ε > 0 and T ∈ N such that ‖BT∇f(x(t))‖ >
L− ε > 0 for all t ≥ T . Then

∞∑
t=0

1

ρ(t)

∥∥BT∇f (x(t+1))
∥∥≥T−1∑

t=0

1

ρ(t)

∥∥BT∇f (x(t+ 1))
∥∥

+(L− ε)

∞∑
t=T

1

ρ(t)

where the right-hand side diverges to∞, since
∑∞

t=0 1/ρ(t)=∞,
which implies that the left-hand side also diverges to ∞. This
contradicts that the series (20) converges and, therefore, we can
conclude that L = 0. �

Remark 1: In Proposition 1, we considered the case where
y(t) = 0, which allowed us to derive the theoretical results.
Still, our numerical results in Section V show that it can be
beneficial to update y according to the recursion y(t+ 1) =
y(t) + ρ(Ax(t+ 1) +Bz(t+ 1)− c) [cf. (4)].

C. Algorithm Properties: Constrained Case

In this section, we derive the convergence properties of the
ADPM when X and Z are proper subsets of Rp1 and Rp2 ,
respectively. Our convergence results assert that the primal
feasibility of problem (2), which is a necessary optimality con-
dition, is achieved as ADPM proceeds. More specifically, we
show that regardless of whether f, g are convex or nonconvex,
whenever X and Z are convex, the primal residual at iteration
t of the ADPM (i.e., Ax(t) +Bz(t)− c) converges to zero as
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ADPM proceeds. To establish this result precisely, let us first
make the following assumptions:

Assumption 3: The functions f and g of problem (2) are
continuously differentiable.

Assumption 4: The sets X and Z of problem (2) are convex
and compact.

Assumption 5: Slater’s condition [18] holds individually for
X and Z . In particular, there exists a x ∈ X (respectively,
z ∈ Z) such that all of the inequality constraints characterizing
X (respectively, Z) are inactive at x (respectively, z).

Assumption 6: The matrices A and B of problem (2) have
full-column rank.

Note that we make no convexity assumptions on f and g.
However, the convexity assumption on X and Z is essential.
Otherwise, primal feasibility is not guaranteed in general–see
Example 4 later in this section. Assumption 5 is an additional
technical condition, similar to the constraint qualifications usu-
ally used in convex analysis. The last assumption is technically
necessary to ensure that ATA and BTB are positive definite.
It is quite common in practice that this assumption holds, as
desired, see Section V. The following proposition establishes
the convergence of ADPM.

Proposition 2: Suppose Assumptions 3–6 hold. Let
{ρ(t)}t∈N be a sequence of penalty parameters used in the
ADPM algorithm, where ρ(t+ 1) ≥ ρ(t) for all t and suppose
there exists an integer κ > 0 and a scalar Δ > 1 such that
ρ(t+ κ) ≥ Δρ(t) for all t. Let r(t) be the residual at iteration t
of the ADPM defined as r(t) = ‖Ax(t) +Bz(t)− c‖2. Then,
limt→∞ r(t) = 0.

Proof: Recall that {y(t)}t∈N is a bounded sequence.
Thus, there exists M0 > 0 such that ‖y(t)‖ ≤ M0, for all t ∈
N. We denote by Y the closed ball with radius M0 centered at
the origin 0, that is, Y = {y ∈ Rq|‖y‖ ≤ M0}.

Since f and g are continuous and the sets X and Z are
compact, there exists a scalar M1 > 0 such that

M1= max
(x,z,y)∈X×Z×Y

∣∣f(x)+g(z)+yT(Ax+Bz−c)
∣∣ . (21)

In addition, x̂ : Rp2 → R and ẑ : Rp1 → R, defined as

x̂(z) = argmin
x∈X

‖Ax+Bz− c‖2 (22)

ẑ(x) = argmin
z∈Z

‖Ax+Bz− c‖2 (23)

are well-defined continuous functions (compared with
Assumption 6). By definition, x(t+ 1) is a solution of the
optimization problem in the x-update of the ADPM. This,
together with (21), yields

Lρ(t) (x(t+ 1), z(t),y(t))

≤ M1 +

(
ρ(t)

2

)
‖Ax̂ (z(t)) +Bz(t)− c‖2 . (24)

Similarly, we obtain

Lρ(t) (x(t+ 1), z(t+ 1),y(t))

≤ M1 +

(
ρ(t)

2

)
‖Ax(t+ 1) +Bẑ (x(t+ 1))− c‖2 . (25)

Let us first use (24) and (25) to derive a recursive rela-
tion for r(t). By rearranging the terms of (24) and by using
that |M1−(f(x) + g(z) + yT(Ax+Bz−c))| ≤ 2M1 for all
(x, z,y) ∈ X × Z × Y , we have for all t ∈ N

‖Ax(t+ 1) +Bz(t)− c‖2

≤ 4M1

ρ(t)
+ ‖Ax̂ (z(t)) +Bz(t)− c‖2 . (26)

Moreover, we have for all t ∈ N

r(t+1) ≤ 4M1

ρ(t)
+‖Ax(t+1)+Bẑ (x(t+1))−c‖2 (27)

≤ 8M1

ρ(t)
+ ‖Ax̂ (z(t)) +Bz(t)− c‖2 (28)

≤ 8M1

ρ(t)
+ r(t) (29)

where (27) follows similarly by rearranging the terms of (25)
and by using that |M1 − (f(x) + g(z) + yT(Ax+Bz−
c))| ≤ 2M1 for all (x, z,y) ∈ X × Z × Y , (28) follows from
combining the inequalities (26) and (27), together with the
definition of x̂ and ẑ, and (29) follows by the definition of x̂.

