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Abstract—Millimeter-wave communications in the 60-GHz band
are considered one of the key technologies for enabling multigi-
gabit wireless access. However, the special characteristics of such
a band pose major obstacles to the optimal utilization of the wire-
less resources, where the problem of efficient client association to
access points (APs) is of vital importance. In this paper, the client
association in 60-GHz wireless access networks is investigated. The
AP utilization and the quality of the rapidly vanishing communi-
cation links are the control parameters. Because of the tricky non-
convex and combinatorial nature of the client association optimiza-
tion problem, a novel solution method is developed to guarantee
balanced and fair resource allocation. A new distributed, light-
weight, and easy-to-implement association algorithm, based on La-
grangian duality theory and subgradient methods, is proposed. It
is shown that the algorithm is asymptotically optimal, that is, the
relative duality gap diminishes to zero as the number of clients
increases.
Index Terms—60-GHz wireless access networks, association

control, resource allocation.

I. INTRODUCTION

M ILLIMETER-WAVE (mmW) communications have
recently attracted the interest of academia, industry,

and standardization bodies, although the technology was in-
vented and used many decades ago, especially in the context of
military applications [1], [2]. mmW communications utilize the
part of the electromagnetic spectrum between 30 and 300 GHz,
which corresponds to wavelengths from 10 to 1 mm [3].
Several promising technologies, including silicon-germanium
(SiGe) [4], are emerging as low-cost and low-power solutions
for the design of 60-GHz front-end circuits.
Due to the 60-GHz great commercial potential, multiple

industry-led efforts and international organizations have
emerged for the standardization [5]. Examples include IEEE
802.15.3c [6], IEEE 802.11ad [7], and many others. More
than 5 GHz of continuous bandwidth is available in many
countries worldwide, making 60-GHz systems attractive for
gigabit wireless applications such as gigabyte file transfer and
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uncompressed high-definition video transmission. Scenarios
such as small-cells [8] and mobile data offloading [9], can be
accommodated with 60-GHz radio access technology.
The 60-GHz huge bandwidth offers many benefits in terms

of capacity and flexibility. For example, even with a low spec-
tral efficiency such as 0.4 b/s/Hz, 60-GHz communication sys-
tems can provide a very high data rate of 1 Gb/s [10]. The esti-
mated spectral efficiency for IEEE 802.11n [11] communication
systems is 25 b/s/Hz for achieving 1 Gb/s, which makes their
application to high-bandwidth services unacceptable in terms
of cost and simple implementation, especially in very popu-
lated wireless networks [10]. Moreover, allowed transmission
powers are higher at 60 GHz than in ultrawideband (UWB)
systems [12] and wireless local area networks (WLANs) [13].
However, [14] suggests that 60-GHz radiation with a transmit
power described in [10] and [13] does not cause significant
harm. Lastly, the interference levels for 60 GHz are much lower
compared to the congested 2.4- and 5-GHz bands. The exploita-
tion of these unique characteristics is essential for efficient re-
source allocation.
In this paper we address the fundamental resource allocation

problem of the client association in 60-GHz wireless access net-
works. Such a problem is more challenging in the 60-GHz band
than traditional wireless networks since the wireless channel is
unstable in high frequencies and several events can violate the
efficient operation of the network, such as moving obstacles that
can block the communication [15]. Specifically, we consider the
natural situation where each client has to be associated to one of
the wireless APs. This gives rise to a challenging mixed integer
linear optimization problem, which is combinatorial and non-
convex in general and thus hard to solve efficiently. We show
that our problem is NP-hard. Existing methods, such as solution
approaches for the generalized assignment problem in combina-
torial optimization [16, Sec. 8], cannot be used because our main
goal is to minimize the maximum access point (AP) utilization
in the network and ensure a fair load distribution, which cannot
be modeled by such a generalized assignment problem. Never-
theless, based on Lagrangian duality theory [17, Sec. 5] and on
subgradient methods, we develop a new solution approach and
derive a distributed and iterative algorithm for client associa-
tion (DAA). We show the asymptotic optimality of the proposed
solution method by an analytical bound on the duality gap. The
sensitivity of the convergence speed of DAA to the variation of
the numbers of clients and APs is analytically investigated. Nu-
merical simulations illustrate and compare DAA to benchmark
algorithms.
Unlike the client association approaches in more traditional

access networks [18], we take into account the load, the
channel quality and the special communication characteristics
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of 60-GHz radio channel and design a dynamic association
mechanism that ensures balanced and fair load distribution
among the APs. Global methods [19] may be employed to find
the solution of the combinatorial client association problem.
However, global approaches have the drawbacks of: 1) the
prohibitive computational complexity, even in the case of prob-
lems with few variables; and 2) they are inherently centralized.
In contrast, our proposed method is fast and can be imple-
mented in a distributed manner. The model and the lightweight
algorithm proposed in this work are general and can be applied
with different existing MAC mechanisms for 60-GHz access
networks, such as IEEE 802.11ad.
The rest of the paper is organized as follows. In Section II,

we give a literature overview. The system model and the
problem formulation are presented in Section III. In Section IV,
we give the general solution approach to the client association
problem by using duality theory and subgradient method. In
Section V, we describe the properties of the proposed algo-
rithm. In Section VI, numerical results are presented. Lastly,
Section VII concludes the paper.

II. RELATED WORK

During the last decade, resource allocation and in particular
association/handoff control for WLANs have been the focus of
intense research. In what follows, we review representative lit-
erature related to fairness and load balancing in multicell wire-
less networks, where client association plays a central role. We
then discuss their applicability to 60-GHz wireless access net-
works. A short literature overviewwhere uniquemedium access
control and resource allocation problems are studied in mmW
networks is given to motivate the need of new approaches that
will fully utilize the characteristics of this technology. The sec-
tion ends with the a summary of our contribution.
The authors in [18] study a client association policy that

ensures network-wide max-min fair bandwidth allocation to the
users. They provide a rigorous formulation of the association
control problem that considers bandwidth constraints of both
the wireless and backhaul links. The optimal solution to the
aforementioned problem is approximated by an algorithmic ap-
proach. The work in [20] presents self-configuring algorithms
that provide improved client association and fair resource
sharing. The presented approach is based on the Gibbs sampler
and does not require explicit coordination among the wireless
devices. Moreover, the “multi-homing” scenario is introduced
in [21], where the traffic is split among the available APs. In this
approach, the throughput is maximized by constructing a fluid
model of user population that is multi-homed by the available
APs in the network. In [22], the authors study the problem of
jointly optimizing partial frequency reuse and load-balancing
schemes in multicell networks to achieve network-wide pro-
portional fairness. The expected throughput acts as the client
association/handoff decision making metric.
Another line of research considers user service requests by

