
238 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 2, NO. 3, SEPTEMBER 2015

A Distributed Approach for the Optimal
Power-Flow Problem Based on ADMM
and Sequential Convex Approximations

Sindri Magnússon, Pradeep Chathuranga Weeraddana, Member, IEEE, and Carlo Fischione, Member, IEEE

Abstract—The optimal power-flow (OPF) problem, which plays
a central role in operating electrical networks, is considered. The
problem is nonconvex and is, in fact, NP hard. Therefore, design-
ing efficient algorithms of practical relevance is crucial, though
their global optimality is not guaranteed. Existing semidefinite
programming relaxation-based approaches are restricted to OPF
problems where zero duality holds. In this paper, an efficient
novel method to address the general nonconvex OPF problem
is investigated. The proposed method is based on an alternating
direction method of multipliers combined with sequential convex
approximations. The global OPF problem is decomposed into
smaller problems associated with each bus of the network, the
solutions of which are coordinated via a light communication
protocol. Therefore, the proposed method is highly scalable. The
convergence properties of the proposed algorithm are mathemat-
ically substantiated. Finally, the proposed algorithm is evaluated
on a number of test examples, where the convergence properties
of the proposed algorithm are numerically substantiated, and the
performance is compared with a global optimal method.

Index Terms—Distributed optimization, optimal power flow
(OPF), smart grid.

I. INTRODUCTION

THE optimal power-flow (OPF) problem in electrical net-
works optimally determines the amount of power to be

generated at each generator. Moreover, it decides how to dis-
patch the power such that a global network-wide objective
criterion is optimized, while ensuring that the power demand
of each consumer is met and that the related laws of physics
are held. Traditionally, the OPF problem has only been solved
in transmission networks. However, the extensive information
gathering of individual power consumption in the smart grid has
made the problem relevant, not only in transmission networks,
but also in distribution networks which deliver electricity to
end users.
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A. Previous Work

The problem was originally presented by Carpentier [1], and
has been extensively studied since then and become of great im-
portance in efficient operation of power systems [2]. The OPF
problem is nonconvex due to a quadratic relationship between
the powers and the voltages and because of a lower bound on
the voltage magnitudes. In fact, the problem is NP-hard, see [3].
Therefore, practical and general-purpose algorithms must rely
on some approximations or heuristics. We refer the reader to [2]
and [4] for a contemporary survey of OPF.

It is well known that the OPF problem is equivalently
reformulated as a rank-constrained problem [5]. As a result,
classic convex approximation techniques are applied to handle
nonconvexities of the rank constraint, which usually results
in a semidefinite program [6] (SDP). SDP relaxations to OPF
have gained a lot of attention recently, see [3], [7]–[9], and
references therein. The authors in [3] show that SDP relaxation
is equivalent to the dual problem of the original OPF. Moreover,
sufficient conditions for zero duality and mechanisms to recover
the primal solution by the dual problem are given. Thus, [3]
identifies a class of OPF problems, where the global optimum
is obtained efficiently by using convex tools. Some other classes
of OPF problems, for which zero duality holds, are investi-
gated in [7]–[9]. In particular, [7] derives zero duality results
for networks that have tree topology where oversatisfaction
of loads is allowed. On the other hand, [8] and [9] provide
graphically intuitive conditions for the zero duality gap for two-
bus networks, which are later generalized to tree topologies.

The aforementioned references suggest that the applicability
of SDP approaches is limited to special network classes. Of
course, SDP relaxations can always be used to compute a lower
bound on the optimal value of the primal problem. However,
in practice, what is crucial is a network operating point. In
general, SDP relaxations fail to provide a network operating
point (i.e., a feasible point) due to nonzero duality gap [10].
Another drawback of SDP-based methods is that even when
zero duality holds, if the objective functions are nonquadratic,
the dual machinery employed in constructing primal feasible
solutions is not applied. The authors in [10] and [11] explore
limitations of SDP approaches and give practical examples
where the sufficient conditions for zero duality do not hold.

Centralized methods for OPF problem, of course, exhibit
poor scalability. On the contrary, distributed and scalable OPF
solution methods are less investigated, though they are highly
desirable in the context of rapidly growing real-world electrical
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networks. Unlike centralized methods, distributed OPF solution
methods are also appealing in the context of privacy and se-
curity, because they do not entail collecting possibly sensitive
problem data at a central node. In other words, when solving
in a centralized manner the OPF problem in the smart grid,
the power companies must rely on private information, such as
the load profile of their costumers [12], [13], which might be
of interest to a third party. For example, government agencies
might inquire the information to profile criminal activity, and
insurance companies might be interested in buying the infor-
mation to determine if an individual is viable for insurance [14].
Therefore, the gathering of private information at a centralized
node has raised serious concerns about personal privacy which,
in turn, discourages the use of centralized approaches. Inter-
estingly, the sparsity of most electrical networks brings out an
appealing decomposition structure and, therefore, it is worth
investigating distributed methods for the OPF problem.

Distributed methods for the OPF problem are first studied
in [15]–[17], where the transmission network is divided into
regions and different decomposition methods, including the
auxiliary problem principle, predictor-corrector proximal mul-
tiplier method, and alternating direction method, are explored
to solve the problem distributively among these regions. The
formulation is restricted to 2-region network decompositions,
and border variables cannot be shared among more than two
regions. Another approach to decentralize the problem into
regions is presented in [18]–[20]. The method is based on solv-
ing the Karush–Kuhn–Tucker (KKT) optimality conditions,
where a Newton procedure is adapted. The authors provide a
sufficient condition for convergent which can be interpreted as a
measurement of coupling between regions. However, when the
condition is not satisfied, they rely on the generalized minimal
residual method to find the Newton direction, which involves a
lot of communications between entities. The methods presented
in [21] are limited to dc OPF.

More recent distributed algorithms are found in [22]–[28].
The decentralized methods in [22]–[24] capitalize on the SDP
relaxation, which still has the drawbacks of being specific to
special classes of networks and a lack of flexibility with general
objective functions. Another relaxation method is presented in
[25], where instead of the original nonconvex constraint sets,
the convex hull of those are used. However, the method can
result in an infeasible point to the original unrelaxed problem,
entailing local methods to help construct good feasible points.
Other recent works consider distributed methods for optimal
reactive power flow in distribution networks [26], [27]. Both
papers first make approximations that yield a convex OPF
problem and then distribute the computation by using dual de-
composition [26] and ADMM [27]. The recent work in [28] em-
ploys ADMM to the general nonconvex OPF problem to devise
a scalable algorithm. A major drawback of the method in [28] is
that its convergence is very sensitive to the initialization. In fact,
the authors of [28] always initialize their algorithm with a point
which is close to the optimal solution. However, the optimal
solution is not known a priori, limiting the scope of the method.

Almost all of the aforementioned methods can be classified
as those which are general yet not scalable and those which are
scalable yet not general. However, methods, which are simulta-

neously general and scalable, are of crucial importance in the-
ory as well as in practice and, therefore, deserve investigations.

B. Our Contributions

The main contributions of this paper are as follows.
1) We develop a distributed algorithm for the general non-

convex OPF problem. Our approach is not restricted to
any special classes of networks, where zero duality holds.
It also handles nonquadratic convex objective functions,
unlike the SDP-based distributed algorithms.

2) We capitalize on the alternating direction method of
multipliers (ADMM) [29] to accomplish the distributed
implementation (among electrical network buses) of the
proposed algorithm with a little coordination of the neigh-
boring entities. Thus, the proposed algorithm is highly
scalable, which is favorable in practice.

3) In the case of subproblems, we capitalize on sequential
approximations, in order to gracefully manipulate the
nonconvexity issues. The approach is adopted from an
existing algorithm originally proposed in [30] in the
context of the centralized OPF problem.

4) The convergent properties of the proposed algorithm are
mathematically and numerically substantiated.

5) A number of numerical examples are provided to evaluate
the performance of the proposed algorithm.

C. Organization and Notations

This paper is organized as follows. Section II describes the
system model and problem formulation. The solution method
is presented in Section III. In Section IV, we discuss some
fundamental properties of the algorithm. Numerical results are
provided in Section V. Finally, Section VI concludes this paper.

The imaginary unit is denoted by j, that is, j =
√
−1.

Boldface lowercase and uppercase letters represent vectors and
matrices, respectively, and calligraphic letters represent sets.
The cardinality of A is denoted by |A|. len(x) denotes the
length of x. The set of real and complex n-vectors are denoted
by IRn and Cn, respectively, and the set of real and complex
m× n matrices are denoted by IRm×n and Cm×n. We denote
the real and imaginary parts of the complex number z ∈ C by
Re(z) and Im(z), respectively. The set of non-negative integers
is denoted by N, that is, N = {0, 1, . . .}. The superscript (·)T
stands for transpose. We use parentheses to construct column
vectors from comma separated lists, for example, (a,b, c) =
[aT bT cT]T. We denote the diagonal block matrix with
A1, · · · ,AN on the diagonal by diag(A1, · · · ,AN ). The
Hadamard product of the matrices A and B is denoted by
A ◦B. We denote by ‖x‖2 the �2-norm of the vector x. We
denote the gradient of the function f in the point x by ∇xf .

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider an electrical network with N buses with N =
{1, 2, . . . , N} denoting the set of buses and L ⊆ N ×N rep-
resenting the set of flow lines. We let ik = iRe

k + jiImk be the
current injection and vk = vRe

k + jvImk be the voltage at bus
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k∈N . Let pDk +jqDk ∈C and pGk +jqGk ∈C denote the complex
power demand and the complex power generated by bus k ∈ N ,
respectively. Thus, the complex power pk + jqk ∈ C injected to
bus k is given by pk + jqk = (pGk + jqGk )− (pDk + jqDk ).