Let us next use the recursive inequality (29) above to show
that {r(t)}t∈N converges to a finite value. The inequality (29)
implies for all t, n ≥ 0

r(t+ n) ≤ r(t) + 8M1

n−1∑
i=0

1

ρ(t+ i)
. (30)

From the definition of {ρ(t)}t∈N , we obtain

n∑
i=0

1

ρ(t+ i)
≤

�n
κ∑

i=1

κ−1∑
j=0

1

ρ(t+ iκ+ j)
(31)

≤
�n

κ∑
i=0

κ

Δiρ(t)
(32)

≤ κ

ρ(t)

∞∑
i=0

1

Δi
(33)

where (31) follows because the sum on the right contains all
of the terms of the sum on the left (and possibly more) and
all of the terms are positive, (32) follows because 1/ρ(t+
iκ+ j) ≤ 1/(Δiρ(t)) for all 0 ≤ j ≤ κ− 1, and (33) trivially
follows from the non-negativity of summands. Since Δ > 1,∑∞

i=0 1/Δ
i is a convergent geometric series and, thus, let∑∞

i=0 κ/Δ
i = M2. This, together with (30) and (31)–(33),

implies that for all integers t, n ≥ 0

r(t+ n) ≤ r(t) +
8M1M2

ρ(t)
. (34)

Now note that {r(t)}t∈N is bounded. Moreover, because
{ρ(t)}t∈N is an increasing sequence, it follows that for all
ε > 0, there exists a T such that (8M1M2/ρ(t)) ≤ ε, for all
t ≥ T . These, taken together with (34) and Lemma 2 (see p. 7),
ensure that the sequence {r(t)}t∈N converges to a finite value,
denoted by R, that is, R = limt→∞ r(t).
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Let us finally show that R = 0. Since the set X × Z is
compact, the sequence {x(t), z(t)}t∈N has a limit point, say
(x̄, z̄) ∈ X × Z . Moreover, note that the function ‖Ax+
Bz− c‖2 is continuous on X × Z . Therefore, taking limits as
t → ∞ in r(t) = ‖Ax(t) +Bz(t)− c‖2, we have

R = lim
t→∞

‖Ax(t) +Bz(t)− c‖2 = ‖Ax̄+Bz̄− c‖2 . (35)

Let us now consider the limits in the inequality (29) as t → ∞.
Since limt→∞ r(t+ 1) = limt→∞((8M1)/ρ(t) + r(t)) = R,
from (27), (28), and the squeezing lemma, together with the
continuity of functions x̂ and ẑ it follows that:

R = ‖Ax̂(z̄) +Bz̄− c‖2 = ‖Ax̄+Bẑ(x̄)− c‖2 . (36)

By combining (35) and (36), together with the definitions (22)
and (23), we obtain

x̄ = argmin
x∈X

‖Ax+Bz̄− c‖2 (37)

z̄ = argmin
z∈Z

‖Ax̄+Bz− c‖2. (38)

Since Slater’s constraint qualifications condition is satisfied for
both sets X and Z (Assumption 5), x̄ and z̄ satisfy the first-
order necessary conditions for problems (37) and (38), respec-
tively. By combining these first-order necessary conditions and
(38), it follows that (x̄, z̄) satisfies the first-order necessary
conditions for the problem:

minimize
x,z

‖Ax+Bz− c‖2

subject to (x, z) ∈ X × Z. (39)

Since problem (39) is convex and the constraint sets satisfy
Slater’s constraint qualifications condition, we conclude that
(x̄, z̄) is the solution to problem (39). Given that problem (2)
is feasible, we must have ‖Ax̄+Bz̄− c‖2 = 0 and, therefore,
limt→∞ ‖Ax(t) +Bz(t)− c‖2 = 0 [compared with (35)]. �

Lemma 2: Let us suppose that {at}t∈N is a bounded se-
quence and for each ε > 0, there exists T ∈ N such that at+n ≤
ε+ at for all n ≥ 0 and t ≥ T , then limt→∞ at exists.

Proof: Let us denote by R the limit inferior of {at}t∈N,
that is, R = lim inft→∞ at, which is finite since {at}t∈N is
bounded. It follows from elementary properties of the limit
inferior that {at}t∈N has a subsequence {atj}j∈N which con-
verges to R , that is, limj→∞ atj = R. Subsequently, for a
given ε > 0, we can find J1 ∈ N such that |R− atj | < ε/2
for all j ≥ J1. Moreover, by using the assumptions of the
lemma, there exists J2 ∈ N such that atj+n ≤ ε/2 + atj for
all n ≥ 0 and j ≥ J2. If we choose J = max{J1, J2}, we get
that at ≤ ε/2 + atJ < R+ ε for all t ≥ tJ . Since this can be
done for all ε > 0, we get that lim supt→∞ at ≤ R, implying
that lim supt→∞ at = lim inft→∞ at. So we can conclude that
limt→∞ at = R. �

One natural question that arises immediately with Assump-
tion 4 is what if X and/or Z are nonconvex. The following
example shows that the results of Proposition 2 do not generally
hold when either X or Z are nonconvex.

Fig. 1. Example where ADPM fails to converge to a feasible point when sets
X and Z are nonconvex.