readjusting the load across all APs. In [23], a dual-association
approach in wireless mesh networks is presented, where the APs
for unicast traffic and the APs for broadcast traffic are inde-
pendently chosen by exploiting overlapping coverage and opti-
mizing the overall network load. Moreover, in [24] and [25], dy-
namic association and reassociation procedures are introduced
with the use of the notion of the airtime cost. The cross-layer

extension of this mechanism considers the routing-based infor-
mation from the mesh backbone. More recently, a class of novel
user association schemes that achieve load balancing was pro-
posed in [26]. The authors consider jointly cell association and
resource allocation. They formulate a logarithmic utility max-
imization problem where the equal resource allocation is op-
timal and design a distributed algorithm via dual decomposi-
tion. Complementary, the authors in [27] propose an iterative
distributed user association policy that adapts to spatial traffic
loads and converges to a globally optimal allocation.
The previous approaches are hard to apply in 60-GHz wire-

less access networks due to the special characteristics of the
60-GHz channel and the obvious differences with the rest wire-
less access technologies that we have previously mentioned. It
follows that novel mechanisms must be designed to provide op-
timal resource allocation. These mechanisms must take into ac-
count the characteristics of 60-GHz wireless channel such as in-
creased path loss, short range, fragile links, etc. Unfortunately,
there is not much research in this field.
Some recent interesting approaches on 60-GHz wireless per-

sonal and local area networks have appeared in the literature.
The directionality and blockage problems of mmW networks
are studied in [15]. A cross-layer approach is presented, where
a single-hop transmission is preferred when line of sight (LOS)
is available and a relay node is randomly selected as an alter-
native. In [28], a resource management mechanism is proposed
based on the exclusive region (ER) to exploit the spatial reuse
of mmW networks. The authors in [29] describe an interfer-
ence analysis framework that enables a quantitative evaluation
of collision loss probability for a mmW mesh network with un-
coordinated transmissions, as a function of the antenna patterns
and spatial density of simultaneously transmitting nodes. Con-
current transmissions in 60-GHz wireless networks are studied
in [30] by exploiting the spatial reuse and time-division mul-
tiplexing gain. It is shown that the network throughput is im-
proved compared to single-hop transmission.
The current 60-GHz standardization bodies, such as

IEEE 802.11ad, adopt the received signal strength indicator
(RSSI)-based mechanism as the basic association functionality.
However, high RSSI values cannot univocally indicate high
throughput. This is because RSSI not only depends on the dis-
tance from the APs, but also on the APs transmission powers.
The accuracy of the RSSI-based technique is significantly
affected by the high path loss, dispersion, and directionality
of the 60-GHz wireless channel. Moreover, since the wireless
channel is a shared medium, throughput depends on the pop-
ulation of each cell. An AP may become overloaded if a large
number of clients are associated with it. Therefore, new metrics
are required.
In contrast to the existing work in literature, this paper con-

siders the special characteristics of the 60-GHz channel in an
optimization problem where the objective is to minimize the
maximum AP utilization in the network. Moreover, we design
a lightweight distributed algorithm that balances the AP utiliza-
tion by optimizing the client association process. We believe
that this paper is the first to study such a fundamental resource
allocation problem in 60-GHz wireless access networks, espe-
cially when complex scenarios with many users and high traffic
demands are considered [8], [9]. We propose a simple yet ef-
ficient solution and compare it to basic association policies, al-
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Fig. 1. Wireless access network: , ,
, , , for

, for , for , for
, for , for ,

for . The area inside the solid-lined circles represents the transmission
regions of each AP. The demanded data rate for client 3 is , and the offered
transmission rate from AP 1 to client 3 is .

ready in use in the present 60-GHz communication technologies
under standardization. The work that is presented and evaluated
in the forthcoming sections is complementary to the aforemen-
tioned resource management and scheduling approaches (the
clients must first be assigned to the available APs, and then the
scheduling of the transmission can be handled).

III. SYSTEM MODEL AND PROBLEM FORMULATION

A 60-GHz wireless access network consisting of APs and
clients is considered. We denote the set of APs by

and the set of clients by . The set
of clients that can be associated to AP is denoted by . We
assume that there are no isolated clients, i.e.,

. We denote by the set of candidate APs that client could
be associated with. Fig. 1 shows an example access network,
where the clients positioned inside a disc with radius (centered
at the location of AP ) can be associated with AP . However,
the disk-shaped region is only used for illustrative purposes.
Each node (AP or client) is equipped with steerable di-

rectional antennas, and it can direct its beams to transmit or
to receive [30]. Note that the antenna separation in 60-GHz
multiantenna setups is on the order of millimeters, and there-
fore thousands of antenna elements can be fabricated in a
small space [2], [31], which theoretically accounts for a huge
degrees-of-freedom (DoF) gain. Furthermore, we adopt the
natural assumption that AP can support all the clients in
with a separate transmit beam, e.g., multiuser spatial division
multiple access (MU-SDMA) techniques [32].1 We consider
the case where receivers are using single-user detection (i.e.,
a receiver decodes each of its intended signals by treating all
other interfering signals as noise) and assume that the achiev-
able rate from AP to client is

(1)

where is the system bandwidth, is the transmission power
of AP to client , is the power gain from AP to client ,

is the power spectral density of the noise at each receiver,
and is the interference spectral density at client . All these

1Techniques, such as combined digital/analog signal processing can be used
to design dramatically lower-complexity transceivers trading off the full DoF
gain [13], [33]–[35]. However, transceivers to exploit full DoF gain in mmW
radios can be quite challenging due to limitations in the current hardware [13],
[33].

assumptions are coherent with the literature and existing stan-
dards [6], [7]. The power gain is modeled as in [30]. In
particular, we use the Friis transmission equation together with
the flat-top transmit/receive antenna gain model [36], where a
fixed gain is considered within the beamwidth and zero gain is
considered outside the beamwidth of the antenna. In addition,
we consider Rayleigh small-scale fading. Thus, we have