For notational compactness, we let pG, qG, pD, qD, p,
q, i, iRe, iIm, v, vRe, and vIm denote the vectors (pGk )k∈N ,
(qGk )k∈N , (pDk )k∈N , (qDk )k∈N , (pk)k∈N , (qk)k∈N , (ik)k∈N ,
(iRe

k )k∈N , (iImk )k∈N , (vk)k∈N , (vRe
k )k∈N , and (vImk )k∈N , re-

spectively. We denote by iRe
ls + jiImls ∈ C the complex current

and by pls + jqls ∈ C the complex power transferred from bus
l to the rest of the network through the flow line (l, s) ∈ L. The
admittance matrix Y ∈ CN×N of the network is given by

Y =

⎧⎨
⎩

yll +
∑

(l,t)∈L ylt, if l = s,
−yls, if (l, s) ∈ L,
0, otherwise

(1)

where yls = gls + jbls ∈ C is the admittance in the flow line
(l, s) ∈ L, and yll = gll + jbll ∈ IC is the admittance to ground
at bus l. We let G ∈ IRN×N and B ∈ IRN×N denote the real
and imaginary parts of Y, respectively. In particular, [G]ls =
gls and [B]ls = bls yield Y = G+ jB.

A. Centralized Formulation

For fixed power demands, pD and qD, the goal of the OPF
problem is to find the optimal way to tune the variables pG,
qG, p, q, iRe, iIm, vRe, and vIm, ensuring that the relation-
ships among the variables are held and system limitations are
respected. The objective function differs between applications.
In this paper, we consider the minimization of a convex cost
function of real power generation. We denote by fG

k , the cost of
generating power at bus k ∈ G, where G ⊆ N denotes the set
of generator buses. The OPF problem can now be expressed as1

min
∑
k∈G

fG
k

(
pGk

)
(2a)

s.t. iRe + jiIm = GvRe −BvIm + j(BvRe +GvIm) (2b)

pk + jqk = pGk − pDk + j
(
qGk − qDk

)
, k ∈ N , (2c)

iRe
ls +jiImls =

(
cTls+jdT

ls

)
(vRe

l , vRe
s , vIml , vIms ), (l, s)∈L

(2d)

p+jq=vRe◦ iRe+vIm ◦ iIm+j
(
vIm◦ iRe−vRe◦ iIm

)
(2e)

pls + jqls = vRe
l iRe

ls + vIml iImls + j(vIml iRe
ls − vRe

l iImls )

(l, s) ∈ L (2f)

pG,min
k ≤ pGk ≤ pG,max

k , k ∈ N , (2g)

qG,min
k ≤ qGk ≤ qG,max

k , k ∈ N , (2h)

(iRe
ls )2 + (iImls )2 ≤ (imax

ls )2, (l, s) ∈ L, (2i)

p2ls + q2ls ≤ (smax
ls )2, (l, s) ∈ L, (2j)

|pls| ≤ pmax
ls , (l, s) ∈ L, (2k)(

vmin
k

)2 ≤
(
vRe
k

)2
+

(
vImk

)2 ≤ (vmax
k )2 , k ∈ N (2l)

1Formulation (2) is equivalent to the OPF formulation in [3], and one can
easily switch between the two formulation by using simple transformations.
We use formulation (2), because it is convenient, in terms of notations, when
describing the content in subsequent sections.

where the variables are pG, qG, p, q, iRe, iIm, vRe,
vIm, and iRe

ls , iImls , pls, qls for (l, s) ∈ L. Here, constraint
(2b) is from i = Yv, (2c) is derived from the conservation
of power flow holds, (2e) is from iRe

ls = Re(yls(vl − vs)),
(2f) is from the complex power being (v ◦ i∗), and iImls =
Im(yls(vl − vs)) with cls = (gls,−gls, bls,−bls) and dls =
(bls,−bls,−gls, gls), and (2f) is from pls = Re(vli

∗
ls) and

qls = Im(vli
∗
ls). Note that (2b)–(2f) correspond to the con-

straints imposed by the laws of physics associated with the
electrical network. In addition, (2g)–(2l) correspond to the
constraints imposed by operational limitations, where the lower
bound problem data (·)min and the upper bound problem data
(·)max determine the boundaries of the feasible regions of
power, current, as well as voltages in the network. Note that if a
bus k is not a generator bus, then there is no power generation at
that bus and, thus, pGk + jqGk = 0. Such situations can be easily
modeled by letting

pG,min
k =pG,max

k =qG,min
k =qG,max

k =0, k∈N \G. (3)

The constraints (2e), (2f), and (2l) are nonconvex, which,
in turn, makes problem (2) nonconvex. In fact, the problem is
NP-hard [3]. Thus, it hinders efficient algorithms from achiev-
ing optimality. However, in the sequel, we design an efficient
algorithm to address problem (2) in a decentralized manner.

B. Distributed Formulation

In this section, we derive an equivalent formulation of
problem (2), where all of the constraints, except for a single
consistency constraint, are decoupled among the buses. In
particular, the resulting formulation is in the form of a general
consensus problem [29, Sec. 7.2], where the fully decentralized
implementation can be realized, without any coordination of a
central authority. More generally, the proposed formulation can
be easily adapted to accomplish decoupling among subsets of
buses, each of which corresponds to buses located in a given
area, for example, multiarea OPF [15].

We start by identifying the coupling constraints of problem
(2). From constraint (2b), note that the current injection of
each bus is affected by the voltages of its neighbors and by
its own voltage. Therefore, constraint (2b) introduces coupling
between neighbors. To decouple constraint (2b), we let each
bus maintain local copies of the neighbors’ voltages and then
enforce them to agree by introducing consistency constraints.

To formally express the idea from before, we first denote
by Nk the set of bus k itself and its neighboring buses, thsat
is, Nk = {k} ∪ {n|(k, n) ∈ L}. Copies of real and imaginary
parts of the voltages corresponding to buses in Nk are denoted
by vRe

k ∈ IR|Nk | and vIm
k ∈ IR|Nk |, respectively. For notational

convenience, we let (vRe)1
k = vRe

k and (v
Im)1
k = vImk . We refer

to vRe and vIm as real and imaginary net variables, respec-
tively. Note that the copies of either the net variable vRe

k or vImk
are shared among |Nk| entities, which we call the degree of net
variable vRe

k or vImk . The consistency constraints are given by

vRe
k = Ekv

Re, vIm
k = Ekv

Im (4)
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where Ek ∈ IR|Nk |×N is given by

(Ek)ls =

{
1, if

(
vRe
k

)
l

is a local copy of vRe
s

0, otherwise.
(5)

Note that (4) ensures the agreement of the copies of the net
variables and that for any bus k, either vRe

k or vIm
k is local in

the sense that they depend only on neighbors.
The constraints (2b)–(2l) of problem (2) can be written

by using local variables vRe
k and vIm

k . In particular, we can
equivalently list them as follows:

iRe
k + jiImk = gT

k v
Re
k − bT

k v
Im
k + j

(
bT
k v

Re
k + gT

k v
Im
k

)
(6a)

pk + jqk = pGk − pDk + j
(
qGk − qDk

)
(6b)

īRe
k +j īImk =Ckv

Re
k +Dkv

Im
k +j

(
Dkv

Re
k −Ckv

Im
k

)
(6c)

pk+jqk=(vRe
k )1i

Re
k +(vIm

k )1i
Im
k +j

(
(vIm

k )1i
Re
k −(vRe

k )1i
Im
k

)
(6d)

p̄k+jq̄k=(vRe
k )1 ī

Re
k +(vIm

k )1 ī
Re
k +j

(
(vIm

k )1 ī
Re
k −(vRe

k )1 ī
Im
k

)
(6e)

pG,min
k ≤ pGk ≤ pG,max

k , (6f)

qG,min
k ≤ qGk ≤ qG,max

k , (6g)

(̄iRe
k )2r + (̄iImk )2r ≤ (̄imax

k )2r, r = 1, . . . , |Nk| − 1 (6h)

(p̄k)
2
r + (q̄k)

2
r ≤ (s̄max

k )2r, r = 1, . . . , |Nk| − 1 (6i)

|(p̄k)r| ≤ (p̄max
k )r, r = 1, . . . , |Nk| − 1, (6j)

(vmin
k )2r ≤ (vRe

k )2r+(vIm
k )2r≤(vmax

k )2r, r=1, . . . |Nk| (6k)

where k ∈ N , īRe
k = (iRe

kl )l∈Nk\{k}, īImk = (iImkl )l∈Nk\{k}, p̄k =
(pkl)l∈Nk\{k}, and q̄k = (qkl)l∈Nk\{k}, with the order kept pre-
served as in (vRe

k )1:|Nk | and (vIm
k )1:|Nk |. In addition, gk (or

bk) in constraint (6a) are obtained by first extracting the kth
column of G (respectively, B) and then extracting the rows
corresponding to the buses in Nk, where the order of the
components are preserved as in vRe

k and vIm
k . In addition, Ck ∈

IR(|Nk |−1)×|Nk | and Dk ∈ IR(|Nk|−1)×|Nk | in constraint (6c) are
given by

Ck =

⎛
⎜⎜⎝

(gk)2 −(gk)2 · · · 0
(gk)3 0 · · · 0

...
...

. . .
...