Example 4: Consider the problem

minimize
x,z

x2 + z2

subject to − 2x+ z = 0.1,
x ∈ [−1, 0] ∪ [1, 2], z ∈ [0, 3]. (40)

The feasibility set and contours of the objective function are
given in Fig. 1. It can be observed that if z(0) = 0 and y(t) = 0
for all t ∈ N, then the optimal solution of the x- and z-updates
is 0 for all t ∈ N, that is, limt→∞ x(t) = 0 and limt→∞ z(t) =
0. This means that the algorithm converges to (0,0), which is an
infeasible point.

Note that our Assumption 3 is a weaker condition than
assuming that f and/or g are convex. As a result, generally
characterizing the proprieties of the objective value of ADPM
after the convergence is technically challenging. Nevertheless,
ADPM appears to resemble a sequential optimization approach,
which provides degrees of freedom to hover over the true ob-
jective function for locating a good objective value. In [32], we
provide some experiments to numerically show these appealing
aspects of the ADPM, besides those ensured by Proposition 2.

IV. ALTERNATING DIRECTION METHOD OF MULTIPLIERS

In this section, we investigate some new general properties
of the ADMM in a nonconvex setting. We state the algorithm in
Section IV-A and study convergence properties in Section IV-B.

A. Algorithm Description

The ADMM can explicitly be stated as follows.

Algorithm 2: THE ALTERNATING DIRECTION METHOD OF

MULTIPLIERS (ADMM)

1) Initialization: Set t = 0 and put initial values to z(t),
y(t), and ρ.

2) x-update: x(t+ 1) = argmin
x∈X

Lρ(x, z(t),y(t)).

3) z-update: z(t+ 1) = argmin
z∈Z

Lρ(x(t+ 1), z,y(t)).

4) y-update: y(t+1)=y(t)+ρ(Ax(t+1)+Bz(t+1)−c).
5) Stopping criterion: If stopping criterion is met

terminate, otherwise set t = t+ 1 and go to step 2.
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Unlike in Algorithm 1 (ADPM), in Algorithm 2 (ADMM),
the penalty parameter is fixed. The first step is the initialization
(step 1). As presented before, the x- and z-updates require a
solution of an optimization problem. This is not as restrictive as
it may seem, since under mild conditions such requirements are
accomplished, see Examples 1–3. However, we note that no
such global optimality requirement of x(t+1) and z(t+1) is
necessary in our convergence assertions, as we will show in sub-
sequent sections. More specifically, our convergence results ap-
ply as long asx(t+1) [respectively, z(t+1)] is a local minimum.

B. Algorithm Properties

In this section, we show that, under mild assumptions, if the
sequence {y(t)}t∈N converges to some ȳ, then any limit point
of the sequence {x(t), z(t)}t∈N, together with ȳ, satisfies FON
conditions of Problem (2) (compared with Definition 1). It is
worth noting that these results hold regardless of whether f , g,
X , and Z are convex or nonconvex.

Let us now scrutinize the above assertion precisely. The
analysis is based on the following assumption which can be
expected to hold for many problems of practical interest:

Assumption 7: The sets X and Z of problem (2) are closed
and can be expressed in terms of a finite number of equality and
inequality constraints. In particular

X = {x ∈ Rp1 | ψ(x) = 0, φ(x) ≤ 0}
Z = {z ∈ Rp2 | θ(z) = 0, σ(z) ≤ 0}

where ψ : Rp1 → Rq1 , φ : Rp1 → Rq2 , θ : Rp2 → Rq3 , and
σ : Rp2 → Rq4 are continuously differentiable functions.

Assumption 8: For every t ∈ N, x(t) [respectively, z(t)]
computed at step 2 (respectively, step 3) of the ADMM algo-
rithm is locally or globally optimal.

Assumption 9: Let L denote the set of limit points of the
sequence {(x(t), z(t))}t∈N and let (x̄, z̄) ∈ L. The set of con-
straint gradient vectors at x̄

CX (x̄)={∇ψi(x̄)|i=1, . . . , q1}∪{∇φi(x̄)|i∈AX (x̄)} (41)

associated with the set X is linearly independent, where
AX (x̄) = {i | φi(x̄) = 0}. Similarly, the corresponding set of
constraint gradient vectors CZ associated with the set Z is
linearly independent.

Assumption 7 is self-explanatory. Note that steps 2 and 3
of the algorithm involve nonconvex optimization problems,
where the computational cost of finding the solutions x(t+ 1)
and z(t+ 1), in general, can be entirely prohibitive. However,
Assumption 8 indicates that the solution x(t+ 1) [respectively,
z(t+ 1)] of the optimization problem associated with steps 2
(respectively, 3) of the ADMM should only be a local minimum
and not necessarily a global minimum. Thus, Assumption 8
can usually be accomplished by employing efficient local op-
timization methods (see [33, Sec. 1.4.1]). In the literature,
Assumption 9 is called the “regularity assumption” and is
usually satisfied in practice. Moreover, any point that complies
with the assumption is called regular, see [18, p. 269]. Let us
next document two results that will be important later.

Lemma 3: Suppose Assumptions 7 and 9 hold. Let
{(x(tk), z(tk))}k∈N be a subsequence of {(x(t), z(t))}t∈N

with limk→∞(x(tk), z(tk)) = (x̄, z̄). Then there exists K such
that the sets of vectors CX (x(tk)) and CZ(z(tk)) [cf (41)] are
each linearly independent for all k ≥ K.