(2)

where is the transmit antenna gain from AP to client ,
is the receive antenna gain from AP to client , is

the wavelength, is the fading coefficient that is an expo-
nentially distributed random variable with unit mean to model
the Rayleigh small-scale fading, is the distance between
AP and client , is the far field reference distance, is the
path-loss exponent,2 and is the communication interference at
client . We capitalize on the well studied 60-GHz propagation
characteristics [29], [36], such as highly directional transmis-
sions with very narrow beamwidths and increased path losses
due to the oxygen absorption, in order to assume that the com-
munication interference is very small and does not affect sig-
nificantly the achievable rates in the network.3 The achievable
communication rates given in (1) are used to define the AP uti-
lizations as described in the sequel.
We denote by the demanded data rate of client . The

channel utilization between AP and client is denoted by
and is given by the ratio of and , i.e.,

(3)

Intuitively, the channel utilization gives an indication of the
communications performance, in terms of the potential loading
of the communication channel between AP and client . Thus,
the sum of channel utilizations of AP (or AP utilization) is
given by , where are binary decision
variables, which indicate the client association. In particular, for
all and

if client is associated to AP
otherwise. (4)

AP utilization is a metric reflecting the load. Our goal is to
minimize the maximum AP utilization. Specifically, the problem
can be formally expressed as

minimize (5a)

subject to (5b)
(5c)

(5d)

2 in IEEE 802.11ad networks [37].
3In particular, a probabilistic analysis of the interference incurred due to un-

coordinated transmissions is presented in [29] and [36]. It is shown that even
uncoordinated transmission for different transmit–receive pairs leads to small
collision probabilities, and therefore, the links in the network can be considered
as pseudo-wired. That is, interference can essentially be ignored in MAC or
higher layers design. Similar assumptions are also supported by using efficient
channel allocation in the network [38] and efficient scheduling algorithms that
support concurrent transmissions [30].
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where the variable is . The main problem pa-
rameters are , , and .4
The constraint (5b) assures that the demand of client is less
than or equal to the achievable rate from AP to client . This
constraint can usually be satisfied due to the huge available
bandwidth of mmW channel. The constraint (5c) ensures that
client is assigned to only one AP. The constraint (5d) indi-
cates that the decision variables are binary.
We note that our approach may be generalized for networks

that operate at lower frequencies, given that the interference is
constant or fixed. However, in typical lower-frequency multi-
cell networks, the interference is heavily dependent on the as-
signment , which makes the application
of the proposed method not quite legitimate. Nevertheless, our
problem formulation can be general when the important mod-
ification that be a function of the assignment would be
introduced. In other words, one has to analytically describe the
effect of decision variables on to generalize the problem
formulation, i.e., use instead of . Such a generaliza-
tion would give a new challenging optimization problem, the
solution of which in its own right deserves an independent and
substantial investigation.
The client association problem is combinatorial, and we have

to rely on exponentially complex global methods [19] to solve
it, unless new methods are developed. In the sequel, we present
one such efficient solution approach, which, although strictly
nonoptimal, is asymptotically optimal when grows.

IV. SOLUTION VIA DUAL PROBLEM

We start by equivalently reformulating problem (5) into its
epigraph form [17, Sec. 4.1.3]. Without loss of generality, we
can assume that for all and for the
following reason. If for some 's and 's, this means
that the data rates demanded by those clients are higher than the
data rates achievable in the corresponding wireless channels. In
this case, we can collect all the pairs for which and
modify the corresponding sets and , without affecting
the optimal value of the original problem (5). In particular, if

, then we set and .5
As a result, we ensure that and hence any feasible

that satisfies constraints (5c)–(5d) must also
satisfy constraint (5b). That is, constraint (5b) is redundant and
can be dropped. Thus, standard equivalent epigraph form of
problem (5) is

minimize (6a)
subject to (6b)

(6c)

(6d)

4In general, client association affects the interference levels in wireless net-
works. However, when the characteristics of the 60-GHz wireless channel are
considered (high oxygen absorption, etc.) we can argue that the interference can
be in the order of noise [29], [36], which in turn allows us to suppress the de-
pendence of interference on the client association and consider it fixed [30].

5For example, suppose that , and the corresponding sets
and . Then, we simply modify and as follows:

,

where the variables are and . We denote
by the optimal value of the problem (6).
Note also that problem (6) is a mixed integer linear pro-

gram (MILP). Its complexity is established in the following
proposition.
Proposition 1: Problem (6) is NP-hard.
Proof: See Appendix A.

Therefore, the existing solvers are, of course, centralized
and are typically based on global branch and bound algorithms,
where the worst-case complexity grows exponentially with the
problem sizes [17, Sec. 1.4.2]. Even small problems, with a few
tens of variables, can take a very long time to be solved. More-
over, problem (6) is different from the generalized assignment
problem [16, Sec. 8] due to its special structure. In particular,
not all the variables of problem (6) are discrete as opposed to
the requirement that all variables should be discrete in the case
of a generalized assignment problem. Therefore, the existing
solution approaches [16, Sec. 8 and 10] for the generalized
assignment problem do not apply here. In the sequel, we apply
Lagrangian duality to problem (6) to develop a novel solution
method that is distributed and fast.

A. Dual Problem
Let us first form the partial Lagrangian by dualizing the first

constraints of problem (6). To do this, we introduce multipliers
for the first set of inequality constraints. Thus, the

partial Lagrangian is given by

(7)

where we used the equivalence of the following two sets:6

(8)

Let denote the dual function obtained by minimizing the
partial Lagrangian (7) with respect to and . For notational
simplicity, let us further denote by the set of vectors that
satisfy the constraints (6c) and (6d) of problem (6). In particular,

can be expressed as a Cartesian product of some sets
, i.e.,

(9)
where is given by

(10)
Thus, the dual function is

(11a)

otherwise
(11b)

otherwise
(11c)

6This equivalence can be visualized by using a bipartite graph, where the
nodes are the elements of two disjoint sets, the set of APs (i.e., ) and the set
of clients (i.e., ), and the edges are the potential AP-client associations.



840 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 3, JUNE 2015

otherwise
(11d)

where the equality (11b) follows from that the linear function
is bounded below only when it is identically

zero, the equality (11c) follows from (9) and (10), and in
(11d) is the optimal value of the problem

minimize

subject to (12)

with the variable . Even though problem (12) is combinato-
rial, it has a closed-form solution given by

otherwise
(13)

and is computable very fast.7 The Lagrange dual problem is

maximize (14a)

subject to (14b)

(14c)

where the variables is . We denote by the optimal value of
the problem (14) that will be useful later. Note that the Lagrange
dual problem (14) is a convex optimization problem, even
though the primal problem (6) is not convex (see [17, Sec. 5.2]).
Let us next focus on the dual problem (14) and its solution
method, which allows us to find a good feasible solution to the
original problem (6).