(gk)|Nk |−1 0 · · · −(gk)|Nk |

⎞
⎟⎟⎠ (7)

Dk =

⎛
⎜⎜⎝

(bk)2 −(bk)2 · · · 0
(bk)3 0 · · · 0

...
...

. . .
...

(bk)|Nk |−1 0 · · · −(bk)|Nk |

⎞
⎟⎟⎠ . (8)

Moreover, vmin
k ,vmax

k , īmax
k , s̄max

k , and p̄max
k of constraints

(6f)–(6k) are chosen in a straightforward manner [cf. (2g)–(2l)].
Finally, for notational convenience, associated with each bus

k, we denote by

zk=
(
pGk , q

G
k , pk, qk, i

Re
k , iImk ,vRe

k ,vIm
k , īRe

k , īImk , p̄k, q̄k

)
(9)

the local variables of bus k, by αk(zk) = 0 the affine con-
straints (6a)–(6c), by λk(zk) = 0 the nonlinear equality con-
straint (6d), by μk(zk) = 0 the nonlinear equality constraint
(6e), by βk(zk) ≤ 0 the linear convex inequality constraints

(6f), (6g), (6j), and by γk(zk) ≤ 0 the nonlinear convex in-
equality constraints (6h) and (6i) as we will see next.2

Now we can express the distributed formulation of problem
(2) as

min
∑
k∈G

fG
k

(
pGk

)
(10a)

s.t. zk =
(
pGk , q

G
k , pk, qk, i

Re
k , iImk ,xRe

k ,xIm
k ,

īRe
k , īImk , p̄k, q̄k

)
, k ∈ N , (10b)

(αk(zk),λk(zk),μk(zk)) = 0, k ∈ N , (10c)

(βk(zk),γk(zk)) ≤ 0, k ∈ N , (10d)

(vmin
k )2r ≤ (vRe

k )2r + (vIm
k )2r ≤ (vmax

k )2r,

r = 1, . . . , |Nk|, k ∈ N , (10e)

vRe
k + jvIm

k = Ekv
Re + jEkv

Im, k ∈ N (10f)

where the variables are pGk , qGk , pk, qk, iRe
k , iImk , vRe

k , vIm
k ,

īRe
k , īImk , p̄k, q̄k, zk for k ∈ N and vRe and vIm. Note that

(10f) establishes the consistency constraints [cf. (4)], which
affirms the consistency among neighbor voltages. The coupling
in the original centralized formulation (2) has been subsumed
in the consistency constraint (10f), which results in the form of
general consensus problem [29, Sec. 7.2], where decomposition
methods can be gracefully applied.

III. DISTRIBUTED SOLUTION METHOD

In this section, we present our distributed algorithm to the
OPF problem (10). In particular, we use the ADMM as the basis
for our algorithm development, where we have fast conver-
gence properties, compared to the dual decomposition [29]. The
ADMM is also promising in the sense that it works on many
nonconvex problems as a good heuristic [29, Sec. 9]. Once the
solution method is established, we investigate the properties in
Section IV.

A. Outline of the Algorithm

For notational simplicity, we let vk and Ēk denote
(vRe

k ,vIm
k ) and diag(Ek,Ek), respectively, for each k ∈ N .

Moreover, we let v denote (vRe,vIm). The ADMM essen-
tially minimizes the augmented Lagrangian associated with the
problem in an iterative manner. Particularized to our problem
(10), the partial augmented Lagrangian with respect to the
consistency constraints (10f) (i.e., vk = Ēkv) is given by

Lρ

(
pG, (vk)k∈N ,v, (yk)k∈N

)
=

∑
k∈G

fG
k

(
pGk

)
+

∑
k∈N

(
yT
k (vk − Ēkv) +

ρ

2
‖vk − Ēkv‖22

)
(11)

2The functions βk and γk depend on pG,min
k

, pG,max
k

, qG,min
k

, qG,max
k

,
īmax
k , s̄max

k , and p̄max
k which are intentionally omitted for clarity and space

reasons.
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where yk is the dual variable associated with (10f), and ρ is
called the penalty parameter. Together, with the separability of
(11) among k ∈ N , the steps of ADMM are formally expressed
below.

Algorithm 1: ADMM for distributed OPF (ADMM-DOPF)

1) Initialization: Set n = 0 and initialize y
(n)
k and v(n).

2) Private variable update: Set yk = y
(n)
k and v = v(n).

Each bus k ∈ N updates xk locally, where we let
(z

(n+1)
k ,u

(n+1)
k ) be the primal and dual (possibly) opti-

mal variables achieved for the following problem:

min fG
k (pGk ) + yT

k (vk−Ēkv)+
ρ

2
||vk−Ēkv||22 (12a)

s.t. zk=(pGk , q
G
k , pk, qk, i

Re
k , iImk ,vRe

k ,vIm
k īRe

k , īImk , p̄k, q̄k)

(12b)
αk(zk) = 0 (12c)
λk(zk) = 0 (12d)
μk(zk) = 0 (12e)
βk(zk) ≤ 0 (12f)
γk(zk) ≤ 0 (12g)
(vmin

k )2r ≤ (vRe
k )2r + (vIm

k )2r ≤ (vmax
k )2r

r = 1, . . . , |Nk| (12h)

where the variables are pGk , qGk , pk, qk, iRe
k , iImk , vRe

k , vIm
k ,

īRe
k , īImk , p̄k, q̄k, and zk. We denote by v

(n+1)
k , the part

of z(n+1)
k corresponding to (vRe

k ,vIm
k ).

3) Net variable update: We let v(n+1) be the solution to the
problem

min
∑
k∈N

yT
k

(
v
(n+1)
k − Ēkv

)
+

ρ

2

∥∥∥v(n+1)
k − Ēkv

∥∥∥2

2
(13)

where the variable is v.
4) Dual variable update: Each bus k ∈ N updates its dual

variable yk as

y
(n+1)
k = y

(n)
k + ρ

(
v
(n+1)
k − Ēkv

(n+1)
)
. (14)

5) Stopping criterion: Set n :=n+1. If the stopping criterion
is not met, go to step 2, otherwise STOP and return (z(n),

v(n),u(n),y(n))=((z
(n)
k )k∈N ,v

(n), (u
(n)
k )k∈N , (y

(n)
k )k∈N).

The first step initializes the net and dual variables. In the
second step, each bus solves a nonconvex optimization problem
in order to update its private variable (see Section III-B).
In the third step, the net variable is updated by solving the
unconstrained quadratic optimization problem (13), which has a
closed-form solution. The net variable update can be performed
in a distributed fashion with a light communication protocol
(see Section III-D). The fourth step is the dual variable update,
which can be performed locally on each bus (see Section III-
D). The fifth step is the stopping criterion. Natural stopping
criterions include: 1) running the ADMM-DOPF algorithm for
a fixed number of iterations; 2) running the ADMM-DOPF al-
gorithm until the decrement between the local and net variables

Fig. 1. Feasible set of ((vRe
k )r, (vIm

k )r) where A = (vmax
k )r and

B = (vmin
k )r . (a) Xk

r ; (b) X̌k
r ; (c) X̌k

r .

of each bus k (‖Ekv − vk‖2) is below a predefined threshold;
3) running the ADMM-DOPF algorithm until the objective
value decrement between two successive iterations is below a
predefined threshold. In the sequel, we discuss in detail the
algorithm steps (12)–(14).

B. Subproblems: Private Variable Update

In this section, problem (12) is considered. Since Problem
(12) is NP-hard, only exponentially complex global methods
can guarantee its optimality. We capitalize on sequential convex
approximations [31] to design an algorithm, which is efficient
compared to global methods. Similar techniques are used in
[30] for centralized OPF, which we use as the basis for design-
ing our subproblem algorithm.

We start by noting that constraints (12b), (12c), (12f), and
(12g) are convex as opposed to constraints (12h), (12d), and
(12e), which are clearly nonconvex. The idea is to approximate
the nonconvex constraints.

In the case of (12h), we note that for any r ∈ {1, . . . , |Nk|},
the values of (vRe

k )l and (vIm
k )l represent a donut, see Fig. 1(a).

In other words, the 2-D set

X k
r =

{(
(vRe

k )r, (v
Im
k )r

)
∈ IR2

∣∣(vmin
k )2r≤(vRe

k )2r + (vIm
k )2r

≤(vmax
k )2r

}
is a donut, which is clearly nonconvex.

We approximate the nonconvex set X k
r by considering a

convex subset of X k
r instead, which we denote by X̌ k

r , see
Fig. 1(b). To do this, we simply consider the hyperplane tangent
to the inner circle of the donut at the point C in Fig. 1(b).
Specifically, given a point ((v̌Re

k )r, (v̌
Im
k )r) ∈ X k

r , X̌ k
r is the

intersection of X k
r and the halfspace{(

(vRe
k )r, (v

Im
k )r

)
∈ IR2

∣∣ ar (vRe
k

)
r
+br

(
vIm
k

)
r
≥cr

}
(15)

where

ar =sign
(
v̌Re
k

)
r

√√√√ (
vmin
k

)2
r

1 +
((
v̌Im
k

)
r
/
(
v̌Re
k

)
r

)2
br = ar

((
v̌Im
k

)
r(

v̌Re
k

)
r

)
, cr =

(
vmin
k

)2
r

if (v̌Re
k )r �= 0 and

ar = 0, br = sign
(
v̌Im
k

)
r
, cr =

(
vmin
k

)
r
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if (v̌Re
k )r = 0. In the case of nonlinear nonconvex constraints

(12d) and (12e), we capitalized on the well-known Taylor’s

approximation. Specifically, given a point ẑk, we denote by λ̂
ẑk

k

the first-order Taylor’s approximation of λk at ẑk. Similarly, we
denote by μ̂ẑk

k , the first-order Taylor’s approximation of μk at
ẑk. The approximation is refined in an iterative manner until a
stopping criterion is satisfied.