Proof: First note that if i �∈ A(x̄), then φi(x(tk)) < 0
[or i �∈ A(x(tk))] for all sufficiently large k, since φi is
continuous and the set {x ∈ R|x �= 0} is open. Therefore, it
suffices to show that the columns of the matrix D(x(tk)) ∈
Rp1×(q1+|A(x̄)|) are linearly independent for all sufficiently
large k, where

D(x) =
[
(∇ψi(x))i=1,...,q1

, (∇φi(x))i∈AX (x̄)

]
. (42)

Since Det(D(x)TD(x)) is continuous (see Assumption 7),
Det(D(x(tk))

TD(x(tk))) can be made arbitrarily close to
Det(D(x̄)TD(x̄)), which is nonzero, see Assumption 9.
Equivalently, there exists K ∈ N such that Det(D(x(tk))

T

D(x(tk))) is nonzero for all k ≥ K, which, in turn, ensures that
CX (x(tk)) is a linearly independent set for k ≥ K. The linear
independence of CZ(z(tk)) for all sufficiently large k can be
proved similarly. �

Lemma 4: Suppose Assumptions 3, 7, 8, and 9 hold. Let
{(x(tk), z(tk))}k∈N be a subsequence of {(x(t), z(t))}t∈N
with limk→∞(x(tk), z(tk)) = (x̄, z̄). Then, for sufficiently
large k, there exist Lagrange multipliers (λ(tk),γ(tk)) ∈
Rq1 × Rq2 [respectively, (μ(tk),ω(tk)) ∈ Rq3 × Rq4 ] such
that the pair x(tk), (λ(tk),γ(tk)) [respectively, z(tk),
(μ(tk),ω(tk))] satisfies the FON conditions of the optimiza-
tion problem in the x-(respectively, z-) update of the ADMM
algorithm (compare with Definition 1).

Proof: From Lemma 3, we have that x(tk) and z(tk) are
regular for sufficiently large k. This combined with the assump-
tions yields the result, which is an immediate consequence of
[18, Prop. 3.3.1] �

Lemmas 3 and 4 play a central role when deriving our con-
vergence results, as we will show in the sequel. The following
proposition establishes the convergence results of the ADMM
algorithm:

Proposition 3: Suppose Assumptions 3, 7, 8, and 9 hold and
the sequence y(t) converges to a point, that is, limt→∞ y(t)=
ȳ for some ȳ. Then every limit point of the sequence {x(t),
z(t)}t∈N, together with ȳ and some λ∈Rq1 , γ∈Rq2 , μ∈Rq3 ,
and ω∈Rq4 satisfy the FON conditions of Problem (2).

Proof: Let (x̄, z̄) be a limit point of {(x(t), z(t))}t∈N and
{(x(tk), z(tk))}k∈N be a subsequence such that limk→∞(x(tk),
z(tk)) = (x̄, z̄). We show that the primal variables x̄, z̄ and the
Lagrange multipliers ȳ, λ, γ, μ, and ω satisfy the first-order
necessary conditions, where λ, γ, μ, and ω are chosen as in
Lemma 5.

In the sequel, we show that the four conditions of Definition 1
(first-order necessary condition) are all satisfied.

1) Primal feasibility: Since (x(tk), z(tk)) ∈ X × Z and
the set X × Z is closed, it follows that (x̄, z̄) ∈ X × Z .
Since ȳ = y(0) +

∑∞
t=1 ρ(Ax(t) +Bz(t)− c), we must have

limt→∞ ‖Ax(t) +Bz(t)− c‖2 = 0, or Ax̄+Bz̄ = c.
2) Dual feasibility: It holds for γ(tk) and ω(tk) from Lemma

4 that γ(tk) ≥ 0 and ω(tk) ≥ 0 (compare with Definition 1).
Hence, since the closed right half-plane is a closed set, it
follows that γ ≥ 0 and ω ≥ 0.
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3) Complementary slackness: If φi(x̄) = 0, then γiφi(x̄) =
0 trivially holds. On the other hand, if φi(x̄) < 0, then we
showed in the proof of Lemma 5 that γi = 0. Hence, it follows
that γiφi(x̄) = 0.

4) Lagrangian vanishes: We need to show that

∇xf(x̄) +ATȳ +∇xψ(x̄)λ+∇xφ(x̄)γ =0 (43)
∇zg(z̄) +BTȳ +∇zθ(z̄)μ+∇zσ(z̄)ω =0. (44)

Let us start by showing (44). From Lemma 4, we obtain for all
sufficiently large k that (compare with Definition 1)

∇zL (x(tk), z,y(tk − 1)) +∇zθ (z(tk))μ(tk)+
∇xσ (x(tk))ω(tk) = 0. (45)

By using y(tk − 1) = y(tk)− ρ(Ax(tk) +Bz(tk)− c) in
(45) and rearranging the terms, we obtain

∇zg (z(tk)) +BTy(tk) +∇zθ (z(tk))μ(tk)+
∇xσ (x(tk))ω(tk) = 0. (46)

By using that limk→∞(x(tk), z(tk),y(tk)) = (x̄, z̄, ȳ) and
limk→∞(λ(tk),γ(tk),μ(tk),ω(tk)) = (λ,γ,μ,ω), we con-
clude that (44) holds. By using the same arguments as before,
we get for all sufficiently large k that

∇xf (x(tk)) +ATy(tk) +∇xψ (x(tk))λ(tk)+
∇xφ (x(tk))γ(tk) = ρATB (z(tk)− z(tk − 1)) . (47)

Therefore, by the arguments above, if we can show that limt→∞
ρATB(z(t+ 1)− z(t)) = 0, then (43) holds. The assumption
ȳ=limt→∞ y(t), together with the relation y(t+1)=y(0)+
ρ
∑t+1

l=1 Ax(l) +Bz(l)− c, can be used to show that the series
∞∑
t=1

(Ax(t) +Bz(t+ 1)− c) ,

∞∑
t=1

(Ax(t) +Bz(t)− c)

are convergent. By taking the difference of the two series
and using that the sum of convergent series is a convergent
series, we get that