B. Solving the Dual Problem via Projected Subgradient
Method
The objective function is, in general, a nonsmooth

(therefore nondifferentiable) concave function. A common
approach to handle such nondifferentiable functions is the
subgradient method [39] because gradient-based algorithms
cannot be applied. Therefore, the projected subgradient
method [39], [40] is used to solve the dual problem (14).
First, we denote by a subgradient of at a feasible ,

where . Specifically

(15)

where for all and is obtained as the solution
of problem (12) for all . Thus, the projected subgradient
method is given by

(16)
where is the current iteration index of the subgradient method,

is the th step size,8 and is Euclidean projection
onto the unit simplex
(see [40, Exercise 2.1.12]). By employing (16) in an iterative

7If is not a singleton, then an arbitrary
is chosen.

8We chose square summable but not summable step size (e.g., ,
where ), which guarantees the asymptotic convergence of the
subgradient method [39].

manner, we can solve the dual problem (14). However, recov-
ering a primal feasible solution is nontrivial because the orig-
inal problem (6) is nonconvex. A discussion of these nontrivial
issues and how to find a good feasible solution is deferred to
Section V-B to maintain a cohesive presentation. Let us next
describe how the computation of the solution of problem (14) is
performed in a distributed manner.

C. Distributed Algorithm for Client Association

Recall that the dual function is separable among the
clients ; see the objective function (14a) of problem (14).
Therefore, the subgradient components (15) for the subgradient
method (16) can be computed by coordinating the problem (12)
for all . This suggests DAA, presented as follows.

DAA: Distributed algorithm for client association

1 Initialization: The local channel utilizations, i.e.,
are given, at every AP . Set subgradient

iteration index . Each AP broadcasts the initial
feasible prices to its local clients .

2 Every client sets and locally determines its
association by solving problem (12). Denote by AP
the AP for which .

3 Client signals only to AP and does not send
any signaling to other AP 's, where .

4 Every AP computes by summing over the clients
, who had signaled in step 3, see (15).

5 Subgradient iteration: APs communicate and form
by combining each and by performing (16) to compute

.
6 Stopping criterion: if the stopping criterion is satisfied,

STOP. Otherwise, set , each AP broadcasts
the feasible prices to its local clients and
go to step 2.

The first step initializes DAA. Step 2 represents the optimiza-
tion performed in a decentralized fashion by each client for fixed
. The optimization at each client is a very simple opera-

tion and is to find the AP , where,
[see (13)]. Step 3 requires signaling between clients and APs.
In particular, each client signals only to AP . This signaling
process can be performed very efficiently, e.g., binary signaling.
As a result, we have a light protocol between clients and APs.
In Step 4, each AP locally computes (see 15), which is the
summation of over the client who signaled the AP. Step 5
requires coordination of all APs, which is efficiently accom-
plished by using high-speed wired connection to the Internet
or to an enterprise local network.9 In particular, APs coordinate
to perform (16), which is the projection of a point onto the unit
simplex. The result of this operation is given by the solution to
a convex optimization problem, which can be carried out effi-
ciently. Step 6 is the stopping criterion for the algorithm. If the
stopping criterion is satisfied, DAA terminates. Otherwise, the

9A fully distributed protocol, which relies only on local message exchanges,
can be designed in a straightforward manner to perform step 5 of DAA in a fully
distributed manner. In particular, one can employ state-of-the-art alternating di-
rection method of multipliers to perform (16), where the associated solution
approach rely on the concepts of sharing [41, Sec. 7.3] combined with exten-
sively studied consensus algorithms for averaging.
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algorithm continues in an iterative manner. In practice, a natural
stopping criterion would be running it for a fixed number of iter-
ations. It is worth pointing out that, in practice, abrupt changes
can occur in the performance of the 60-GHz channel between an
AP and an associated clients during DAA iterations or after the
termination of DAA (due to blockage or poor channel quality).
As a result, 's will be changed, which accounts for changes
in 's. In such situations, the algorithm can continue by using
the current as the prices. Such initializations are known as
warm-start strategies in the mathematical optimization commu-
nity. In this way, we avoid the reexecution of the entire DAA.

D. Distributed Implementation Over Existing Standards
Let us discuss now how the actual implementation of the pro-

posed DAA algorithm could be achieved on top of the existing
standards, IEEE 802.15.3c and IEEE 802.11ad. The distributed
algorithm is performed periodically in the system to ensure the
balanced operation of the network. The period of the execution
is given by the control messages established by the medium ac-
cess control protocol, as we see in detail below.
The iterative association algorithm does not have to be ex-

ecuted every time a client initiates an association or a handoff
process. We assume that the newcomer client follows the asso-
ciation mechanism that IEEE 802.15.3c and IEEE 802.11ad de-
fine, based on the RSSI. Then, our algorithm is periodically ex-
ecuted to correct possible suboptimal client associations in the
network by reallocating the available resources. As mentioned
before, the distributed nature of the association algorithm is cru-
cial, in the direction of offloading the APs, and makes good use
of the small computational resources that the clients may pro-
vide. Both 802.15.3c and 802.11ad define control frames (de-
noted as beacon frames) that are periodically broadcast by the
APs in the network. The APs can utilize these frames to trigger
the initialization of DAA and carry the required information to
the clients. The APs inform their clients about the initialization
of DAA by setting a special bit into the beacon frame. Thus, the
clients are ready to cooperate toward the optimal resource al-
location in the network. The information required by the algo-
rithm can be carried in the control frames or piggybacked to the
data frames that the APs send to the clients [38]. Moreover, the
clients are piggybacking the information in the data frames sent
to APs. Thus, the algorithm is executed in perfect harmony with
the networking protocols, without interrupting the actual net-
work operation (data communication) and causing extra delays.

V. ALGORITHM PROPERTIES
In this section, we first show the convergence performance

for the proposed algorithm. Then, we show how to recover
a good primal feasible solution. Next, we highlight some
sufficient conditions under which strong duality holds for the
MILP (6) followed by a couple of examples. Finally, we show
analytically the asymptotic optimality of the algorithm, where
the relative duality gap diminishes to zero as the number of
clients in the system grows.
Recall that is the optimal value of the original MILP (6)

and is the optimal value of the associated dual problem (14).
We refer to as the primal optimal value, as the dual optimal
value, as the optimal duality gap, and
as the optimal relative duality gap, which are useful in the rest
of the paper.