It is worth noting that to construct the functions μ̂ẑk

k and λ̂
ẑk

k ,
one only needs the values of v̂k, where v̂k is the component of
ẑk corresponding to (vRe

k ,vIm
k ).3

By using the constraint approximations discussed before,
we design a subroutine to perform step 2 of the ADMM-
DOPF algorithm. The outline of this successive approximation
algorithm is given as follows.

Algorithm 2: Subroutine for step 2 of the ADMM-DOPF

1) Initialize: Given v and yk from ADMM-DOPF nth it-
eration. Set (vRe,vIm) = v. For all r ∈ {1, . . . , |Nk|},
set ((v̌Re

k )r, (v̌
Im
k )r) = ((Ekv

Re)r, (Ekv
Im)r) and con-

struct X̌ k
r . Let m = 1 and initialize ẑk.

2) Solve the approximated subproblem

min fG
k

(
pGk

)
+ yT

k (vk − Ēkv) +
ρ

2
‖vk − Ēkv‖22

(16a)

s.t. zk =
(
pGk , q

G
k , pk, qk, i

Re
k , iImk ,vRe

k ,vIm
k ,

īRe
k , īImk , p̄k, q̄k

)
(16b)

αk(zk) = 0 (16c)

λ̂
ẑk

k (zk) = 0 (16d)

μ̂ẑk

k (zk) = 0 (16e)

βk(zk) ≤ 0 (16f)

γk(zk) ≤ 0 (16g)((
vRe
k

)
r
,
(
vIm
k

)
r

)
∈ X̌ k

r , r = 1, . . . , |Nk| (16h)

where the variables are pGk , qGk , pk, qk, iRe
k , iImk , vRe

k ,
vIm
k , īRe

k , īImk , p̄k, q̄k, and zk. The solution corresponding

to the variable zk is denoted by z
(m)
k and all of the dual

optimal variables are denoted by u
(m)
k .

3) Stopping criterion: If stopping criterion is not met, set
ẑk = z

(m)
k , m := m+ 1 and go to step 2. Otherwise,

STOP and return (z
(m)
k ,u

(m)
k ).

The initialization in the first step is done by setting v̂k =
(v̌Re

k , v̌Im
k ), where v̂k is the component of ẑk corresponding

to the variable (vRe
k ,vIm

k ). The rest of the vector ẑk is then
initialized according to (6a)–(6e), which have a unique solution
when v̂k is given. The second step involves solving a convex

3This follows directly from the definition of the first-order Taylor approxi-
mation and (6a) and (6c).

optimization problem and the third step is the stopping crite-
rion. A natural stopping criterion is to run the algorithm until
the decrement between two successive iterations is below a
certain predefined threshold, that is, ‖z(m+1)

k − z
(m)
k ‖ < ε for

a given ε > 0. However, since zk only depends on vk, the
component related to (vRe

k ,vIm
k ), we use∥∥∥v(m+1)

k − v
(m)
k

∥∥∥
2
< εsub (17)

where v
(m)
k and v

(m+1)
k are the components of z

(m)
k and

z
(m+1)
k , respectively, corresponding to the variable vk and

εsub > 0 is a given threshold. Furthermore, we do not need
to reach the minimum accuracy in every ADMM iteration, but
only as the ADMM method progresses. Therefore, it might be
practical to set an upper bound on the number of iterations,
that is

m ≥ max_iter (18)

for some max_iter ∈ N.

C. On the Use of Quadratic Programming (QP) Solvers

Problem (16) can be efficiently solved by using general
interior-point algorithms for convex problems. However, even
higher efficiencies are achieved if problem (16) can be handled
by specific interior-point algorithms. For example, if the objec-
tive function (16a) is quadratic, sophisticated QP solvers can be
easily employed. See the Appendix for details.

D. Net Variables and Dual Variable Updates

Note that the net variable v(n+1) is the unique solution of the
unconstrained convex quadratic optimization problem (13), and
is given by

v(n+1) =

(∑
k∈N

ĒT
k Ēk

)−1 ∑
k∈N

ĒT
k

(
v
(n+1)
k +

1

ρ
y
(n)
k

)

(19)

=

(∑
k∈N

ĒT
k Ēk

)−1 ∑
k∈N

ĒT
k v

(n+1)
k (20)

=diag

⎛
⎝(∑

k∈N
ET

kEk

)−1

,

(∑
k∈N

ET
kEk

)−1
⎞
⎠

×
(∑

k∈N
ET

k v
Re(n+1)
k ,

∑
k∈N

ET
k v

Im(n+1)
k

)
(21)

=

(
diag

(
1

|N1|
, . . . ,

1

|NN |

) ∑
k∈N

ET
k v

Re(n+1)
k︸ ︷︷ ︸

vRe(n+1)

,

diag

(
1

|N1|
, . . . ,

1

|NN |

) ∑
k∈N

ET
k v

Im(n+1)
k︸ ︷︷ ︸

vIm(n+1)

)
(22)
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where (19) follows trivially from the differentiation of the objec-
tive function of problem (13), (20) follows by invoking the op-
timality conditions for problem (13), that is,

∑
k∈N ĒkTyk=0,

(21) follows from Ēk = diag(Ek,Ek), and (22) follows from∑
k∈N EkTEk = diag(|N1|, . . . , |NN |). From (22), it is not

difficult to see that any net variable component update is equiv-
alently obtained by averaging its copies maintained among the
neighbor nodes. Such averaging can be accomplished by using
fully distributed algorithms, such as gossiping [32]. Therefore,
step 3 of the ADMM-DOPF algorithm can be carried out in a
fully distributed manner.

The dual variable update (14) can be carried out in a fully
distributed manner, where every bus increments the current
dual variables by a (scaled) discrepancy between current net
variables and its own copies of those net variables.

IV. PROPERTIES OF THE DISTRIBUTED

SOLUTION METHOD

Recall that the original problem (2) or, equivalently, problem
(10) is nonconvex and NP-hard. Therefore, ADMM-based ap-
proaches are not guaranteed to converge [29, Sec. 9], though
general convergence results are available for the convex case
[29, Sec. 3.2]. Nevertheless, in the sequel, we highlight some
of the convergence properties of our proposed ADMM-DOPF
algorithm. In particular, we first illustrate, by using an example,
the possible scenarios that can be encountered by Algorithm 2,
that is, step 2 of the ADMM-DOPF algorithm. Then, we capi-
talized on one of the scenarios, which is empirically observed
to be the most dominant, in order to characterize the solutions
of the ADMM-DOPF algorithm.

A. Graphical illustration of Algorithm 2

We start by focussing on step 2, the main ingredient of the
ADMM-DOPF algorithm. To get insights into the subroutine
(i.e., Algorithm 2) performed at step 2, we first rely on a
simple graphical interpretation. Here, instead of problem (12),
we consider a small dimensional problem to demonstrate some
essential ingredients of the analysis. In particular, we con-
sider the convex objective function f(p, x) in place of (12a).
Moreover, instead of the nonconvex constraints (12d) and (12e)
[cf. (6d) and (6e)], we consider the constraint

p = g(x) (23)

where g is a nonconvex function, which resembles right-hand
side of (6d) and (6e). Finally, instead of the remaining con-
straints (12b), (12c), (12f), (12g), and (12h) of problem (12),
we consider the constraint

(p, x) ∈ Z (24)

where Z is not a convex set [cf. (12h)]. Thus, the smaller dimen-
sional problem, which resembles subproblem (12) is given by

minimize f(p, x)

subject to p = g(x)

(p, x) ∈ Z (25)

Fig. 2. Graphical illustration of Algorithm 2. (a) Scenario 1, improper approx-
imation of set Z , see (24), makes the approximated problem (26) infeasible.
(b) Scenario 2, improper choice of the approximation point x̂ = x(0) makes
the approximated problem (26) infeasible. (c) Scenario 3, the sequence of
approximations eventually converges to a desired point A. (d) Scenario 4, the
algorithm jumps between points A = (xa, g(xa)) and B = (xb, g(xb)).

where the variables are p ∈ IR and x ∈ IR. Recall that
Algorithm 2 approximates nonconvex functions in constraints
(12d) and (12e) of problem (12) by using their first-order
Taylor’s approximations [see (16d) and (16e)] and the noncon-
vex constraint (12h) by using a convex constraint [see (16h)].
Particularized to the smaller dimensional problem (25), the
approximations pointed above are equivalent to replacing g
by its first-order Taylor’s approximation ĝ and to approximate
Z by some convex set Ž , where Ž ⊆ Z . The result is the
approximated subproblem given by

minimize f(p, x)

subject to p = ĝ(x) = g(x̂) + g′(x̂)(x− x̂)

(p, x) ∈ Ž (26)

where the variables are p ∈ IR and x ∈ IR, and x̂ represents the
point at which the first-order Taylor’s approximation is made.

Let us next examine the behavior of Algorithm 2 by consider-
ing, instead of problem (16), the representative smaller dimen-
sional problem (26). Recall that the key idea of Algorithm 2
is to iteratively refine the first-order Taylor’s approximations

λ̂
ẑk

k (zk) and μ̂ẑk

k (zk) [see steps 2 and 3 of Algorithm 2], until
a stopping criterion is satisfied. This behavior is analogously
understood from problem (26), by iteratively refining the first-
order Taylor’s approximation ĝ of g.