∑∞
t=1 B(z(t+ 1)− z(t)) is a convergent

series, thus implying that limt→∞ B(z(t+ 1)− z(t)) = 0. By
multiplying ρAT from the left side, we get that limt→∞ ρAT

B(z(t+ 1)− z(t)) = 0. �
Lemma 5: Let {tk}k∈N be a sequence such that limk→∞

(x(tk), z(tk)) = (x̄, z̄). Then the limits lim
k→∞

λ(tk), lim
k→∞

γ(tk),

lim
k→∞

μ(tk), and lim
k→∞

ω(tk) exist, where λ(tk), γ(tk), μ(tk),

and ω(tk) are chosen as in Lemma 4.
Proof: We prove the existence of the first two limits. The

proof of the existence of the latter two limits follows similarly.
Since ∇f , ∇ψ, and ∇φ are continuous functions (see

Assumption 3), we have

lim
k→∞

∇f (x(tk)) = ∇f(x̄), lim
k→∞

∇ψ (x(tk)) =∇ψ(x̄)

and lim
k→∞

∇φ (x(tk)) =∇φ(x̄).

This, together with Lemma 3, implies that there exists K such
that D(x(tk))

TD(x(tk)) [see (42)] is invertible for all k ≥ K.
Hence, it follows that for all k ≥ K, we have:(
λ(tk), (γi(tk))i∈AX (x̄)

)
=D(x(tk))

TD(x(tk))
−1 D(x(tk))

T(∇f(x(tk))+ATx(tk)
)
.

Since D(tk) and ∇f(x(tk)) converge when k → ∞, it follows
that limk→∞(λ(tk), (γi(tk))i∈AX (x̄)) exists.

Next, we show that limk→∞ γi(tk) = 0 if i �∈ AX (x̄). Since
φi(x̄) < 0, there exists an open set U ⊆ Rp2 containing x̄
such that φi(x) < 0 for all x ∈ U . In particular, there exists
K ∈ N such that φi(x(tk)) < 0 for k ≥ K. Therefore, there
must exist K ∈ N such that γi(tk) = 0 for all k ≥ K, since
complementary slackness [γi(tk)φi(x(tk)) = 0] holds for all
sufficiently large k (compare with Lemma 4). �

A stronger version of Proposition 3 is shown in the following
corollary:

Corollary 1: If limt→(x(t), z(t),y(t)) = (x̄, z̄, ȳ), then x̄
and z̄ satisfy the FON conditions of Problem (2).

The corollary follows immediately because the hypothesis
implies that the set L defined in Assumption 9 is a Singleton.

Technically, Proposition 3 characterizes the solution of the
ADMM algorithm applied on the possibly nonconvex problem
(2). More specifically, the proposition claims that under mild
assumptions, the solutions computed by ADMM satisfy the
FON conditions for problem (2), if at every iteration, the
subproblems are locally (or globally) solved and if the dual
variables of ADMM converge.

Let us now show how Proposition 3 can be used to com-
pletely characterize the convergence of the ADMM for a class
of problems identified by the following assumption.

Assumption 10: f, g : R → R, X = Y = R, and the cou-
pling constraint is x = z, that is, A = 1 and B = −1. In
addition, the derivatives f ′ and g′ are L-Lipschitz continuous.

The following corollary of Proposition 3 shows that under
Assumption 10, the ADMM always either converges or diverges
to ±∞ and characterizes the convergence in terms of z(0).

Corollary 2: Suppose Assumption 10 holds, ρ > L and
y(0) = g′(z(0)). Then

lim
k→∞

(x(k), z(k), y(k)) = (z�, z�, g′(z�))

where z� is determined as follows:
a) If f ′(z(0)) + g′(z(0)) = 0, then z� = z(0).
b) If f ′(z(0)) + g′(z(0)) < 0, then

z� = inf {z ≥ z(0)|f ′(z) + g′(z) = 0} .

c) If f ′(z(0)) + g′(z(0)) > 0, then

z� = sup {z ≤ z(0)|f ′(z) + g′(z) = 0} .

Proof: We start by writing the steps of the ADMM in a
more convenient form. Note that g′(z(t+1))+y(t)+ρ(x(t+
1)− z(t+ 1)) = 0, from the optimality conditions of z(t+ 1)
at the z-update. This, combined with the y-update, yields 1)
y(t) = g′(z(t)). Moreover, because f ′ and g′ are L-Lipschitz
continuous, we have that 2) the functions Lρ(·, z(t), y(t))
and Lρ(x(t), ·, y(t)), associated with the x- and z-updates are
strongly convex for all ρ > L.

From 1) and 2), we get that x(t+ 1) is the unique solution to

0 = f ′(x) + g′ (z(t)) + ρ (x− z(t)) (48)

and z(t+ 1) is the unique solution to

0 = g′(z)− g′ (z(t))− ρ (x(t+ 1)− z) . (49)
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In the sequel, we show each case a), b), and c) separately.
a) If f ′(z(0)) + g(z(0)) = 0, then x(t) = z(0) and z(t) =

z(0) are clearly the unique solutions to (48) and (49), respec-
tively, for all t ≥ 1. The result follows.

b) In the sequel, we show that z(t+ 1) > z(t) and z(t) <
z� for all t ∈ N, implying that z̄ = limt→∞ z(t) exists (it is
possible that z̄ = ∞ when z� = ∞). Since the interval U =
[z(0), z�] (or U = [z(0), z�[ when z� = ∞) is a closed set, z̄ ∈
U . Moreover, by Proposition 3, (x(t), z(t), y(t)) can only con-
verge to a point satisfying the first-order necessary conditions,
that is, to a point (z, z, g′(z)) with f ′(z) + g′(z) = 0. When
z� < ∞, the only z ∈ U satisfying the necessary conditions
is z� and when z� = ∞, no z ∈ U satisfies the necessary
conditions. Hence, we can conclude that z̄ = z�.