A. Convergence
DAA essentially solves the dual problem (14) by using the

projected subgradients method, and the convergence of the al-
gorithm is established by the following proposition.
Proposition 2: Let denote the best dual ob-

jective value found after subgradient iterations, i.e.,
. Then,

such that .
Proof: The proof is built on the material presented in

[39, Sec. 3.2] and [40]. Let us denote by the optimal solution
of dual problem (14). Thus, we have

(17a)

(17b)

(17c)

(17d)

(17e)

where (17a) follows from (16), (17b) follows from that the pro-
jection onto unit simplex always decrease the distance of
a point to every point in and in particular to the optimal
point , (17d) follows from the definition of subgradient, i.e.,

, and (17e) follows from
that . Recursively applying (17e) and rearranging
the terms, we get

(18a)

(18b)

where (18b) follows from that ,
for any , and the norm of any subgradient of

at any is bounded, see (15), i.e.,

(19)

Moreover, clearly we have

(20)
Thus, from (18b), (20), and by noting that step size

is square summable (i.e.,
), we obtain an upper bound on as

(21)

Since is strictly monotonically in-
creasing in (it grows without bound as ), for any

we can always find a integer such that
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if . For example, by noting that
for all , we can compute

.
The bound derived in (21) allows us to predict some key be-

haviors of the convergence of the proposed algorithm. To see
this, we note from (19) that the numerator of the bound depends
on for fixed . Now suppose that the number of
clients increases. This forces to increase as well. As a result,
the corresponding total iterations to reach the given accuracy
will also grow. Roughly speaking, this means that, for fixed

number of APs, the larger the number of clients is, the larger the
total number of iterations required for the convergence of DAA.
On the other hand, suppose that the user distribution is such that

is roughly the same for each AP . Thus, if the total
number of APs is increased, then will become larger, and as a
result, the total number of iterations to convergence is increased
as well. These algorithm behaviors are numerically illustrated in
Section VI.

B. Recovering a Feasible Primal Point
As we discussed in Section V-A, we can solve the dual

problem to any given accuracy to yield the dual optimal
value and the dual optimal solution . If the primal
problem is convex, from and , we can usually obtain the
primal optimal value and primal optimal solution
[17, Sec. 5.5.5]. However, recall that the original MILP (6)
is a nonconvex problem. Therefore, unlike convex problems,
there is no guarantee that from and , we obtain and

.10 Nevertheless, in the case of MILP (6), a primal fea-
sible point is obtained during each iteration of the algorithm
(see step 2 of the algorithm). Thus, it is natural to go for the
best choice, among all the primal feasible points obtained so
far. For example, a good approximation for the primal optimal
value would be

(22)

where is the primal feasible point in iteration .11 A
good feasible point would be , which is the primal
feasible point that corresponds to .
Even though the value is not usually as good as the

primal optimal value , Monte Carlo simulations show that it
is a good approximate value with in the order of hundreds or
more, e.g., (see Section VI). There are no clear an-
alytical explanations of these fortuitous encounters, especially
because the original problem (6) is nonconvex [40, Sec. 6.3].

C. Duality Gap
The duality gap is one of the important metrics

that can be used to quantify the performance of the proposed
DAA. Note that, in general, the duality gap for MILP (6) is not
zero because the problem is nonconvex and is in fact NP-hard.
Therefore, it is not surprising that deriving general conditions
under which the strong duality for MILP (6) is very difficult.
Nevertheless, we first provide some examples to highlight suffi-

10The first component of the primal optimal solution of MILP (6) and the
primal optimal value are clearly the same.

11APs can compute easily by using the client signaling they
received at step 2 and the AP coordination at step 5. For example,

.

cient conditions for strong duality for MILP (6). The latter part
of this section derives an analytical bound on the duality gap.
Moreover, we show the asymptotic optimality of the algorithm,
where the relative duality gap diminishes to zero
as the number of clients in the system grows. Such asymptotic
results are important from a theoretical and from a practical per-
spective; see for example the duality results associated with the
well known Knapsack problem [40].
The following proposition establishes a simple result, which

is instrumental to study zero duality.
Proposition 3: Let denote the optimal value of the

linear programming (LP) relaxation of problem (6), i.e.,

minimize (23a)
subject to (23b)

(23c)

(23d)
with variables and . Then, .

Proof: Note that problem (6) is always feasible. The proof
is based on two key results: (a) for problem (23), we always have
strong duality, i.e., ; and (b) the dual of problem
(23) is identical to problem (14), and therefore ,
where denotes the dual optimal value of problem (23).
In particular, (a) is guaranteed from strong duality results for
linear programs; see [17, Sec. 5.2.3]. To prove (b), we first note
the following: The partial Lagrangian obtained by dualizing first
constraint of problem (23) is identical to (7), where we consider
same notations for the dual variables. This is a slight abuse of
notation, but it helps in the clarity of the exposition. Let
denote the dual function obtained by minimizing the partial La-
grangian [compare to (11)]

otherwise
(24)

where is the optimal solution of a problem very similar
to (12), except that the constraint is replaced by

. Note that is a unit simplex, and
therefore the optimal value is attained at one of the ver-
tices of the unit simplex [42, Corollary 32.3.4].
Specifically, the components of the vertex are identically
given by (13). As a result, for all and

.
Note that if problem (23), the LP relaxation of problem (6),

has integer solutions, then we can easily show that the optimal
value of the original MILP (6) is equal to the optimal value

, i.e., . Therefore, from Proposition 3, we have
. In other words, if problem (23) has integer solutions,

then strong duality holds for the original MILP (6). Thus, it is
natural to investigate the conditions, under which the LP (23)
has integer solutions. Roughly speaking, there are not many re-
sults that establish conditions on LPs, beyond total unimodu-
larity [43, Sec. 9] of the associated problem matrices, under
which they have integer solutions. Unfortunately, particular-
ized to LP (23), the related matrices are not totally unimodular,
and therefore the theoretical implications of total unimodularity
does not apply to [43, Sec. 9]. Nevertheless, Proposition 3 al-
lows us to imagine special cases of MILP (6), where we have
strong duality. We now present two examples.
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Fig. 2. Examples of network topology 1. (a) Initial communication graph.
(b) Optimal association.