Fig. 2 illustrates the sequential refinement of ĝ, where the
shaded area represents the set Z , the rectangular box represents
the convex set Ž , the solid curve represents the function g, the
dotted lines represent the sequential approximations ĝ, and the
thick solid curves represent the contours of f . Note that there
are several interesting scenarios, which deserve attention to
built intuitively the behavior of Algorithm 2 [see Fig. 2(a)–(d)].
Fig. 2(a) shows the first scenario, where an improper
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approximation of set Z makes the approximated problem (26)
infeasible, irrespective of the choice of x̂. In contrast, Fig. 2(b)
depicts a scenario, where an improper choice of the approxima-
tion point x̂ makes the approximated problem (26) infeasible.
Fig. 2(c) shows a sequence of approximations, which eventually
converge to the optimal point “A.” Finally, Fig. 2(d) shows a
scenario, where a sequence of approximations switch between
two points “A” and “B,” that is, there is no convergence. Any
other scenario can be constructed by combining cases from
Fig. 2(a)–(d).

Analogously, the discussion from before suggests that the
approximation points (ẑk)k∈N [cf. x̂] were used when con-

structing λ̂
ẑk

k (zk) and μ̂ẑk

k (zk) [cf. ĝ(x)] and the approxima-
tions used in the set (X̌ k

r )r=1,...,|Nk | [cf. Ž], can heavily influ-
ence the performance of Algorithm 2. Therefore, especially if
scenarios 1 and 2 depicted in Fig. 2(a) and (b) occur, during
the algorithm iterations, they have to be avoided by changing
the initializations. However, extensive numerical experiments
show that there are specific choices of ẑk, and X̌ k

r can make
Algorithm 2 often converge to a point as depicted in Fig. 2(c)
and barely encounters the scenarios depicted in Fig. 2(a), (b),
and (d). See Section V-A for details.

B. Optimality Properties of the Algorithm 2 Solution

Results obtained in this section are based on the empirical ob-
servations (see Section V) that scenario 3 depicted in Fig. 2(c)
is more dominant compared to others. In particular, we make
the following assumptions.

Assumption 1: For any k ∈ N , there exists (z�k,u
�
k), to

which Algorithm 2 can converge. Specifically, there exists
(z�k,u

�
k), where limm→∞(z

(m)
k ,u

(m)
k ) = (z�k,u

�
k) for all k ∈

N . In addition, for all k ∈ N , the components (vRe
k ,vIm

k ) of
z�k, strictly satisfy the constraint (16h).

Under Assumption 1, the following assertion can be made:
Proposition 1: Suppose Assumption 1 holds. Then, the

output (z�k,u
�
k) of Algorithm 2 satisfies Karush-Kuhn-Tucker

(KKT) conditions for problem (12).
Proof: See Appendix II-A. �

Combined with our empirical observations that Algorithm 2
almost always converges to a point as depicted in Fig. 2(c) (i.e.,
Assumption 1 holds), Proposition 1 claims that the point satis-
fies the first-order necessary conditions for local optimality.

C. Optimality Properties of the ADMM-DOPF Solution

As we already pointed out, there is no guarantee that the
eventual output (z,v,u,y) of ADMM-DOPF is optimal, or
even feasible to the original problem (10), because the problem
is NP-hard. However, Proposition 1, asserts that the eventual
output (zk,uk) of Algorithm 2 is a KKT point for problem (12)
solved at step 2 of ADMM-DOPF. One can easily relate this
result to characterize the properties of (z,u) of the ADMM-
DOPF output, as we will see later. However, the properties of
the remaining output (v,y) have yet to be investigated. In this
section, combined with the results of Proposition 1, we analyze
the optimality properties of the ADMM-DOPF output.

To quantify formally the optimality properties of ADMM-
DOPF, we rely on the following definition:

Definition 1 ((δ, ε)-KKT Optimality): Consider the possibly
nonconvex problem of the form

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . , q

hi(x) = 0, i = 1, . . . , p

ri(x) = 0, i = 1, . . . , s (27)

where f0 : IRn → IR is the objective function, fi : IR
n →

IR, i = 1, . . . , q are the associated inequality constraint func-
tions, hi : IR

n → IR, i = 1, . . . , p and ri : IR
n → IR, i =

1, . . . , s are the equality constraint functions, and x ∈ IRn

is the optimization variable. Moreover, let λi denote the
dual variable associated with constraint fi(x) ≤ 0, and νi
and ωi denote the dual variables associated with constraint
hi(x) = 0 and ri(x) = 0, respectively. Then, an arbitrary point
(x�, λ�

1, . . . , λ
�
q , ν

�
1 , . . . , ν

�
p , ω

�
1 , . . . , ω

�
p) is called (δ, ε)-KKT

optimal, if

fi(x
�) ≤ 0, i = 1, . . . , q (28)

hi(x
�) = 0, i = 1, . . . , q (29)

(1/s)

s∑
i=1

‖ri(x�)‖22 = δ (30)

λ�
i ≥ 0, i = 1, . . . , q (31)

λ�
i fi(x

�) = 0, i = 1, . . . , q (32)

(1/n)

∥∥∥∥∥∇xf0(x
�) +

q∑
i=1

λ�
i∇xfi(x

�)

+

p∑
i=1

ν�i ∇xhi(x
�) +

s∑
i=1

ω�
i ∇xri(x

�)

∥∥∥∥∥
2

2

= ε. (33)

Note that (28)–(33) are closely related to the well-
known KKT optimality criterions, see [6, Sec. 5.5.3]. It
suggests that the smaller δ and ε are, better the point
(x�, λ�

1, . . . , λ
�
q , ν

�
1 , . . . , ν

�
p , ω

�
1 , . . . , ω

�
p) to its local optimality.

We use Definition 1 to formally analyze the optimality proper-
ties of ADMM-DOPF as discussed in the sequel.

Recall that we have used z = (zk)k∈N to denote the vector
of all local primal variables in (9), v = (vRe,vIm) to denote
the vector of all net variables, u = (uk)k∈N to denote the dual
variables associated with constraints (10b)–(10e), and, finally,
y to denote the dual variables associated with constraint (10f).

Let us assume that at the termination of ADMM-DOPF, the
output corresponding to v and y is v� and y�, respectively. The
output of ADMM-DOPF corresponding to z and u are simply
the output of Algorithm 2 given by z� = (z�k)k∈N and u� =
(u�

k)k∈N . However, unlike in convex problems, in the case of
problem (10), one cannot take for granted that the consistency
constraint (10f) is satisfied (cf. [29, Sec. 3.2.1]). In particular,
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‖v(n)
k − Ēkv

�‖22 → 0 does not necessarily hold when n → ∞,
where k ∈ N and n is the ADMM-DOPF iteration index. How-
ever, an appropriate choice of the penalty parameter ρ in the
ADMM-DOPF algorithm usually allows finding outputs, where
the consistency constraints are almost satisfied with a small
error floor, which is negligible in real practical implementations
as we will see empirically in Section V. For latter use, let us
quantify this error floor from δk, i.e.,

δk = v�
k − Ēkv

�, k ∈ N . (34)

Now we can formally establish the optimality properties of
ADMM-DOPF as follows.

Proposition 2: Given Assumption 1 holds, the output
(z�,v�,u�,y�) at the termination of ADMM-DOPF is
(a−1δ̄, b−1ρ2δ̄)-KKT optimal, where δ̄ =

∑
k∈N |δk‖22, ρ is the

penalty parameter used in the ADMM-DOPF iterations, and
a = len((δk)k∈N ), b = len(z�,v�) are normalization factors.

Proof: See Appendix II-B. �
We note that deriving an analytical expression of δ by using

problem (10) data is very difficult. However, we can numeri-
cally compute δ and ε given in Proposition 1 as

δ = a−1δ̄, ε = b−1ρ2δ̄. (35)

Extensive numerical experiences show that we usually have
very small values for δ. For example, for all considered sim-
ulations with ρ = 106 [see Section V], we have δ on the order
of 10−12 (or smaller) and ε on the order of 10−1 (or smaller)
after 5000 ADMM-DOPF iterations.

V. NUMERICAL RESULTS

In this section, we present numerical experiments to illus-
trate the proposed algorithm. We compare our algorithm with
the branch-and-bound algorithm [11], centralized OPF solver
provided by Matpower [33], and the SDP relaxation from [3].
In order to study the convergence properties of the algorithm,
we evaluate it on four examples that have a (nonzero) duality
gap, see Table I, rows 1-4. These four examples come from [10]
and [11], and are obtained by making a small modification to
standard test examples, see Table I, column 3. It is worth noting
that the methods based on the SDP relaxation do not apply here
due to the nonzero duality gap [10]. To study the scalability
properties of the proposed algorithm, we also evaluate it on two
larger examples, see Table I, rows 5-6. The exact specifications
of the considered examples are found in Table I and references
therein. The objective functions in all examples are quadratic.

The units of real power, reactive power, apparent power, volt-
age magnitude, and the objective function values are megawatts
(MW), MVAr, megavolt-amperes (MVA), per unit (p.u.),4

and U.S.$/h, respectively. In all six problems, the average
power demand of the loads is in the range 10–100 MW and
1–10 MVAr, for the real and reactive powers, respectively.

The simulations were executed in a sequential computational
environment, using Matlab version 8.1.0.604 (R2013a) [35].

4The voltages base is 400 kV.