We show that z(t+ 1) > z(t) and z(t+ 1) < z� for all
z(t) ∈ [z(0), z�[, but as an intermediary step, we first show that
x(t+ 1) > z(k) and x(t+ 1) < z� for all z(t) ∈ [z(0), z�[.
To see that x(t+ 1) > z(k), we note that x(t+ 1) ≤ z(k)
contradicts the L-Lipschitz continuity of f ′. In particular, x(t+
1) ≤ z(t) implies that ρ|x(t+ 1)− z(t)| < |f ′(x(t+ 1))−
f ′(z(t))|, which is seen by the following inequality:

ρ (z(t)− x(t+ 1)) < f ′ (x(t+ 1))− f ′ (z(t)) (50)

which is obtained by combining (48) and −f ′(z(t)) > g′(x(t))
and rearranging. To see that x(t+ 1) < z�, we note that

f ′(x)<−(g′ (z(t))+ρ (x−z(t))), ∀x∈ [z(t), x(t+1)[ , (51)
g′(x)<g′(z(t))+ρ (x−z(t)), ∀x∈ ]z(t), x(t+1)] (52)

where (51) comes from thatx(t+1) is the unique solution of (48)
and f ′(z(t))<−g′(z(t))−ρ(z(t)−z(t)) and (52) come from
that ρ > L and g′ is L-Lipschitz continuous. Summing (51) and
(52) and using the continuity of f ′ and g′ shows that f ′(x)+
g′(x)<0 for all x∈ [z(t), x(t+1)] and, hence, x(t+1)<z�.

We now show that z(t+ 1) > z(t) and z(t) < z�. To see
that z(t+ 1) > z(t), we note that z(t+ 1) ≤ z(t) contra-
dicts the L-Lipschitz continuity of g′. In particular, z(t+
1) ≤ z(t) implies that ρ|z(t+ 1)− z(t)| < |g′(x(t+ 1))−
g′(z(t))|, which is seen by that if z(t+ 1) ≤ z(t), then

g′ (z(t+ 1))− g′ (z(t)) = ρ (x(t+ 1)− z(t+ 1)) (53)
>ρ (z(t)− z(t+ 1)) > 0 (54)

where (53) comes by rearranging (49), and (54) comes by
assuming that z(t+ 1) ≤ z(t) and using that x(t+ 1) > z(t).
Hence, we can conclude that z(t+ 1) > z(t). To see that z(t+
1) < z�, we note that if z(t+ 1) ≤ x(t+ 1), then we are done
since x(t+ 1) < z�; otherwise, we have that

f ′(z)<−(g′(z(t))+ρ(x(t+1)−z)) , ∀z∈ ]x(t+1), z(t+1)],
(55)

g′(z)<g′(z(t))+ρ(x(t+1)−z) , ∀z∈ [x(t+1), z(t+1)[
(56)

where (55) comes from using that ρ > L, and f ′ is L-Lipschitz
continuous together with the inequalities z ≥ x(t+ 1) and
f ′(x(t+ 1)) < −g′(z(t)) which follows from (48), and (56)
comes by that z(t+ 1) is the unique solution of (49) together
with g′(z(t))<g′(z(t))+ρ(x(t+1)−z(t) and z(t)<z(t+1).

Summing (55) and (56) and using the continuity of f ′ and g′

shows that f ′(z) + g′(z) < 0 for all z ∈ [x(t+ 1), z(t+ 1)],
implying that z(t+ 1) < z�.

c) Follows from symmetric arguments as those used for
showing b) and is thus omitted. �

Informally, Corollary 2 shows that under Assumption 10
and ρ > L, the ADMM converges to the closest stationary
point of z(0) in the direction where f + g is decreasing. For
example, when f(x) = cos(x), g(z) = sin(z), and ρ > 1, then
limt→∞(x(t), z(t), y(t)) = (z�, z�, cos(z�)), where z� = z(0)
if z(0) ∈ {2πn+ π/4|n ∈ Z} and z∗ = 2nπ + 5π/4 if z(0) ∈
]2nπ + π/4, 2(n+ 1)π + π/4[ for n ∈ Z. If there is no station-
ary point in the direction where f + g is decreasing, then the
ADMM diverges to ±∞, for example, when f(x) = g(x) =
−x2 and ρ > 2, then z� = 0,−∞,∞ for z(0) = 0, z(0) < 0,
and z(0) > 0, respectively.

The challenge in multidimensional cases is that we need to
know the direction toward the stationary point. Such a direction
is easily obtained in the monodimensional, as suppose to the
multidimensional case.

The next section demonstrates the potential of the proposed
ADLM approaches (see Sections III and IV) in a problem of
great practical relevance.

V. APPLICATION: COOPERATIVE LOCALIZATION

IN WIRELESS-SENSOR NETWORKS

In this section, we use the ADLM methods to design dis-
tributed algorithms for cooperative localization (CL) [2] in
wireless-sensor networks.