Example 1: Suppose that the initial clients and APs
communication is as shown in Fig. 2(a). In particular, there are

clients and APs. Each client
can be associated to either AP or . However, the first
client can be associated only to the AP 1. Moreover, suppose
that for all and the remaining

s can be arbitrary values from the range .
We can easily show that the optimal client association (i.e.,

the optimal solution of MILP (6)) corresponds to Fig. 2(b).
Moreover, we have . Let us now focus to the LP
relaxation (23) applied to the network in Fig. 2(a). In this case,
every client , except the client 1, can be associated to both
AP and AP . However, we can prove by contradiction:
The solution of problem (23) corresponds to the optimal
association depicted in Fig. 2(b). Thus, we have .
From Proposition 3, we have strong duality for MILP (6) (i.e.,

), and the proposed algorithm achieves .

Example 2: Consider the network shown in Fig. 3(a).
There are APs and two types of clients connected to APs.
The Type-1 clients can communicate only with a single AP.
For example, each client can communicate
only with AP 1, and therefore, they must be assigned to AP
1. On the other hand, the Type-2 clients can communicate
with all the APs, e.g., clients . As a result,
Type-2 clients can be associated to any AP. Now suppose
that values associated with Type-1 clients are such that

and values associated with Type-2 clients are all
equal to . Moreover, suppose that the number of
Type-2 clients is a multiple of , i.e., for
some .
The optimal client association [i.e., the optimal solution of

MILP (6)] corresponds to Fig. 3(b), where the Type-2 clients
are equally distributed among the APs. In particular, each AP is
associated with Type-2 clients, and we have .
Let us now consider the solution given by the LP relaxation
(23). Note that there is no choice for Type-1 clients, other than
associating them to the only AP they can communicate. From
the symmetry, we can easily see that associating each Type-2
client among all the APs with equal shares is
a particular solution to the LP relaxation (23), i.e., for every
Type-2 client , . Thus, at each
AP , the utilization corresponding to Type-1 clients is and
the utilization corresponding to Type-2 clients becomes

Fig. 3. Examples of network topology 2. (a) Initial communication graph.
(b) Optimal association.

, which is identical to (recall ).
Therefore, we have , and strong duality
holds for MILP (6).

The examples above give insights into the algorithm's be-
havior in spacial cases. However, they can be used to build in-
tuitive ideas of general networks. It is indeed important to ana-
lyze the proposed algorithm's behavior in general as well. In the
sequel, we provide theoretical substantiation that allows us to
predict the general algorithm properties in terms of the optimal
duality gap and the relative duality gap.
The following theorem formally establishes a bound on the

duality gap and the asymptotic optimality of DAA.
Theorem 1: The optimal duality gap of mixed integer linear

program (6) is bounded as follows:

(25)

where and . More-
over, the relative duality gap diminishes to 0 as .

Proof: See Appendix B.
The theorem suggests that the duality gap is always bounded

by a constant that does not depend on the number of clients in
the system. Note that the bound grows like , and therefore
we can expect an increase in the duality gap for larger . The
theorem states that for larger , the relative duality gap become
almost zero.
These are very important to get an insight of the behavior of

the proposed algorithm in general networks. For example, when
is sufficiently large enough (though not infinity), Theorem 1

can still be of interest, and its importance can be justified as fol-
lows. The antenna separation in 60-GHz multiantenna setups is
in the order of millimeters, and therefore thousands of antenna
elements can be fabricated in a small space [31]. Hence, there
is a huge degrees-of-freedom gain that can be achieved by em-
ploying multiantennas at access points. Moreover, state-of-the
art multiple access schemes such as space-division multiple ac-
cess (SDMA) can be readily applied for gigabits-per-second
client–access point communication. In this context, Theorem 1
can be gracefully used to predict the algorithm's behavior; see
Section VI for numerical examples.

VI. NUMERICAL EXAMPLES

In this section, we present the numerical evaluation of the
proposed algorithm in a multiuser multicell environment. We
compare DAA to: 1) random association policy; 2) RSSI-based
policy, which is the association mechanism used in standards;
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Fig. 4. Example simulation topologies: (a) 2 APs; (b) 3 APs; (c) 5 APs.

and 3) optimal solution of the optimization problem (6) using
IBM CPLEX optimizer [44].
We define the SNR operating point at a distance [distance

units] from any AP as

otherwise.

Circular cells as depicted in Fig. 1 are considered, where the
radius of each cell is chosen such that dB. The
APs are located such that the distance between any consecutive
APs is . For example, Fig. 4(a) shows the case for
APs, Fig. 4(b) shows the case for , and Fig. 4(c) shows

the case for . The clients are uniformly distributed among
the circular cells and the potential AP–client association (i.e.,

and ); see Fig. 1.
We set mm, dBm/MHz, MHz,

and m; see (1) and (2). Moreover, for all , we set
, and for all , we set mW

and . In order to check the average perfor-
mance of the algorithms, we consider time-slots,
where the fading coefficients for all and the
demanded data rates for all are constant during each
time-slot and independently change from one
slot to another. In particular, the exponential random variables

with unit mean are independent and identically distributed
over the time-slots. Moreover, we assume that are uniformly
distributed on [0,400]Mb/s and independent and identically dis-
tributed over the time-slots.
To see the average convergence behavior of the proposed

algorithm, we consider the average primal objective value of
problem (6) obtained by DAA. In particular, the average primal
objective value from DAA after subgradient iterations is de-
fined as , where is the
best primal feasible objective value of problem (6) after iter-
ations at time-slot ; see (22).12 The average objective values
from benchmark algorithms, random association policy, RSSI
policy, and the optimal policy are defined in a similar manner
and are denoted by , , and , respectively.13 More-
over, the average dual optimal value obtained by DAA is

, where is the optimal objective value
of dual problem (14) at time-slot .
Fig. 5 shows versus subgradient iteration , for the cases

where , [Fig. 5(a)] and ,
[Fig. 5(b)]. Results show that there is a noticeable effect of
varying (the number of clients in the system) on convergence
time. In particular, the convergence is faster for smaller . This

12Due to the nonconvexity of the original problem (5), does not
necessarily achieve the optimal value even when .

13Since the benchmark algorithms do not depend on subgradient iteration ,
like , there is no superscript required for , , and .