TABLE I
SPECIFICATIONS OF THE TEST PROBLEMS. THE FIRST COLUMN

INDICATES THE NUMBER OF BUSES. THE SECOND COLUMN GIVES THE

REFERENCE TO THE ORIGINAL PROBLEMS. THE THIRD COLUMN SHOW

HOW WE MODIFY THE ORIGINAL PROBLEM (p̄Dk AND q̄Dk INDICATE THE

ORIGINAL PROBLEM DATA ASSOCIATED WITH THE POWER DEMANDS).
THE FOURTH AND FIFTH COLUMNS SPECIFY THE NUMBER OF

GENERATORS AND LOADS, RESPECTIVELY. THE SIXTH COLUMN

SPECIFIES THE TYPE OF FLOW LINE LIMIT (FL) USED, IF ANY, THAT IS,
WHICH CONSTRAINTS (2I), (2J), AND (2K) ARE INCLUDED

TABLE II
FREQUENCY OF THE TERMINATION OF Algorithm 2

FROM THE STOPPING CRITERIA (18)

The convex problem (16) is solved with the convex solution
method presented in Section III-C, together with the built-
in Matlab QP solver quadprog. As a stopping criterion for
Algorithm 2, we use εsub = 10−10 and max_iter = 20, un-
less stated otherwise. For the ADMM method, we use vRe =
(1, · · · , 1), vIm = (0, · · · , 0), and y = (0, · · · , 0) as an initial
point.

A. Properties of Algorithm 2

In this subsection, we investigate the convergence properties
of Algorithm 2. In particular, we relate the convergence behav-
ior of Algorithm 2 to the analysis in Sections IV-A and IV-B,
where four scenarios, or possible outcomes, of Algorithm 2
(Fig. 2) were identified.

During the numerical evaluations, Algorithm 2 was executed
11 060 000 times. Scenarios 1 and 2 [Fig. 2(a) and (b), respec-
tively] are where the approximated subproblem is infeasible
and occurred only 6 times (≈ 0.00008%). These occurrences
occurred at one of the buses in the 300-bus example, during
ADMM iterations 137–143. This suggests even if a particular
bus fails to converge with Algorithm 2 in consecutive ADMM
iterations, the bus can recover to find a solution in latter ADMM
iterations.

To numerically study the occurrences of Scenarios 3 and 4,
we run Algorithm 2 with 1) max_iter = 20; 2) max_iter =
1000; and 3) max_iter = 25 000. In all considered cases, we
use εsub = 10−10 [compare with (17)]. Table II summarizes
how frequently the stopping criteria (18) of Algorithm 2 is met.
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Fig. 3. CDF displaying DFk,n of (36) for every subproblem k and every
ADMM iteration n for each of the four examples.

Note that the entries of Table II suggest an upper bound
on the frequencies of Scenario 4. Therefore, Table II shows
that the frequencies of Scenario 4 decrease (or unchanged) as
max_iter is increased. However, the effects are marginal as
indicated in the table, especially for max_iter ≥20. On the
other hand, recall that εsub = 10−10, that is, the decrement
of voltages between two successive iterations is below 10−10

[compare with (17)]. Such an infinitesimal accuracy in the
stopping criteria (17) suggests the algorithm’s convergence, see
Scenario 3, Fig. 2(c). For example, consider the case N = 3
and max_iter = 20 in Table II. From the results, the frequency
of termination of Algorithm 2 from the stopping criteria (17)
(i.e., Scenario 3) becomes 99.995%. Thus, from Proposition 1,
it follows that when max_iter = 20, 99.995% of the cases
Algorithm 2 converge to a point satisfying the KKT conditions.
It is worth noting that for all considered cases, the convergence
of the algorithm is in the range 99.99%–100%. The results also
suggest that the convergence properties of Algorithm 2 can be
improved (see the case N = 300) or remain intact (see the cases
N = 3, 9, 14, 30, and 118) at the expense of the increase in
max_iter.

Note that the voltages returned by Algorithm 2 are always
feasible to problem (12), that is, it satisfies (12h). However, the
resulting power injections might be infeasible [compared with
(12c)–(12g)]. To measure the feasibility of the returned power
injections of Algorithm 2, we define the following metric called
the degree of feasibility (DF):

DFk,n = min
p+jq∈Sk

∥∥∥p(n)k + jq
(n)
k − (p+ jq)

∥∥∥ (36)

where k and n indicate the bus and ADMM iteration, respec-
tively, p(n)k + jq

(n)
k is the returned power injection, and

Sk=

{
z∈C

∥∥∥∥ pG,min
k − pDk ≤ Re(z) ≤ pG,max

k − pDk
qG,min
k − qDk ≤ Im(z) ≤ qG,max

k − qDk

}
(37)

The unit of measurement for DFk,n is MVA. In order to
provide a statistical description of DFk,n for every execution of
Algorithm 2, we consider an empirical cumulative distribution
function (CDF) (Fig. 3) and a histogram (Fig. 4), for each
example separately. These results suggest that Algorithm 2
returns a feasible solution with high accuracy in all cases, where
the worst case accuracy is 2.5× 10−10.

Fig. 4. Histograms displaying DFk,n in (36) for every subproblem k and
every ADMM iteration n for the considered test networks: (a) three-bus
networks, (b) nine-bus network, (c) 14-bus network, (d) 30-bus network,
(e) 118-bus network, and (f) 300-bus network.

As a consequence of this promising behavior of Algorithm 2,
we will proceed under Assumption 1.

B. Connection to Proposition 2

In this section, we relate the numerical evaluations to
Proposition 2. In particular, we inspect the behavior of δ
[compared with (30) and (35)], and ε [compared with (33) and
(35)] with respect to ρ, which are defined in Section IV-C.
The unit of measurements for δ is p.u.2 and the unit of ε
can be interpreted as the square of the decrease/increase in
U.S.$/hour with respect to a small perturbation in the variable
z = (zk)k∈N .

Fig. 5 depicts δ at every 500 ADMM iterations, for ρ =
106, · · · , 1013. In the 30-bus example, the results are almost
identical for ρ = 109, 1010, · · · , 1013 and, accordingly, we only
include the results for ρ = 106, 107, 108, 1013. Since δ mea-
sures the inconsistency between the subproblems, the point
returned by ADMM-DOPF can only be considered feasible
when δ has reached acceptable accuracy, that is, δ < γ for some
γ > 0. We do not consider any particular threshold γ, since we
are only interested in observing the convergence behavior. In
this aspect, the result shows a promising behavior, as δ has a
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Fig. 5. δ versus the number of ADMM iterations: (a) three-bus network,
(b) nine-bus network, (c) 14-bus network, and (d) 30-bus network.

Fig. 6. ε versus the number of ADMM iterations: (a) three-bus network,
(b) nine-bus network, (c) 14-bus network, and (d) 30-bus network.

decreasing trend in all cases. Furthermore, for the 3-, 9-, and
14-bus examples, δ converges to a fixed error floor for the larger
values of the penalty parameter ρ. In particular, as ρ increases,
δ converges to a point closer to zero, which suggests a negative
relationship between δ and ρ. Therefore, this indicates that
increasing the penalty parameter enforces higher accuracy of
consistency among the subproblems. On the contrary to the 3-,
9-, and 14-bus examples, δ decreases more slowly when the
penalty parameter increases in the case of the 30-bus example.
However, in the case of the 30-bus example, δ is still decreasing
after the last iteration considered when ρ = 109, · · · , 1013.

Fig. 6 depicts ε at every 500th ADMM iterations, for different
ρ’s. In contrast to δ, the decreasing trend in ε is not necessary
to obtain a feasible solution to the problem. However, under
Assumption 1, as δ and ε go to zero, the algorithm converges

Fig. 7. δ versus the objective function value: (a) three-bus network; (b) nine-
bus network, (c) 14-bus network, and (d) 30- bus network.

to the KKT optimal point. Therefore, the decreasing trend in ε,
which is observed from the results, is desired. In the case of the
3-, 9-, and 14-bus examples, ε reaches values between 10−2 and
10−11 in almost every case. However, in the 30-bus example,
only when ρ = 106 does epsilon reach a value below 10−2.

C. Convergence and Scalability Properties

By convention, the objective value of problem (10) is ∞ if
the problem is infeasible and is given by (10a) if it is feasi-
ble. Therefore, when computing the objective function of the
problem, one has to verify whether the constraints (10b)–(10f)
are feasible or not. Based on Fig. 4, the feasibility of the
subproblem variables, including pGk , is on the order of 10−10 in
the worst case for every ADMM iteration [compare with (36)].
In other words, (pGk )k∈G returned by Algorithm 2 in every
ADMM iteration is feasible (with very high precision). There-
fore, our proposed Algorithm 1, which includes Algorithm 2 as
a subroutine, ensures the feasibility of constraints (10b)–(10f)
(with very high precision). However, the feasibility of the re-
maining constraint (10f) has to be verified in order to compute a
sensible operating point. In the sequel, we numerically analyze
the feasibility of the constraint (10f) together with the objective
value computed by using (10a).

Fig. 7 shows the objective value versus δ, at every 100
or 200’ ADMM iterations. In the case of the 3- and 9-bus
examples, we compare the objective value with the branch-
and-bound algorithm from [11] where the relative tolerance, the
difference between the best upper and lower bounds relative to
the best upper bound, is 0.001. The upper bound is obtained
from Matpower, and the lower bound is obtained by using the
Matlab toolbox YALMIP [36] and the solver SEDUMI [37] to
solve the dual SDP relaxation. In the case of the 14- and 30-bus
examples, the branch-and-bound algorithm failed due to mem-
ory errors. In all cases, we compare our results with the SDP re-
laxation from [3]. The results show that the algorithm converges
to some objective value in relatively few iterations, which can
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Fig. 8. Relative objective function: (a) three-bus example and (b) nine-bus
example.

even be optimal with an appropriate choice of ρ. For example,
for the considered cases, ρ = 106 yields almost optimal objec-
tive values. Moreover, the desired consistency metric δ is driven
toward zero as the number of ADMM iterations increases.