Consider a undirected graph (N , E), where N = {1, . . . , N}
is a set of nodes embedded in R2, and E ⊆ N ×N is a set
of edges. Let N = S ∪ A, where S = {1, . . . , S} is the set of
sensors with unknown locations and A = {S + 1, . . . , N} is
the set of anchors with known locations. We denote the location
of node n ∈ A by an and an estimate of the location of node
n ∈ S by zn.

Suppose the measurements of the squared2 distance between
two nodes n,m ∈ N , denoted by d2n,m, are available if and only
if (n,m) ∈ E . The additive measurement errors are assumed
to be independent and Gaussian distributed with zeros mean
and variance σ2. Then, the CL problem consists of finding
the maximum-likelihood estimate of (zn)n∈S by solving the
following problem:

minimize
z1,...,zS∈R2

∑
n∈S

( ∑
m∈Sn

∣∣d2n,m − ‖zn − zm‖2
∣∣2

+2
∑

m∈An

∣∣d2n,m − ‖zn − am‖2
∣∣2) (57)

where Sn = {m ∈ S|(n,m) ∈ E}, An = {m ∈ A|(n,m) ∈
E} and the coefficient 2 in front of the second term of the sum
comes from that n ∈ S appears twice in the sum. Note that
Problem (57) is NP-hard [34].

2Using the square ensures that the objective function of (57) is a continuously
differentiable (compare with Assumption 3).
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To enable distributed implementation (among the nodes) of
the proposed ADLM approaches, let us first equivalently refor-
mulate problem (57) into a general consensus form [16, Sec.
7.2]. We start by introducing at each node n ∈ N , a local copy
xn of (zm)m∈S̄n

, where S̄n = Sn ∪ {n}. More specifically,
we let xn = (xn,m)m∈S̄n

, where xn,m ∈ R2 denotes the local
copy of zm at node n. To formally express the consistency be-
tween xn and z = (z1, . . . , zS), we introduce the matrix En ∈
R2|S̄n|×2S , which is a |S̄n| × S block matrix of 2 × 2 blocks. In
particular, the ith, jth block of En is given by (En)i,j = I2,
if xn,j is the ith block of the vector xn and (En)i,j = 0
otherwise. Then, Problem (57) is equivalently given by

minimize
x,z

∑
n∈N

fn(xn),

subject to xn = Enz, for all n ∈ N (58)

where x = (x1 · · · ,xN ) ∈ R
∑

n∈N
2|S̄n|, z ∈ R2S , and

fn(xn)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
m∈Sn

∣∣d2n,m − ‖xn,n − xn,m‖2
∣∣2

+
∑

m∈An

∣∣d2n,m−‖xn,m − am‖2
∣∣2 , if n ∈ S∑

m∈Sn

∣∣d2n,m − ‖xn,m − an‖2
∣∣2 , if n ∈ A.

Problem (58) fits the form of Problem (2) and the proposed
ADLM approaches can readily be applied. The augmented
Lagrangian of problem (58) can be written as

Lρ(x, z,y) =
∑
n∈N

fn(xn) + yT
n (xn −Enz) +

ρ

2
‖xn −Enz‖2

where y = (y1, . . . ,yn) is the Lagrangian multiplier. Note that
the variables x and y are separable among n ∈ N . The resulting
distributed-ADLM is as follows.

Algorithm 3: DISTRIBUTED ALTERNATING DIRECTION

LAGRANGIAN METHOD (D-ADLM)

1) Initialization: Set t = 0 and put initial values to z(t),
y(t), and ρ(t).

2) Subproblem: Each node n ∈ N solves

xn(t+ 1) = argmin
xn∈R|Sn|

Lρ(t) (xn, z(t),y(t)) . (59)

3) Communication/Averaging: z(t+ 1) is obtained by
solving argminz Lρ(t)(xn(t+ 1), z,y(t)), that is

zn(t+ 1) =
1

|Sn|
∑
i∈Sn

ET
i,n

(
xi(t+ 1) +

yi(t)

ρ(t)

)
(60)

for n ∈ S , where Ei,n is the column n of the block
matrix Ei.

4) Local parameter update: Each node n ∈ N updates its
local parameters ρ(t) and y(t) accordingly.

5) Stopping criterion: If stopping criterion is met
terminate, otherwise set t = t+ 1 and go to step 2.

Note that the D-ADLM can be carried out either as an ADPM
or as an ADMM by performing ρ(t) and y(t) updates at step 4
accordingly (compare with step 4 of the ADPM and ADMM
algorithms). In particular, in ADPM, all of the nodes know the
value of ρ(t) for each t and the nodes can update yn(t), for all
n ∈ N , as they wish, as long as the sequence yn(t) is bounded.
In ADMM, all of the nodes n know the value of ρ and update
yn according to

yn(t+ 1) = yn(t) + ρ(t) (xn(t+ 1)−Enz(t+ 1)) . (61)

As indicated in the first step, the initial setting of the al-
gorithm should be agreed on among the nodes. Other steps
can be carried out in a distributed manner with local message
exchanges. Note that (60) is simply the average of the local
copies of zn and the corresponding dual variables [scaled by
ρ(t)], which can be performed by employing standard gossiping
algorithms, for example, [35]. Moreover, the last step requires
a mechanism to terminate the algorithm. A natural stopping
criterion is to fix the number of iterations, which requires no co-
ordination among the nodes except at the beginning. In order to
control the accuracy level ε of the coupling constraints, one can,
for example, terminate the algorithm when maxn∈N ‖xn(t)−
Enz(t)‖ < ε. This can be accomplished with an additional
coordination among the nodes.

We compare D-ADLM with the following distributed gradi-
ent descent algorithm.