Fig. 5. Influence of the number of clients on the convergence. (a) Average ob-
jective value versus iterations , 5 APs, 100 clients. (b) Average objective
value versus iterations , 5 APs, 200 clients.

observation is consistent with our analytical study presented
in Section V-A. Proposed DAA clearly outperforms the RSSI
policy used in 802.11, 802.15.3c, and 802.11ad, as well as the
random policy. For example, DAA yields a performance im-
provement of about 20% compared to RSSI policy in both con-
sidered cases. The gap between and , even after a rela-
tively larger number of subgradient iterations (e.g., ) is
indeed expected due to the nonconvexity of the original problem
(5); see Section V-B. Nevertheless, average dual optimal value

from DAA is almost equal to the optimal .
Fig. 6 shows versus subgradient iteration , for the cases

where , [Fig. 6(a)[ and ,
[Fig. 6(b)]. Here, the clients density or the number of clients
per AP is roughly the same (i.e., 10). Results show that there is a
clear effect of varying (while keeping client density fixed) on
convergence. In particular, the convergence is faster for smaller
. This observation is in line with our analytical study pre-

sented in Section V-A. The performances of other benchmark
algorithms are very similar to those in Fig. 5.
Fig. 7 shows the average objective fromDAA after

subgradient iterations, versus the number of clients for
the cases [Fig. 7(a)] and [Fig. 7(b)]. Plots for
the benchmark algorithms are also depicted. Results show that
the average objective values associated with each algorithm in-
crease as increases. This is intuitively expected because APs
becomemore loaded as the number of clients grows. Results fur-
ther show that the that came fromDAA are very close to the
optimal in both cases, and the performance gap is not sensi-
tive to changes in . Note that the performance of the random
and the RSSI policies are substantially low, and their perfor-
mance degradation becomes even noticeable for larger ; see
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Fig. 6. Influence of the number of APs on the convergence. (a) Average ob-
jective value versus iterations , 3 APs, 30 clients. (b) Average objective
value versus iterations , 10 APs, 100 clients.

Fig. 7. Average objective values and average dual op-
timal versus the number of users . (a) 2 APs. (b) 10 APs.

Fig. 8. Average objective value and average dual op-
timal versus the number of APs . (a) 40 users. (b) 100 users.

Fig. 7(b). As expected provides a global lower bound on the
performance and is hardly distinguishable from .
Fig. 8 shows the average objective value versus the number

of APs for the cases where [Fig. 8(a)] and
[Fig. 8(b)]. The performance ranking of the algorithms is very
similar to Fig. 7. Results show that the average objective values
decrease as increases. This is intuitively explained by noting
that the larger the is, the smaller the client density is, and
therefore the smaller the average objective values of each algo-
rithm becomes. Results again show that DAA performs close to
the optimal and outperforms the random and RSSI policies.
To see the effect of the increasing number of clients on the

relative duality gap (see Section V-C), we define the metric av-
erage relative duality gap, . In particular,

, where is the op-
timal value of primal problem (6) and is the optimal
value of dual problem (14), at time-slot . Moreover, we denote
by , a related metric defined sim-
ilar to , except that is replaced with ,
i.e., the best primal feasible objective value achieved fromDAA
after iterations at time-slot .
Fig. 9(a) measures the percentage versus for dif-

ferent 's. For all considered , approaches to zero
as increases. This is consistent with our analytical results es-
tablished by Theorem 1; see Section V-C. Fig. 9(b) shows that
the plots of percentage versus
are very similar to those in Fig. 9(a). This behavior is not sur-
prising because the performance of DAA is close to the optimal
performance; see Figs. 7 and 8.
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Fig. 9. (a) Average relative duality gap versus the
number of clients . (b) Average best achieved relative duality gap

versus the number of clients .

Fig. 10. Average relative duality gap versus the number of APs ,
where the ratio is kept fixed.

Fig. 10 shows the percentage versus , while the
ration is kept fixed. Results show that decreases
as the number of nodes in the network increases. Even though
the behavior cannot be analytically substantiated, it is intuitively
expected because the larger the size of the network, the greater
the number of possible client–AP assignment options, which in
turn can be exploited for better performance.
Fig. 11 depicts the dependence of the average duality gap on
. In particular, we define the optimal average duality gap as

, and we plot versus as shown in Fig. 11(a).
Moreover, we define the best achieved average duality gap

as . The corresponding
plots are shown in Fig. 11(b). In both cases, results show that
there is no apparent effect of the varying on the duality gap.

Fig. 11. (a) Average optimal duality gap versus the number of clients
. (b) Best achieved average duality gap versus

the number of clients .

Nevertheless, as we discussed in Section V-C [see (25)], the
average duality gap grows when increases.
To examine the fairness of the final client association among

the APs, we consider the well-known Jain's fairness index [45]
as the fairness metric. We denote by the fairness level
resulted by the proposed DAA at time-slot after iterations.
In particular, we define

, where ,
with being the best feasible solution resulted from
DAA at time-slot and after iterations. The average fairness
index resulted from DAA after iterations is simply
defined as . The average fairness
indexes resulted from the benchmark algorithms, the random
association policy, the RSSI policy, and the optimal policy are
defined in a similar manner and are denoted by , ,
and , respectively.14
Fig. 12 depicts versus compared to the benchmark fair-

ness indexes , , and for the case where and
. Note that the fairness index ranges from (worst

performance) to 1 (best performance). As expected, the optimal
association provides the best performance. Results show that
within a few hundreds of iterations, DAA achieves a fairness
level very close to the optimal. Results further show that DAA
significantly outperforms the random and the RSSI policies.

14Benchmark algorithms do not depend on subgradient iteration . Therefore,
like , there is no superscript required for , , and .
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Fig. 12. Average fairness index versus the iterations , 5 APs, 100 clients.