Fig. 8 depicts the relative objective function (|f − f�|/f�)
for the 3- and 9-bus examples. The results are consistent with
those presented in Fig. 7. For example, in the case of ρ = 106,
the relative objective function value is on the order of 10−6. The
results suggest that a proper choice of ρ is beneficial to achieve
a good network operating point.

To study the scalability properties of the proposed algorithm,
we compute the CPU time, relative objective value, δ, and ε of
the algorithm for all of the considered examples. In the case of
3-, 9-, 14-, and 30-bus examples, we choose ρ = 106 and in the
case of 118- and 300-bus examples, we chose ρ = 107.

Fig. 9(a) shows the parallel running times Tp versus ADMM
iterations. In particular, we define Tp = Ts/|N |, where Ts is
the sequential CPU time. The behavior of the plots in the case
of 9-, 14-, 30-, 118-, and 300-bus examples are very similar.
In other words, the parallel running time Tp is independent of
the number of buses, indicating the promising scalability of
the proposed algorithm. Note that the 3-bus example has to
handle more variables per subproblem, compared with the other
examples, see column 6 of Table I. This is clearly reflected
in the plot of the three-bus example, as an increase of the
associated parallel running time Tp.

Fig. 9(b) depicts the relative objective function |f − f�|/f�.
In the case of 3-, 9-, 118-, and 300-bus examples, the global
optimum f� is found by a branch-and-bound algorithm. How-
ever, in the case of 14- and 30-bus examples, the branch-and-
bound algorithm failed and, therefore, the best known objective
value found by Matpower was considered as f�.5 The results
show that for large and relatively large test examples (e.g., N =
30, 118, 300), the relative objective function value is on the
order of 10−3 and is not affected by network size. A similar
independence of the performance is observed for very small test
examples as well (e.g., N = 3, 9, 14) with relative objective
function values on the order of 10−6. The reduction of the
relative objective function values of smaller networks compared
with larger network examples are intuitively expected due to
substantial size differences of those networks.

5Since the 118- and 300-bus examples have zero duality gap, the branch-
and-bound algorithm worked efficiently. However, in the case of 14- and 30-bus
examples, where there is nonzero duality gap, the branch-and-bound algorithm
failed.

Fig. 9. Tp, |f − f�|/f�, δ, and ε as a function of ADMM iterations. (a) Tp;
(b) |f − f�|/f�; (c) δ; (d) ε.

Fig. 9(c) and (d) depicts ε and δ as a function of ADMM
iterations. The results show that irrespective of the number of
buses, the metrics δ and ε decrease as desired. Results further
suggest that those values are driven toward small values as
ADMM iterations increase.

Table III shows the running time and the objective value
obtained by different approaches. As benchmarks, we consider
the centralized algorithms, SDP relaxation [3], branch and
bound [11], and Matpower [33]. Table III shows that our
proposed method yields network operating points, which are
almost optimal, where the discrepancy with respect to the
optimal is on the order of 0.1% (respectively, 1%) or less with
10 000 (respectively, 3000) ADMM iterations. Note that the
running time of ADMM-DOPF is insensitive to the network
size, see Fig. 9(a) for more details. However, even in small
networks (e.g., the case with N = 14, N = 30), the running
time of the branch-and-bound algorithm can explode. This is
expected because the worst case complexity of the branch-and-
bound algorithm grows exponentially with the problem size.
Results further suggest that the running time of the centralized
algorithm SDP relaxation increases as the network size grows,
unlike the proposed ADMM-DOPF. Note that the running
time of ADMM-DOPF is large compared to the centralized
Matpower. However, those values can be further reduced if
ADMM-DOPF is deployed in a parallel computation environ-
ment, where every subproblem is handled at a dedicated set of
resources, including processors and memory among others. In
addition to the centralized benchmarks, we also consider the
decentralized one proposed in [28], which employs ADMM for
general nonconvex OPF. However, the results of [28] are not
documented in Table III, because for all considered examples,
the algorithm therein did not converge. This agrees with the
numerical results of [28], where the authors mentioned that the
convergence of their algorithm is more sensitive to the initial
point in the case of meshed networks [28, p. 5]. We note that
their method converges if it is initialized close to the optimal
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TABLE III
COMPARISON OF THE OUTPUT OF ADMM-DOPF WHEN AT ADMM ITERATION n = 3000 AND n = 10 000 WITH THE SDP RELAXATION [3],

BRANCH AND BOUND [11], AND MATPOWER [33]. Ts, Tp, OBJ, AND # ITER INDICATE THE SEQUENTIAL AND PARALLEL RUNNING

TIMES IN SECONDS, THE OBJECTIVE VALUE IN U.S.$/h, AND THE NUMBER OF ITERATIONS, RESPECTIVELY

solution. However, in practice, such an initialization point is
unknown, thus limiting dramatically the applicability of the
method in [28].

Finally, from all of our numerical experiments discussed
before, we note that the power losses in the flow lines are
typically on the order of 4.4% (or less) of the total power flow
in the line. Since the losses are not negligible, approximations,
such as the linearization of power-flow equations, can be less
applicable to compute better network operating points.

VI. CONCLUSION

We proposed a distributed algorithm for the OPF, by de-
composing the OPF problem among the buses that compose
the electrical network. A light communication protocol among
neighboring buses is needed during the algorithm, resulting in
high scalability properties. The subproblems related to each bus
capitalize on sequential convex approximations to gracefully
manipulate the nonconvexity of the problem. We showed the
convergence of subproblem solutions to the first-order nec-
essary condition for local optimality, under mild conditions.
Furthermore, by using the local optimality results associated
with the subproblems, we quantified the optimality of the
overall algorithm. We evaluated the proposed algorithm on
a number of test examples to demonstrate its convergence
properties and to compare it with the global optimal method.
In all considered cases, the proposed algorithm achieved close
to optimal solutions. Moreover, the proposed algorithm showed
appealing scalability properties when tested on larger examples.

APPENDIX I
ON THE USE OF QUADRATIC PROGRAMMING QP SOLVERS

Note that not all of the constraints of problem (16) are
affine (or linear). In particular, constraints (16g) and (16h) are
not affine. Therefore, QP solvers are not directly applied to
solve the problem. However, if constraints (16g) and (16h) are
approximated by using affine constraints, then QP is readily
applied to the modified problem.

Let us start by considering the feasible regions defined by
(16h), which accounts for X̌ k

r , r ∈ {1, . . . , |Nk|}, see Fig. 1(b).
Next, we approximate the nonlinear boundary of X̌ k

r by affine
functions as depicted in Fig. 1(c). We denote by Y̌k

r the ap-
proximated polyhedral set. We can apply similar ideas to ap-
proximate the feasible regions specified by (16g) [cf. (6h)–(6i)],
where we use γ̌k to denote the resulting affine function. Finally,
the idea is to find the desired optimal solution of problem (16)

by constructing a series of sets of the form Y̌k
r and affine

functions of the form γ̌k that approximate the feasible set
specified by (16g) and (16h) in an increasing precision. The
QP-based algorithm to solve problem (16) can be summarized
as follows.

Algorithm 3: QP to solve Problem (16)
1) Initialize: Given the initial approximated set Y̌k

r and
affine function γ̌k. Let m̄ = 1.

2) Solve the QP

min fG
k (pGk )+yT

k (vk − Êkv) +
ρ

2
‖vk−Êkv‖22 (38a)

s.t. zk = (pGk , q
G
k , pk, qk, i

Re
k , iImk ,vRe

k ,vIm
k , (38b)

îRe
k , îImk , p̂k, q̂k) (38c)

(αk(zk), λ̂
ẑk

k (zk), μ̂
ẑk

k (zk)) = 0 (38d)

(βk(zk), γ̌k(zk)) ≤ 0 (38e)

((vRe
k )r, (v

Im
k )r) ∈ Y̌k

r , r = 1, . . . , |Nk| (38f)

where the variables are pGk , qGk , pk, qk, iRe
k , iImk , vRe

k ,
vIm
k , īRe

k , īImk , ¯bfpk, q̄k, and zk. The solution correspond-
ing to the variables zk, ((vRe

k )r, (v
Im
k )r) are denoted

by z
(m̄)
k , v(m̄)

r , respectively, and all of the dual optimal

variables are denoted by u
(m̄)
k .

3) Stopping criterion: If γk(z
(m̄)
k ) ≤ 0 and v

(m̄)
r ∈ X̌ k

r for

all r ∈ {1, . . . , |Nk|}, STOP and return (z
(m̄)
k ,u

(m̄)
k ).

Otherwise, increase the precession of set Y̌k
r and func-

tion γ̌k by adding a hyperplane and an affine function,
respectively, set m̄ := m̄+ 1 and go to step 2.

The set Y̌k
r is initialized in the first step by approximating the

exterior boundary of the donut X k
r [Fig. 1(a)] by an equilateral

octagon as shown in Fig. 1(c), and γ̌k is initialized corre-
spondingly. The second step simply involves solving a QP pro-
gramming problem. The algorithm terminates in the third step
if γk(z

(m̄)) ≤ 0 and (v
(m̄)
k )r ∈ X̌ k

r for all r ∈ {1, . . . , |Nk|}.