Algorithm 4: DISTRIBUTED GRADIENT DESCENT (D-GD)

1) Initialization: Set t = 0 and initialize ρ(t), z(t), and
x̄n(t) = Enz(t) for all n ∈ N .

2) Subproblem: Each node n ∈ N solves

xn(t+ 1) = x̄n(t)−
1

ρ(t)
∇fn (x̄n(t)) . (62)

3) Communication/Averaging: Each sensor n∈S finds the
average estimation of its localization by communicating
with neighbors

zn(t+ 1) =
1

|Sn|
∑
i∈Sn

ET
i,nxi(t+ 1). (63)

Here, Ei,n is the column n of the block matrix Ei. Set
x̄n(t+ 1) = Enz(t+ 1), that is, the average of the
components pertaining to n ∈ S .

4)Local parameter update: Each noden∈N updates ρ(t).
5) Stopping criterion: If stopping criterion is met

terminate, otherwise set t = t+ 1 and go to step 2.

Note that D-GD performs almost the same steps as
D-ADLM. The main difference is in step 2): (59) in ADLM is
a solution to an optimization problem while (62) in D-GD is a
gradient descent step. In particular, the required communication
is the same for both algorithms. Therefore, D-GD provides a
fair comparison to the D-ADLM.

Let us next test the D-ADLM on a CL problem.
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Fig. 2. Results of running all 5 algorithms on the test network. (a) Residuals. (b) Gradient of the objective function. (c) Dual variables. (d) Objective function.

A. Numerical Results

We consider a network with S = 10, A = 4. The 4 anchors
are located at (0, 0), (0, 1), (1, 0), and (1, 1). The sensors’ are
positioned at uniform random in [0, 1] × [0, 1]. There is an
edge between two nodes n,m ∈ N if and only if the Euclidean
distance between those is less than 0.5. We have σ2 = 0.05D,
where D is the average squared distance between distinct nodes
(n,m) ∈ E . We consider the following algorithm settings:

where the first column identifies each setting, the second col-
umn indicates the algorithm used, the third column indicates
whether the dual variable update is used or if no dual variable
update is used, that is, y(t) = 0, and the fourth column indi-
cates the penalty/steps size used. We initialize the algorithms
as zn(0) = (0.5, 0.5) for all n ∈ S . When the dual variable is
updated, we initialize it as y(0) = 0.

Fig. 2 depicts the results, where we have compactly written
x = (x1, . . . ,xn) and E = (E1, . . . ,En). Fig. 2(a) and (b)
depicts scaled versions of ‖x(t)−Ez(t)‖, the network consen-
sus, and ‖ET∇f(x(t))‖, the gradient of the objective function,
respectively, as a function of iterations t. Together, ‖x(t)−
Ez(t)‖ and ‖ET∇f(x(t))‖ comprise the FON conditions of
Problem (58), that is, when both quantities converge to zero,
the FON conditions is asymptotically reached. Both Fig. 2(a)
and (b) demonstrates a decreasing trend for all algorithms. In
Fig. 2(b), DGD and ADPM have a noticeably slower decay rate
than ADPM-y, ADMM-1, and ADMM-10. In Fig. 2(b), DGD,
ADPM, and ADPM-y have a noticeably slower decay rate than
ADMM-1 and ADMM-10. Therefore, the results suggest that it

Fig. 3. Position estimate that each algorithm converges to.

can be beneficial to use the update (61). The results in Fig. 2(a)
and (b) suggest faster convergence of ADMM than DGD and
ADPM to the first-order necessary conditions.

Fig. 2(c) depicts an example of a dual variable for each
algorithm where the update (61) is used. Similar results were
observed for the other dual variables. The figure shows that the
dual variables converge, implying that ADMM-1 and ADMM-10
converge based on Proposition 3.

Fig. 2(a) depicts the objective value at each iteration. The
algorithms achieve different objective values, which is not sur-
prising since the objective function is nonconvex with multiple
local minima. Fig. 3 depicts the resulting location estimations
for each algorithm, that is, the estimation at the final iteration.
Note that the orange diamond and five-pointed star lay under
their purple counterparts and are therefore not visible in the fig-
ure. Despite the nonconvexities, all of the algorithms converge
to good estimations close to the true locations of the nodes.
The DGD achieves a visually better estimation of the diamond
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and the five-pointed star in Fig. 3 than the other algorithms.
Nevertheless, ADMM-1 and ADMM-10 achieve much better
objective function values.

Remark 2: The gradients of fn for n ∈ N are unbounded,
but still Assumption (2).b holds, which ensures that the se-
quence (x(t), z(t)) of ADPM is bounded, see Lemma 1. Similar
results can be derived for ADPM-y, ADMM-1, and ADMM-10 as
long as the dual variables y(t) are bounded. On the other hand,
from our numerical experiences, DGD turned out to be unstable
for many initializations where it reached floating-point infinity
in only a few iterations.

VI. CONCLUSION

We investigated the convergence behavior of scalable vari-
ants of two standard nonconvex optimization methods: a novel
method we call ADPM and the well-known ADMMs, variants
of the Quadratic Penalty Method and the Method of Multipli-
ers, respectively. Our theoretical results showed that the DPM
asymptotically reaches primal feasibility under assumptions
that hold widely in practice and provided sufficient condi-
tions for when ADPM asymptotically reaches the first-order
necessary conditions for optimality. Furthermore, we provided
sufficient conditions for the asymptotic convergence of ADMM
to the first-order necessary condition for local optimality and
provided a class of problems where these conditions hold. Fi-
nally, we demonstrated how the methods can be used to design
distributed algorithms for nonconvex cooperative localization in
wireless-sensor networks.
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