In order to provide a statistical description of the speed of the
proposed algorithm, we consider empirical the cumulative dis-
tribution function (CDF) plots. Specifically, for each time-slot

, we store the total CPU time required for
DAA to find . For comparison, we use the total CPU
time required to find the optimal value . Fig. 13(a) shows
the empirical CDF plots of the number of iterations for

, with . In the case of DAA, the effect of
changing the problem size by increasing on the CDF plots
is almost indistinguishable. However, in the case of optimal
method, there is a prominent increase in the time required to
compute . Fig. 13(b) depicts the average time required by
DAA and the optimal method versus . Results show that the
average time required by DAA to find possibly a suboptimal so-
lution is not sensitive to the variation of and is almost zero.
However, the average time required by the optimal method to
find the optimal solution grows approximately exponentially
with . This is certainly expected because problem (6) is com-
binatorial, and therefore the worst-case complexity of the global
method (CPLEX) grows exponentially with the problem size
[17, Sec. 1.4.2]. Thus, there is naturally a tradeoff between the
optimality and the efficiency of the algorithms. Nevertheless,
Figs. 7, 8, and 13 and the asymptotic results in Fig. 9 indicate
that DAA yields a good tradeoff between the optimality and the
efficiency, which is favorable for practical implementation. To
quantify this tradeoff, Table I presents the tradeoff related to
optimality and speed of DAA when compared to CPLEX solver
(average values are presented). It is observed that while the pop-
ulation of the clients grows, the deviation of the optimal solution
is becoming lower. In parallel, the speed gain increases.

VII. CONCLUSION

In this paper, we considered the problem of optimizing the
allocation of the clients to the APs in 60-GHz wireless access
networks. The objective in our problem formulation was tomin-
imize the maximum AP utilization. The optimization problem
was combinatorial. Thus, we proposed a distributed associa-
tion algorithm (DAA) based on Lagrangian duality theory and
subgradient methods. DAA is compliant with the existing WiFi
and 60-GHz standards, and it can be easily implemented on top
of the MAC mechanisms that they define. We studied the be-
havior of DAA through theoretical analysis, where we proved
its asymptotic optimality properties. Moreover, we presented a

Fig. 13. (a) Empirical CDF plots of total CPU time, . (b) Average time
to find optimal/suboptimal solution, .

TABLE I
OPTIMALITY AND SPEED OF DAA

numerical analysis, where DAA was compared to other associa-
tion policies in realistic scenarios. We tested convergence, scal-
ability, time efficiency, and fairness. Our results indicate that
the proposed solution could be well applied in the forthcoming
60-GHz wireless access networks.

APPENDIX A
PROOF OF PROPOSITION 1

It is sufficient to show that deciding whether there exists a
feasible objective value of problem (6) no more than a given
value is NP-hard. We show this by polynomial time
reduction from the 3-partitioning (3-PART) problem, which is
known to be NP-complete [46, p. 96]. Consider the 3-PART
instance: numbers such that

and for all . The 3-PART problem poses
the following question: Is there a partition of into
sets such that ? Given
this instance of 3-PART, we define an instance of problem (6)
having , , for all

, for all , and for all .
Now note that deciding whether there exists a feasible objective
value of problem (6) no more than is an NP-hard problem
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since the answer is affirmative if and only if the answer to the
corresponding instance of 3-PART is affirmative.

APPENDIX B
PROOF OF THEOREM 1

The proof is based on a proposition from [47], which we re-
state here for clarity and for simplifying the presentation.
Proposition 4: Consider the possibly nonconvex problem

minimize (26a)

subject to (26b)
(26c)

where the variables are . The problem parameters
, is a given vector in , is a subset of

, and and
are functions defined on the convex hull of . The following
assumptions hold for the primal problem (26).
Assumption 1: There exists at least one feasible solution of

problem (26).
Assumption 2: For each , the subset of

(27)
is compact.
Assumption 3: For each , given any vector in ,

there exists such that , where
is the convexified version of on

and the notation “ ” here means the component-wise
inequality. In particular, for all

(28)

Moreover, consider the dual problem of (26), i.e.,

maxmize

subject to
with variables . Then, we have

(29)

where denotes the optimal value of problem (26), de-
notes the optimal value of the dual problem (29), and is a
nonnegative scalar such that

(30)

Proof: We do not reproduce the proof here, but refer the
interested reader to [47, Sec. 5.6.1, pp. 371–376] for a rigorous
proof and to [40, Sec. 5.1.6] for an intuitive explanation.
Now we rely on Proposition 4 above to prove Theorem 1.

The key steps of the proof are: (a) equivalently reformu-
lating MILP (6) in the form (26); and (b) showing that the
Assumptions 1–3 of Proposition 4 hold for this equivalent
problem.

Let us start by considering the following problem that is
closely related to MILP (6):

minimize

subject to

(31)
where the variables are and

. The problem and are defined as

otherwise otherwise

, and is an upper bound on
, the optimal solution component of problem (31) that corre-

sponds to . For example, we use ,
throughout this paper. We can easily show that problem (31)
is equivalent to original MILP (6) and the optimal value is
equal to the optimal value of MILP (6), i.e.,

(32)
We refer to problem (31) as the modified MILP, which is in the
form (26), where:
1) and ;
2) , with and

;
3) ;
4) ,

;
5) ,

with ;
6) .
Let us now show that the Assumptions 1–3 of

Proposition 4 hold for the modified MILP (31). It is straightfor-
ward to see that Assumptions 1 and 2 hold. Checking whether
Assumption 3 holds is less trivial as we show next.
Let be any given vector in . From the definition

of [see (28)], we can express it as

(33)

for some and such that ,
. Particularized to the modified MILP

(6), we can write

(34a)

(34b)
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(34c)

(34d)

(34e)
(34f)
(34g)

where and ,
which is feasible, i.e., and Assumption 3 holds. Note
that the first three equalities (34a)–(34c) follow from straight-
forward manipulations, inequality (34d) follows from that

for all , inequality (34e) follows from that
for all , and the last two equalities (34f) and

(34g) follow from straightforward manipulations.
Finally, let us show that , where is the dual

optimal value of the associated dual problem [compare to (29)]
of the modified MILP (31). We denote by the optimal
value of the LP relaxation of (31). Thus, we have

(35)

where the first equality follows from a similar approach as de-
scribed in the proof of Proposition 3, the second equality follows
from that the LP relaxations of problem (31) and of problem (6)
[see problem (23)] have the same optimal value, and the last
equality follows from Proposition 3.
By using (32), (34), and that Assumptions 1–3 hold for the

MILP (6) together with Proposition 4, we have

(36)

where the first inequality follows from (29), the second
inequality follows from (30), , and

, and the last equality follows from that and
, which yields (25).

Inequality (36) together with our initial assumption
for all ensure that the numerator of the relative duality gap is
bounded above by a fixed number, which is independent of the
total number of clients. Moreover, we note that as

[see the objective function of original problem (6)].
Thus, we conclude that the relative duality gap
diminishes to zero as .
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