However, if (v(m̄)
k )r ∈ Y̌k

r \ X̌ k
r , we increase the precession of

Y̌k
r by adding a hyperplane on the exterior boundary of the

donut X k
r , so that (v(m̄)

k )r �∈ Y̌k
r . In particular, we set Y̌k

r =
Y̌k
r ∩W where W is the halfspace

W=
{
((vRe

k )r, (v
Im
k )r)∈ IR2

∣∣ αr(v
Re
k )r+βr(v

Im
k )r≤γr

}
(39)
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where

αr=sign(Re((v
(m̄)
k )r))

√
(vmax

k )2r

1+((Im((v
(m̄)
k )r)/(Re((v

(m̄)
k )r))2

βr=ar

(
(Im((v

(m̄)
k )r)

(Re((v
(m̄)
k )r)

)
, γr = (vmax

k )2r

if Re(x�
r) �= 0 and

αr = 0, βr = sign(Re((v
(m̄)
k )r)), γr = (vmax

k )r.

γ̌k can be treated identically.

APPENDIX II
PROOFS

A. Proof of Proposition 1

Proof: Obviously, problem (16) is convex and in any iter-
ation m of Algorithm 2, (z(m)

k ,u
(m)
k ) [so is (z�k,u

�
k)] are primal

and dual optimal, with zero duality gap. Thus, (z�k,u
�
k) satisfies

KKT conditions for problem (16) [6, Sec. 5.5.3]. However,
in order to show that (z�k,u

�
k) satisfies KKT conditions for

problem (12), we need to show: 1) z�k is primal feasible; 2) u�
k

is dual feasible; 3) z�k and u�
k satisfy complementary slackness

conditions; and 4) derivative of the Lagrangian of problem (12)
vanishes with z�k and u�

k [6, Sec. 5.5.3].
We start by noting that the original functions definitions

λk(zk) and μk(zk) [see (12d) and (12e)] are characterized by
using the basic form

h(p, x1, x2, y1, y2︸ ︷︷ ︸
z

) = p− x1y1 − x2y2 (40)

where p ∈ IR represents power, x1, x2 ∈ IR represent cur-
rents, y1, y2 ∈ IR represent voltages, and we have denoted
(p, x1, x2, y1, y2) compactly by z. Let ĥẑ denote the first-order
Taylor’s approximation of h at ẑ. That is, ĥẑ characterizes the
basic form of the first-order Taylor’s approximation of function

definitions λ̂
ẑk

k (zk) and μ̂ẑk

k (zk), see (16d) and (16e). There-
fore, without loss of generality, we make our assertions based
on h and ĥẑ, together with the assumption limm→∞ z(m) = z�,
where z� plays the role of z�k and z(m) plays the role of z(m)

k .
Let us next summarize some intermediate results, which will

be useful later.
Lemma 1: Given the function h on the form (40), and

limm→∞ z(m) = z�, we have 1) limm→∞ ĥz(m)
(z�) = h(z�)

and 2) limm→∞ ∇zĥ
z(m)

(z�) = ∇zh(z
�).

Proof: See Appendix B-C. �
From Lemma 1 above, we conclude that

h(z�) = ĥz�

(z�) and ∇zh(z
�) = ∇zĥ

z�

(z�). (41)

By relating the result (41) to our original problems (12) and
(16), we can deduce that

λk(z
�
k) = λ̂

z�
k

k (z�k), μk(z
�
k) = μ̂

z�
k

k (z�k) (42)

and

∇̄zk
λk(z

�
k)=∇̄zk

λ̂
z�
k

k (z�k), ∇̄zk
μk(z

�
k)=∇̄zk

μ̂
z�
k

k (z�k) (43)

where ∇̄ is used to represent the component-wise differentia-
tion of associated functions.

Now we can easily conclude that z�k is primal feasible for
problem (12). This follows from (44), the fact that constraints
(12b), (12c), (12f), and (12g) are identical to (16b), (16c), (16f),
and (16g), respectively, and that X̌ k

r ⊆ X k
r .

Dual feasibility of u�
k, associated with constraints (16f) and

(16g), affirms the dual feasibility of u�
k associated with identical

constraints (12f) and (12g). In the case of constraint (16h), the
recall from (15) that X̌ k

r is characterized by ((vRe
k )r, (v

Im
k )r) ∈

IR2 such that

cr ≤ ar(v
Re
k )r + br(v

Im
k )r and (vRe

k )2r + (vIm
k )2r ≤ (vmax

k )2r.
(44)

Thus, dual feasibility of u�
k components associated with

the first (respectively, second) constraint above ensures the
dual feasibility of the same u�

k components associated with
(vmin

k )2r ≤ (vRe
k )2r + (vIm

k )2r (respectively, (vRe
k )2r + (vIm

k )2r ≤
(vmax

k )2r) of (12h). Thus, we conclude u�
k is dual feasible for

problem (12).
From (42), the fact that constraints (12b), (12c), (12f), and

(12g) are identical to (16b), (16c), (16f), and (16g), respectively,
and that the components (vRe

k ,vIm
k ) of z�k, strictly satisfy the

constraint (16h) [see Assumption 1], it follows that z�k and u�
k

satisfy complementary slackness conditions for problem (12).
In addition, Assumption 1, together with the complementary
slackness condition, ensures that the components of u�

k associ-
ated with constraints (16h) are identically zero.

Finally, recall that (z�k,u
�
k) are optimal primal and dual

variables for problem (16). Therefore, the derivative of the
Lagrangian L̂k(zk,uk) associated with problem (16) vanishes
at (z�k,u

�
k), that is, ∇zk

L̂k(z
�
k,u

�
k) = 0. This result, combined

with (43), and the fact that constraints (12b), (12c), (12f), and
(12g) are identical to (16b), (16c), (16f), and (16g), respectively,
and the fact that the components of u�

k associated with con-
straints (16h) are identically zero, affirms that the derivative
of the Lagrangian Lk(zk,uk) associated with problem (12)
vanishes at z�k and u�

k, i.e.,

∇zk
Lk(z

�
k,u

�
k) = 0 (45)

which concludes the proof. �

B. Proof of Proposition 2

Proof: Given that Assumption 1 holds, Proposition 1
asserts that all constraints, but (10f) of problem (10) are
primal feasible. Combined with (34), it trivially follows that
δ = a−1δ̄, where a = len((δk)k∈N ) and δ̄ =

∑
k∈N ‖δk‖22 [cf.

(30)]. To show that ε = b−1ρ2δ̄ [cf. (33)], let us consider the
Lagrangian L(z,v,u,y) associated with problem (12). Note
that L(z,v,u,y) is related to the Lagrangian Lk(zk,uk|yk) of
problem (12) as

L(z,v,u,y) =
∑
k∈N

(
Lk(zk,uk|yk)− (ρ/2)‖xk − Êkv‖22

)
.
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∇z,vL(z
�,v�,u�,y�) =

⎡
⎢⎢⎢⎢⎢⎣

∇z1
L1(z

�
1,u

�
1|y�

k)− ρz̄1
...

∇zN
LN (z�N ,u�

N |y�
k)− ρz̄N

∇v

( ∑
k∈N

−yT
k Êkv

)

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎣
−ρz̄1

...
−ρz̄N
0

⎤
⎥⎥⎦ (46)

z̄k =

⎛
⎜⎜⎝0, 0, 0, 0, 0, 0, (xRe�

k −Ekv
Re�), (xIm�

k −Ekv
Im�
k )︸ ︷︷ ︸

x�
k
−Ēkv�=δk

,0,0,0,0

⎞
⎟⎟⎠ (47)

Note the notation used when passing the parameters to Lk,
where we have highlighted the dependence of Lk on yk [cf.
(12a)]. Let us now inspect the derivative of the Lagrangian
L(z,v,u,y), evaluated at (z�,v�,u�,y�). In particular, we
have (46), shown at the top of the page, where z̄k is given in
(47), shown at the top of the page [compared with (34)]. Here,
the first equality follows from the standard derivation combined
with Proposition 1, the second equality follows from (45), and
by invoking the optimality conditions for problem (13), that is,∑

k∈N ĒT
k y

�
k = 0. From (46) and (47), we conclude that ε =

b−1ρ2δ̄ [cf. (33)], where b = len(z�,v�). Finally, conditions
(28), (29), (31), and (32), associated with problem (10) follow
from straightforward arguments, which concludes the proof. �

C. Proof of Lemma 1

Let H denote the Hessian of function h. Note that H is
a matrix with constant entries and, thus, does not depend on
z. From the definition of the Taylor series expansion at zm,
we have

h(z)− ĥz(m)

(z) = (1/2)(z(m) − z)TH(z(m) − z). (48)

Moreover, the differentiation of (48) yields

∇h(z)−∇ĥz(m)

(z) = H(z(m) − z). (49)

To show case 1 of the proposition, we consider the following
relations:

h(z�)− ĥz(m)

(z�) = (1/2)(z(m) − z�)TH(z(m) − z�) (50)

(1/2)λmin(H)‖z(m) − z�‖22 ≤ h(z�)− ĥz(m)

(z�)

≤ (1/2)λmax(H)‖z(m) − z�‖22 (51)

where (50) follows from (48) with z=z�, and (51) follows from
(50) and basics of linear algebra. By letting m→∞ in (51), we
conclude limm→∞ ĥz(m)

(z�)=h(z�), since limm→∞ z
(m)
k =z�k.

Similarly, by using (49) and that H(z(m)−z�)≤λmax(H
TH)

‖z(m) − z�‖22 and H(z(m)−z�)≥λmin(H
TH)‖z(m)−z�‖22,

we conclude limm→∞ ∇ĥz(m)
(z�) = ∇h(z�).
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